Structural Analysis and Design ofTall Buildings - · PDF fileStructural Analysisand DesignofTall Buildings Steel and CompositeConstruction BungaleS. Taranath Ph.D., RE., S.E. York

  • Upload
    vantram

  • View
    224

  • Download
    1

Embed Size (px)

Citation preview

  • Structural Analysis andDesign of Tall BuildingsSteel and Composite Construction

    Bungale S. TaranathPh.D., RE., S.E.

    York

    INTERNATIONAL CRC Press is an imprint of theCODE COUNCll? Taylor & frauds Group, an informs business

  • Contents

    List of Figures XX1

    List of Tables xxxix

    Foreword xli

    ICC Foreword xliii

    Preface xlv

    Acknowledgments xlix

    Special Acknowledgment li

    Author liii

    Chapter 1 Lateral Load Resisting Systems for Steel Buildings 1

    Preview 1

    1.1 Rigid Frames 2

    1.1.1 Frames with Partially Rigid Connections 61.1.2 Review of Connection Behavior 6

    1.1.2.1 Connection Classification 7

    1.1.2.2 Connection Strength 7

    1.1.2.3 Connection Ductility 7

    1.1.2.4 Structural Analysis and Design 81.1.3 Beam Line Concept 10

    1.2 Frames with Fully Restrained Connections 11

    1.2.1 Special Moment Frame, Historic Perspective 131.2.1.1 Deflection Characteristics 14

    1.2.2 Cantilever Bending Component 151.2.3 Shear Racking Component 15

    1.2.4 Methods of Analysis 16

    1.2.5 Drift Calculations 16

    1.2.6 Truss Moment Frames 17

    1.3 Concentric Braced Frames 17

    1.3.1 Behavior 17

    1.3.2 Types of Concentric Braces 19

    1.4 Eccentric Braced Frames 21

    1.4.1 Behavior 21

    1.4.2 Deflection Characteristics 22

    1.4.3 Seismic Design Considerations 23

    1.4.3.1 Link Beam Design 24

    1.4.3.2 Link-to-Column Connections 25

    1.4.3.3 Diagonal Brace and Beam outside ofLinks 25

    1.4.3.4 Link Stiffness 26

    1.4.3.5 Columns 26

    1.4.3.6 Schematic Details 27

    1.5 Buckling-Restrained Brace Frame 27

    1.6 Steel Plate Shear Wall 31

    1.6.1 Low-Seismic Design 32

    1.6.2 High-Seismic Design 32

    1.6.2.1 Behavior 33

    1.6.2.2 AISC 341-05 Requirements for Special Plate Shear Walls ....33

  • 1.6.2.3 Modeling for Analysis 331.6.2.4 Capacity Design Methods 34

    1.7 Staggered Truss 351.7.1 Behavior 37

    1.7.2 Design Considerations 381.7.2.1 Floor Systems 38

    1.7.2.2 Columns 38

    1.7.2.3 Trusses 39

    1.7.3 Seismic Design of Staggered Truss System 39

    1.7.3.1 Response of Staggered Truss System to Seismic Loads 39

    1.8 Interacting System of Braced and Rigid Frames 40

    1.8.1 Behavior 43

    1.9 Core and Outrigger Systems 44

    1.9.1 Behavior 46

    1.9.1.1 Outrigger Located at Top 48

    1.9.1.2 Outrigger Located at Three-QuarterHeight from Bottom 49

    1.9.1.3 Outrigger at Mid-Height 51

    1.9.1.4 Outriggers at Quarter-Height from Bottom 51

    1.9.2 Optimum Location of a Single Outrigger 53

    1.9.2.1 Analysis Outline 53

    1.9.2.2 Detail Analysis 55

    1.9.2.3 Computer Analysis 55

    1.9.2.4 Conclusions 58

    1.9.3 Optimum Locations of Two Outriggers 58

    1.9.3.1 Recommendations for Optimum Locations 611.9.4 Vulnerability of Core and Outrigger System

    to Progressive Collapse 62

    1.9.5 Offset Outriggers 631.9.6 Example Projects 64

    1.10 Frame Tube Systems 66

    1.10.1 Behavior 67

    1.10.2 Shear Lag 691.11 Irregular Tube 711.12 Trussed Tube 72

    1.13 Bundled Tube 74

    1.13.1 Behavior 74

    1.14 Ultimate High-Efficiency Systems for Ultra Tall Buildings 75

    Chapter 2 Lateral Load-Resisting Systems for Composite Buildings 79

    Preview 79

    2.1 Composite Members 792.1.1 Composite Slabs 802.1.2 Composite Girders 812.1.3 Composite Columns 812.1.4 Composite Diagonals 822.1.5 Composite Shear Walls 83

    2.2 Composite Subsystems 872.2.1 Composite Moment Frames 87

    2.2.1.1 Ordinary Moment Frames 892.2.1.2 Special Moment Frames 89

  • 2.2.2 Composite Braced Frames 912.2.3 Composite Eccentrically Braced Frames 932.2.4 Composite Construction 942.2.5 Temporary Bracing 95

    2.3 Composite Building Systems 962.3.1 Reinforced Concrete Core with Steel Surround 96

    2.3.2 Shear Wall-Frame Interacting Systems 982.3.3 Composite Tube Systems 992.3.4 Vertically Mixed Systems 1002.3.5 Mega Frames with Super Columns 1022.3.6 High-Efficiency Structure: Structural Concept 102

    2.4 Seismic Design of Composite Buildings 104

    Chapter 3 Gravity Systems for Steel Buildings 105

    Preview 105

    3.1 General Considerations 105

    3.1.1 Steel and Cast Iron: Historical Perspective 1053.1.1.1 Chronology of Steel Buildings 1063.1.1.2 1920 through 1950 1073.1.1.3 1950 through 1970 1083.1.1.4 1970 to Present 108

    3.1.2 Gravity Loads 1093.1.3 Design Load Combinations 1103.1.4 Required Strength 1103.1.5 Limit States 110

    3.1.6 Design for Strength Using Load and Resistance Factor Design Ill3.1.7 Serviceability Concerns Ill3.1.8 Deflections 112

    3.2 Design of Members Subject to Compression 1133.2.1 Buckling of Columns, Fundamentals 113

    3.2.1.1 Euler's Formula 114

    3.2.1.2 Energy Method of Calculating Critical Loads 1163.2.2 Behavior of Compression Members 117

    3.2.2.1 Element Instability 1193.2.3 Limits on Slenderness Ratio, KL/r 119

    3.2.4 Column Curves: Compressive Strength of Memberswithout Slender Elements 119

    3.2.5 Columns with Slender Unstiffened Elements: Yield Stress

    Reduction Factor, Q 1213.2.6 Design Examples: Compression Members 122

    3.2.6.1 Wide Flange Column, Design Example 1243.2.6.2 HSS Column, Design Example 124

    3.3 Design of Members Subject to Bending 128

    3.3.1 Compact, Noncompact, and Slender Sections 1303.3.2 Flexural Design of Doubly Symmetric Compact I-Shaped

    Members and Channels Bent about Their Major Axis 130

    3.3.3 Design Examples, Members Subject to Bending and Shear 1333.3.3.1 General Comments 133

    3.3.3.2 Simple-Span Beam, Braced Top Flange 1353.3.3.3 Simple-Span Beam, Unbraced Top Flange 137

  • 3.4 Tension Members 139

    3.4.1 Design Examples 140

    3.4.1.1 Plate in Tension, Bolted Connection 140

    3.4.1.2 Plate in Tension, Welded Connection 142

    3.4.1.3 Double-Angle Hanger 1433.4.1.4 Bottom Chord of a Long-Span Truss 1443.4.1.5 Pin-Connected Tension Member 146

    3.4.1.6 Eyebar Tension Member 1473.5 Design for Shear, Additional Comments 149

    3.5.1 Transverse Stiffeners 151

    3.5.2 Tension Field Action 152

    3.6 Design of Members for Combined Forces and Torsion (in Other

    Words, Members Subjected to Torture) 1523.7 Design for Stability 154

    3.7.1 Behavior of Beam Columns 154

    3.7.2 Buckling of Columns 1583.7.3 Second-Order Effects 158

    3.7.4 Deformation of the Structure 159

    3.7.5 Residual Stresses 159

    3.7.6 Notional Load 160

    3.7.7 Geometric Imperfections 1613.7.8 Leaning Columns 162

    3.8 AISC 360-10 Stability Provisions 1623.8.1 Second-Order Analysis 1623.8.2 Reduced Stiffness in the Analysis 1633.8.3 Application of Notional Loads 1633.8.4 Member Strength Checks 1633.8.5 Step-by-Step Procedure for Direct Analysis Method 164

    3.9 Understanding How Commercial Software Works 164

    Chapter 4 Gravity Systems for Composite Buildings 167

    Preview 167

    4.1 Composite Metal Deck 1684.1.1 SDI Specifications 169

    4.2 Composite Beams 1704.2.1 AISC Design Criteria: Composite Beams with Metal Deck

    and Concrete Topping 1744.2.1.1 AISC Requirements, General Comments 1764.2.1.2 Effective Width 178

    4.2.1.3 Positive Flexural Strength 1794.2.1.4 Negative Flexural Strength 1794.2.1.5 Shear Connectors 180

    4.2.1.6 Deflection Considerations 181

    4.2.1.7 Design Outline for Composite Beam 1834.3 Composite Joists and Trusses 186

    4.3.1 Composite Joists 1864.3.2 Composite Trusses 186

    4.4 Other Types of Composite Floor Construction 1894.5 Continuous Composite Beams 1904.6 Nonprismatic Composite Beams and Girders 191

  • 4.7 Moment-Connected Composite Haunch Girders 1924.8 Composite Stub Girders 193

    4.8.1 Behavior and Analysis 1954.8.2 Stub Girder Design Example 1974.8.3 Moment-Connected Stub Girder 200

    4.8.4 Strengthening of Stub Girder 2004.9 Composite Columns 201

    4.9.1 Behavior 201

    4.9.2 AISC Design Criteria, Encased Composite Columns 202

    4.9.2.1 Limitations 202

    4.9.2.2 Compressive Strength 2034.9.2.3 Tensile Strength 204

    4.9.2.4 Shear Strength 204

    4.9.2.5 Load Transfer 204

    4.9.2.6 Detailing Requirements 2044.9.2.7 Strength of Stud Shear Connectors 205

    4.9.3 AISC Design Criteria for Filled Composite Columns 2054.9.3.1 Limitations 205

    4.9.3.2 Compressive Strength 2054.9.3.3 Tensile Strength 2064.9.3.4 Shear Strength 2064.9.3.5 Load Transfer 206

    4.9.4 Summary of Composite Design Column 2064.9.4.1 Nominal Strength of Composite Sections 2064.9.4.2 Encased Composite Columns 2074.9.4.3 Filled Composite Columns 208

    4.9.5 Combined Axial Force and Flexure 209

    Chapter 5 Wind Loads 211

    Preview 211

    5.1 Design Considerations 2115.2 Variation of Wind Velocity with Height (Velocity Profile) 2125.3 Probabilistic Approach 2135.4 Vortex Shedding 2155.5 ASCE 7-05 Wind Load Provisions 218

    5.5.1 Analytical Procedure: Method 2, Overview 2215.5.2 Analytical Method: Step-by-Step Procedure 2245.5.3 Wind Speed-Up over Hills and Escarpments: Kzt Factor 2275.5.4 Gust Effect Factor 227

    5.5.4.1 Gust Effect Factor G for Rigid Structure:

    Simplified Method 2285.5.4.2 Gust Effect Factor G for Rigid Structure:

    Improved Method 2285.5.4.3 Gust Effect Factor Gf for Flexible or Dynamically

    Sensitive Buildings 2305.5.5 Along-Wind Displacement and Acceleration 2335.5.6 Summary of ASCE 7-05 Wind Provisions 234

    5.6 Wind-Tunnel Tests 234

    5.6.1 Types of Wind-Tunnel Tests 2355.6.2 Option for Wind-Tunnel Testing 238

  • 5.6.3 Lower Limits on Wind-Tunnel Test Results 238

    5.6.3.1 Lower Limit on Pressures for Main Wind-Force

    Resisting System 2385.6.3.2 Lower Limit on Pressures for Components

    and Cladding 2385.7 Building Drift 2385.8 Human Res