153
Strategic Environmental Assessment (SEA) for Industry Sector Himachal Pradesh, India Draft Final Report Disaster Risk Management & Climate Change Unit South Asia Sustainable Development Department The World Bank, Washington December 2013 (version 23/12/13) Draft report for internal use only. Do not cite. Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized

Strategic)EnvironmentalAssessment(SEA))for

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Strategic  Environmental  Assessment  (SEA)  for  Industry  Sector  Himachal  Pradesh,  India  

Draft  Final  Report  

 

 

 

 

 

 

 

 

 

 

 

 

 

Disaster  Risk  Management  &  Climate  Change  Unit  

South  Asia  Sustainable  Development  Department  

 

The  World  Bank,  Washington  

 

December  2013  (version  23/12/13)  

 

Draft  report  for  internal  use  only.  Do  not  cite.  

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

WB406484
Typewritten Text
95728

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  ii   December  2013  (Draft  23/12/13)  

Copyright  ©  201#  The  International  Bank  for  Reconstruction  and  Development/The  World  Bank  1818  H  Street,  N.W.  Washington,  D.C.  20433,  U.S.A.  All  rights  reserved  

Manufactured  in  _____  First  Printing:  ____  201#  printed  on  recycled  paper  

 [Standard  text  and  additional  disclaimers  will  come  here  along  the  following  lines:  World   Bank   Country   Studies,   Strategic   Environmental   Assessments,   and   similar   diagnostic   studies  are  among  the  many  reports  originally  prepared  for  internal  use  as  part  of  the  continuing  analysis  by  the   Bank   of   the   economic   and   related   conditions   of   its   developing   member   countries   and   to  facilitate  its  dialogs  with  the  governments.  Some  of  the  reports  are  published  in  this  series  with  the  least   possible   delay   for   the   use   of   governments,   and   the   academic,   business,   financial,   and  development   communities.   The   manuscript   of   this   paper   therefore   has   not   been   prepared   in  accordance   with   the   procedures   appropriate   to   formally   edited   texts.   Some   sources   cited   in   this  paper  may  be  informal  documents  that  are  not  readily  available.  The   findings,   interpretations,   and   conclusions   herein   are   those   of   the   author(s)   and   do   not  necessarily   reflect   the   views   of   the   International   Bank   for   Reconstruction   and   Development/The  World  Bank  and  its  affiliated  organizations,  or  those  of  the  Executive  Directors  of  The  World  Bank  or  the  governments  they  represent.  The  World  Bank  does  not  guarantee  the  accuracy  of  the  data  included  in  this  work.  The  boundaries,  colors,   denominations   and   other   information   shown   on   any   map   in   this   work   do   not   imply   any  judgment  on  the  part  of  The  World  Bank  of  the  legal  status  of  any  territory,  or  the  endorsement  or  acceptance  of  such  boundaries.  The  material   in   this   publication   is   copyrighted.   Copying   and/or   transmitting   portions   or   all   of   this  work   without   permission   may   be   a   violation   of   applicable   law.   The   International   Bank   for  Reconstruction   and   Development/The  World   Bank   encourages   dissemination   of   its   work   and   will  normally  grant  permission  promptly  to  reproduce  portions  of  the  work.  For  permission  to  photocopy  or  reprint  any  part  of  this  work,  please  send  a  request  with  complete  information  to  the  Copyright  Clearance  Centre,  Inc.,  {insert  correct  address  and  contacts}  All  other  queries  on  rights  and  licenses,  including  subsidiary  rights,  should  be  addressed  to  the  Office  of   the   Publisher,   The  World   Bank,   1818   H   Street   NW,  Washington,   DC   20433  USA   {insert   correct  contacts}]    LC  Cataloging-­‐in-­‐Publication  Data  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  iii   December  2013  (Draft  23/12/13)  

Acknowledgements  The  World  Bank  Task  Team   for   this   SEA  work   includes  Muthukumara  S.  Mani   (TTL),  Camille  Bann,  Cynthia  Cartier,  Jack  Ruitenbeek,  and  Vaideeswaran  Sankaran.1  This  work  was  undertaken  over  the  

period  April-­‐December  2013,  including  extensive  consultations  and  interactions  with  stakeholders  in  Himachal   Pradesh,   India.   The   SEA   Team   gratefully   acknowledges   the   presence   of   all   those  participating   in  workshops   and   information   sessions.   Specifically,   contributions   from   the   following  

are  acknowledged,  who  provided  leadership  and  guidance  during  those  events  and  subsequent  data  gathering   exercises:  Mr  Mohan   Chauhan   (Director,   Department   of   Industry);   Dr  Rajinder   Chauhan  

(Sr.   Industrial  Advisor,  Department  of   Industry);  Dr  SS  Negi   (Director,   Environment,  Department  of  Environment,   Science   and   Technology   –   DEST);   Mr  Suresh   Attri   (DEST);   Mr  Vineet   Kumar   (IFS   &  Member-­‐Secretary,  HP  State  Pollution  Control  Board  –  SPCB,  Shimla);  Mr  Sanjay  Sood  (IFS  &  Former  

Member-­‐Secretary,   HP   SPCB,   Shimla);   Mr  Chetan   Joshi   (Senior   Environmental   Engineer,   HP   SPCB,  Baddi);  Mr  Brij   Bhushan   (HP   SPCB,   Una);  Mr  Shandil   SK   (HP   SPCB,   Shimla);  Mr  Gopal   Gautam   (HP  SPCB,  Shimla);  Mr  Chetan  Joshi  (SPCB,  Baddi);  Mr  Rajender  Guleria  (Chair,  Baddi  Barotiwala  Nalagarh  

Industrial   Association   –   BBNIA);   and,   Pyush   Dogra   (Senior   Environmental   Specialist,   World   Bank,  Delhi).   The   SEA   Team   is   also   appreciative   of   the   assistance   of   the   following   in   Baddi-­‐Barotiwala-­‐Nalagarh   during   the   site   visits:   Mr  Rajeshwar   Goel   (Additional   CEO,   Baddi   Barotiwala   Nalagarh  

Development   Authority   –   BBNDA);   Mr  Keshav   Chandel   (CEO,   Baddi   Infrastructure,   BBNIA);   and,  Mr  Ashok  Kumar  Sharma  (CEO,  Shivalik  Solid  Waste  Management  Ltd).  

   

                                                                                                                         1  Contacts:   Muthukumara  S  Mani   ([email protected]);   Camille   Bann   ([email protected]);   Cynthia  Cartier  ([email protected]);  Jack  Ruitenbeek  ([email protected]);  Vaideeswaran  Sankaran  ([email protected]).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  iv   December  2013  (Draft  23/12/13)  

Abbreviations  AGiSAC   Aryabhatta  Geo-­‐informatics  &  Space  

Application  Centre  API   Active  Pharmaceutical  Ingredients  BBNDA   Baddi  Barotiwala  Nalagarh  Development  

Authority  BBNIA   Baddi  Barotiwala  Nalagarh  Industrial  

Association  BOD   Biochemical  Oxygen  Demand  CAC   Command  and  Control  CBA   Cost  Benefit  Analysis  CDM   Clean  Development  Mechanism  CEA   Cost  Effectiveness  Analysis  CEPI   Comprehensive  Environmental  Pollution  

Index  CER   Certified  Emission  Reduction  CETP   Common  Effluent  Treatment  Plant  CO2e   carbon  dioxide  equivalent  COD   Chemical  Oxygen  Demand  COPD   Chronic  Obstructive  Pulmonary  Disease  CPCB   Central  Pollution  Control  Board  CREP   Corporate  Responsibility  for  

Environmental  Protection  CTE   Consent  to  Establish  CTO   Consent  to  Operate  DALY   Disability  Adjusted  Life  Year  DEST   Department  of  Environment  and  Science  

and  Technology  DOI   Department  of  Industry  DPL   Development  Policy  Loan  DPR   Detailed  Project  Report  EIA   Environmental  Impact  Assessment  EIRR   economic  internal  rate  of  return  EMP   Environment  Master  Plan  ESS   Environment  Surveillance  Scheme  FIRR   financial  internal  rate  of  return  GDP   gross  domestic  product  GHG   greenhouse  gas  GoHP   Government  of  Himachal  Pradesh  GOI   Government  of  India  HP   Himachal  Pradesh  HSD   High  Speed  Diesel  IGG   Inclusive  Green  Growth  IPPS   Industrial  Pollution  Projection  System  ISO   International  Organization  for  

Standardization  KLPD   kilo  liter  per  day  LADF   Local  Area  Development  Fund  MBI   Market  Based  Instrument  

MINARS  Monitoring  of  Indian  National  Aquatic  Resources  

MINAS   Minimum  National  Standards  MLD   millions  of  liters  a  day  MOEF   Ministry  of  Environment  and  Forests  MoUD   Ministry  of  Urban  Development  MSME   Micro,  Small  and  Medium  Enterprise  MSW   Municipal  Solid  Waste  MT   metric  tonnes  NAAQM  National  Air  Quality  Monitoring  NGT   National  Green  Tribunal  NOx   nitrous  oxides  NPV   Net  Present  Value  OECD   Organisation  for  Economic  Cooperation  

and  Development  PES   Payment  for  Ecosystem  Services  PIL   Public  Interest  Litigation  PM10   Particulate  Matter  ≤10  micrometers  ppm   parts  per  million  RPM   respirable  particulate  matter  SCM   supply  chain  management  SEA   Strategic  Environmental  Assessment  SEAC   State  Expert  Appraisal  Committee  SEIAA   State  Environmental  Impact  Assessment  

Authority  SIDBI   Small  Industries  Development  Bank  of  

India  SME   small  or  medium  enterprise  SOx   sulphur  oxides  SPCB   State  Pollution  Control  Board  SPM   Suspended  Particulate  Matter  SSI   Small  Scale  Industry  SWCM   Single  Window  Clearance  and  Monitoring  SWF   Social  Welfare  Function  SWM   solid  waste  management  TA   Technical  Assistance  TDS   Total  Dissolved  Solids  TEV   Total  Economic  Value  TPD   tonnes  per  day  TSDF   Treatment  Storage  and  Disposal  Facilities  ULB   Urban  Local  Body  VOC   volatile  organic  compound  WAVES   Wealth  Accounting  &  Valuation  of  

Ecosystem  Services  WTAC   Willingness  to  Accept  Compensation  WTP   Willingness  to  Pay  WWTP   Wastewater  Treatment  Plant  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  v   December  2013  (Draft  23/12/13)  

Table  of  Contents  Acknowledgements  ...............................................................................................................................................  iii  Abbreviations  .........................................................................................................................................................  iv  Table  of  Contents  ....................................................................................................................................................  v  

EXECUTIVE  SUMMARY  .....................................................................................................  vii  §1   Introduction  ..................................................................................................................................................  1  

Part  I   FOUNDATIONS  .......................................................................................................  8  §2   Institutional  Review  ......................................................................................................................................  9  §3   Pollution  Hotspots  &  Priority  Polluting  Industries  ......................................................................................  18  §4   Health  &  Environmental  Impacts  of  Industrial  Pollution  in  Himachal  Pradesh  ...........................................  28  §5   Economic  Instruments  for  Environmental  Management  in  Himachal  Pradesh  ..........................................  32  

Part  II   DIAGNOSTICS  .......................................................................................................  38  §6   MSME  Scheme  –  Mid-­‐Study  Recommendation  Report  ..............................................................................  39  §7   Background  to  the  Case  Studies  .................................................................................................................  51  §8   Case  Study  1  –  Pharmaceuticals  ..................................................................................................................  61  §9   Case  Study  2  –  Stone  Crushing  ....................................................................................................................  65  §10   Case  Study  3  –  Food  Processing  ................................................................................................................  74  §11   Cost  Effectiveness  .....................................................................................................................................  77  

PART  III   WAY  FORWARD  ...............................................................................................  84  §12   Summary  of  Recommendations  ................................................................................................................  85  

ANNEXES  .........................................................................................................................  89  Annex  A   References  .........................................................................................................................................  90  Annex  B   Key  Meetings  &  Participants  ..............................................................................................................  94  Annex  C   Supplementary  Data  –  Industries  &  Criteria  Pollutants  .....................................................................  95  Annex  D   Supplementary  Valuation  Sources  &  Information  ...........................................................................  101  Annex  E   Economic  Instruments  Framework  ..................................................................................................  105  Annex  F   Supplementary  Data  –  Miscellaneous  &  Case  Studies  .....................................................................  111  Annex  G   Cost  Effectiveness  Templates  ..........................................................................................................  131  Annex  H   Maps  (placeholder)  .........................................................................................................................  135  Internal  Confidential  Notes  (remove  before  publication)  .................................................................................  143      

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  vi   December  2013  (Draft  23/12/13)  

 

Map  ES.1.  Himachal  Pradesh,  India  is  a  mountainous  state  in  Northern  India  with  an  area  of  55,673  km²  and  a  population  of  6,856,509  (2011  census).  Main  industrial  corridors  are  developing  along  the  border  with  Punjab  and  Haryana,  where  most  of  the  urban  population  lives.  The  Districts  of  Solan,  Sirmour  and  Kangra  are  of  particular  high  priority  due  to  current  industrial  concentrations,  future  growth  prospects,  and  identified  pollution  concerns  associated  with  both  water  and  air  pollution.  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  vii   December  2013  (Draft  23/12/13)  

EXECUTIVE  SUMMARY  

Background  Himachal  Pradesh  (HP)  is  a  rapidly  industrializing  

mountain  state  in  northern  India  that  also  depends  on  its  abundant  natural  and  environmental  resources  as  a  basis  for  broad-­‐based  tourism  and  provision  of  services  to  its  population  of  about  7  million  people  (Map  ES.1).    The  HP  Strategic  Environmental  Assessment  (SEA)  is  a  

technical  assistance  (TA)  to  identify  priority  industrial  pollutants  and  economic  instruments  to  minimize  industrial  waste.  The  TA  involved  a  consultative  process  to  obtain  feedback  on  priority  industries  and  pollutants,  and  to  assist  in  information  collection.  The  SEA  complements  a  World  Bank  Development  Policy  Loan  (DPL)  that  addresses  “Inclusive  Green  Growth”:  the  DPL  seeks  to  provide  policy  and  programmatic  support  to  promote  environmentally  sustainable  industrial  development  by  reducing  pollution  of  existing  industrial  plants  and  to  promote  cleaner  sources  of  economic  growth.  The  specific  objectives  of  the  SEA  are  achieved  

through  a  combination  of  research  and  analytical  work  based  on  secondary  data  and  feedback  from  stakeholders  in  HP.  The  process  has  included  priority-­‐setting  workshops,  development  of  case  studies,  and  advice  on  appropriate  measures  that  can  be  taken  to  support  the  DPL  through  identifying  options  for  implementing  economic  instruments  that  encourage  cleaner  production  in  the  state’s  micro-­‐,  small  and  medium  enterprise  (MSME)  sector.  In  support  of  this,  the  SEA  also  conducted  a  best  international  practice  review  of  economic  instrument  systems,  and  conducted  selected  economic  valuations  of  potential  health  and  environmental  effects  of  pollution  in  HP.  The  SEA  also  updated  existing  institutional  reviews  to  

provide  a  basis  for  recommendations  relating  to  ongoing  capacity  building  associated  with  any  new  policies.  The  capacity  building  is  associated  with  greater  integration  of  environmental  economic  methods  into  state  policies:  this  ranges  from  use  of  cost-­‐effectiveness  analyses  that  reflect  environmental  costs,  to  development  of  better  statistical  infrastructure  to  conduct  valuation,  to  enhanced  training  of  local  stakeholders  in  the  use  of  such  tools.  

Himachal  Pradesh  can  be  a  national  leader  in  the  adoption  and  implementation  of  modern  methods  

of  pollution  abatement  and  management.  

Industrial  Pollution  Hotspots  HP  industrial  development  policies  will  result  in  

potentially  significant  contributions  and  growth  from  industries  in  the  pharmaceutical  and  agro-­‐processing  sectors:  while  these  will  have  potentially  significant  environmental  impacts,  addressing  these  through  best-­‐available  practice  at  an  early  stage  can  improve  overall  economic  efficiency  and  environmental  sustainability.  With  the  incentivized  investment  climate  in  HP,  the  

numbers  of  both  small-­‐scale  industries  (SSI),  and  medium  and  large-­‐scale  industries  have  increased  dramatically.  Since  2003  investment  in  SSI  increased  by  632%  and  a  60%  increase  in  SSI  employment.  In  medium  and  large-­‐scale  industry  sectors,  investment  increased  by  354%  for  a  148%  increase  in  the  number  of  medium  and  large-­‐scale  units.  

Air,  water  and  hazardous  wastes  from  industries  can  generally  be  managed  through  best  available  technologies  in  larger  industries.  A  significant  challenge  is  the  proliferation  of  micro  and  small  enterprises  engaged  in,  or  allied  to,  chemical  and  textile  production.  Industry  generates  about  one-­‐quarter  of  GHGs  in  the  

State  and  this  share  could  rise  in  the  absence  of  pro-­‐active  efforts.  Such  efforts  could  focus  on  enterprise  energy  efficiency,  adoption  of  best  available  technologies  for  process  design,  and  green  building  design  mandated  through  building  codes.  

Industrial  growth  has  been  significant  in  Himachal  Pradesh,  largely  in  response  to  targeted  incentives,  with  industrial  hotspots  arising  in  the  Districts  of  

Solan,  Sirmour,  and  Kangra.  

Institutional  Opportunities  &  Constraints  The  DEST  (DEST)  and  State  Pollution  Control  Board  

(SPCB)  are  maturing  into  important  policy  and  regulatory  players  in  Himachal  Pradesh.  Recent  initiatives  have  also  culminated  in  2013  in  the  development  of  an  Environment  Master  Plan  for  HP,  and  notification  of  policies  associated  with  Payment  for  Ecosystem  Services  (PES).  Weaknesses  in  institutional  monitoring  capacity  still  

result  in  information  gaps  that  hinder  effective  selection  of  optimal  regulatory  policies.  Main  gaps  are  associated  with  the  scale  and  types  of  industrial  sectors  operating  in  the  hotspots,  and  up-­‐to-­‐date  pollution  information  and  concentration  data  from  these  sectors.  The  existing  information  can,  however,  help  guide  the  design  of  efficient  economic  instruments  that  can  be  tested  in  some  of  these  hotspots  and  sectors.  Recent  initiatives  have  shown  that  DEST  can  work  in  

partnership  with  industry  for  proactive  environmental  management.  Also,  a  commitment  to  multi-­‐stakeholder  collaboration  can  inform  the  development  of  State  Environmental  Policy.  

Priority  Sectors  Of  17  priority  traditionally  high  polluting  industries  in  

India,  11  are  currently  present  in  Himachal  Pradesh.  Three  of  these  industries  (pharmaceutical,  fermentation,  sugar)  have  recently  enjoyed  some  status  as  “thrust”  industries  in  HP;  pollution  mitigation  in  these  sectors  is  possible  but  will  require  coordinated  efforts  to  ensure  that  human  and  ecosystem  health  is  not  compromised.  Some  polluting  industries  on  the  negative  list  (e.g.,  

those  associated  with  dyes  and  tanneries)  will  be  more  difficult  to  address  due  to  their  high  cost  of  intervention  if  they  persist  at  a  small  scale.  The  use  of  thrust  and  negative  lists  is  a  useful  means  

for  documenting  and  potentially  regulating  industries,  but  it  should  be  recognized  that  even  negative  industries  might  grow  and  require  regulation.  

Incentives  used  to  encourage  thrust  industries  may  also  be  directed  more  aggressively  to  those  industries  that  have  a  potentially  positive  

environmental  footprint:  ecotourism,  biotech,  and  nanotech  are  examples.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  viii   December  2013  (Draft  23/12/13)  

Health  Linkages  Industrial  pollution  will  have  negative  impacts  on  

human  and  ecosystem  health  if  not  mitigated.  Air  pollution  from  PM10  is  a  leading  cause  of  the  disease  burden  in  urban  areas  of  HP;  most  water  pollution  disease  burden  is  more  associated  with  non-­‐industrial  sources.  Benefits  (including  human  and  environmental  health)  

are  still  relevant  in  comparing  pollutants  but  finding  a  common  denominator  in  money  or  physical  terms  is  problematic.  Interventions  for  most  pollutants  are  most  cost  effective  if  they  are  preventative  –  targeting  future  developments.  In  addition,  especially  for  air  pollution,  they  need  to  be  restorative  to  address  the  pollution  impacts  from  existing  facilities.  Economic  valuation  suggests  that  annual  economic  

losses  associated  with  pollution  in  Himachal  Pradesh  may  approach  Rs  315  million  (US$5.2  million)  for  air  pollution  and  Rs  175  million  (US$2.9  million)  for  water  pollution  in  urban  areas.  These  values  are  based  on  detailed  India-­‐wide  work  on  direct  impacts  transferred  using  appropriate  methods  to  Himachal  Pradesh;  they  are  regarded  as  lower-­‐bound  estimates  due  to  the  use  of  conservative  methodologies.  Beyond  these  direct  impacts,  however,  it  is  generally  acknowledged  that  indirect  impacts  on  the  state’s  tourism  potential  would  further  increase  these  figures  significantly.  

Economic  Instruments  –  General  Findings  Command  and  Control  (CAC)  and  Market-­‐Based  

Instruments  (MBIs)  both  incentivize  industry  to  control  pollution:  either  or  both  can  make  policy  sense  in  a  given  institutional  context.  A  mix  of  CACs  and  MBIs  can  address  different  goals:  

cost-­‐effectiveness,  pollution  reduction,  and  revenue  generation.  Historical  developments  can  generate  a  sub-­‐optimal  mix  of  approaches,  implying  that  the  first  steps  in  policy  involve  reforming  or  changing  “perverse  incentives”  that  have  unintended  negative  environmental  impacts.  India  and  Himachal  Pradesh  already  have  experience  

with  a  number  of  CAC  and  MBIs;  future  initiatives  in  the  State  can  build  effectively  on  this  experience.  All  of  these  approaches  do,  however,  require  well-­‐developed  institutional  capacity  to  enforce  or  oversee  the  relevant  instruments.  Only  voluntary  mechanisms  require  relatively  less  institutional  capacity,  but  even  these  benefit  from  complementary  state  programs  that  can  support  private  initiatives.  Not  possible  at  this  stage  to  conduct  cost  

effectiveness  of  different  regulatory  regimes  as  there  is  no  information  on  compliance  or  transaction  costs  either  within  industry  or  within  the  regulatory  setting.  Comparisons  of  the  cost  effectiveness  of  different  regulatory  regimes  require  specific  data  on  transactions,  monitoring  and  compliance  costs  borne  by  industry  and  regulators  in  Himachal  Pradesh.    A  number  of  approaches  hold  particular  promise  

including:  ü Increased  use  of  industrial  parks  within  spatial  zoning  &  

planning.  ü Increased  reliance  on  user  fees/charges  for  treatment  

with  modifications  to  remove  existing  distortions  and  inefficiencies.  

ü Increased  reliance  on  budget  neutral  environmental  taxation,  including  over  the  longer  term  a  carbon  (GHG)  tax.  

ü Aggressive  incentives  for  net  positive  impact  industries  (e.g.,  biotech,  nanotech)  or  activities.  

ü Facilitate  organization  of  small-­‐scale  industries  to  take  advantage  of  branding  opportunities  and  collective  responsibility  arrangements.  

Ongoing  support  for  awareness  building  and  transparency  in  support  of  Public  Interest  Litigation  is  a  cost  effective  means  for  addressing  industrial  

pollution.  

New  Sectoral  Insights  Case  studies  based  on  detailed  data  collection  and  

interviews  of  regulators  and  18  firms  (out  of  a  potential  >300)  in  Himachal  Pradesh  revealed  a  series  of  important  insights,  which  inform  future  policy  design.  

ü Regulators  in  the  Baddi  SPCB  regard  incentive  to  individual  firms  as  too  difficult  to  monitor  given  current  resources;  they  prefer  that  any  incentives  be  given  to  common  effluent  treatment  plants.  

ü Voluntary  certification  programs  can  generate  marketing  benefits,  decreased  costs  through  better  waste  management,  and  greater  environmental  compliance.  In  the  food  processing  survey,  companies  have  already  accessed  ISO  22000  (a  general  derivative  of  the  ISO  9000  system  particular  to  the  food  safety  industry)  and  ISO  14001;  others  are  considering  certification  under  ).  A  few  companies  are  considering  seeking  ISO  900,  ISO  14001  and  OHSAS18001  certification.  

ü Simple  classification  distortions  can  block  effective  use  eligibility  for  incentives;  stone  crushers  are  not  classified  as  an  “industry”  therefore  do  not  enjoy  the  same  benefits  that  others  might.  

New  Approach  for  MSMEs  Based  on  a  survey  of  methods  used  in  ten  countries,  

the  SEA  describes  a  hybrid  scheme  intended  to  improve  control  of  pollution  from  MSMEs  in  Himachal  Pradesh.    The  recommended  scheme  comprises  elements  of  

five  different  economic  instruments:  ü environmental  fee  tied  to  operating  permits  (on  pollution  

discharge  with  exemptions)  ü capital  grant  provisions  for  environmental  technology  ü soft  loan  scheme  for  MSME  support  ü accountability  instruments  ü economic  incentives  associated  with  supply-­‐chain  

management  The  final  hybrid  of  these  is  a  collection  of  options  

described  as  the  “Himachal  Pradesh  SME  Green  Incentive  Scheme.”  Flexibility  permits  targeting  and  phasing  of  politically  sensitive  elements;  its  design  is  such  that  it  can  be  budget  neutral,  and  altered  to  fit  budget  constraints.  

Summary  of  Recommendations  {to  be  completed  –  refer  to  action  matrix  Table  ES.1}    Elaborate/reiterate  listing  in  §12,  including  among  

others:  MSME  mechanism  (as  above)  [short-­‐medium  term]  Scaling  of  MSME  mechanism  [long  term]  Statistical  infrastructure/Capacity  building.  [ASAP]  Activities  complementing  PES  notification.  [ASAP]      Closing  statement  of  this  SEA  as  resource  for  future  

learning.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  ix   December  2013  (Draft  23/12/13)  

Page  intentionally  left  blank.    

[insert  recommendation  action  matrix  Table  ES.1:  Theme,  element,  SML  term  priority  &  indication  of  budgetary  needs  

refer  to  §12  for  full  descriptions]  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  1   December  2013  (Draft  23/12/13)  

§1   Introduction  

Context for SEA This   SEA   is   a   technical   piece   intended   to   assist   in   the   current   and   future   identification   of   priority  industrial  pollutants  and  economic   instruments   to  minimize   industrial  waste.   This   industrial   sector  

SEA   is   one   of   six   pieces   of   technical   support   envisioned   by   the   HP   Inclusive   Green   Growth   (IGG)  Development   Policy   Loan   (DPL)2  to   fill   knowledge   gaps   and   strengthen   operational   success   of   the  DPL.  The  DPL  acknowledges  that  industrial  development  is  an  important  economic  driver  within  HP,  

and   that   such   development   must   be   consistent   with   maintaining   the   integrity   of   other   natural  resource  assets  on  which  human  health  depend.  Moreover,  maintenance  of  environmental  integrity  also  supports  policy  aspirations  for  promoting  tourism  development  as  another  economic  driver.  

The   4th   Objective   and   Goal   of   the   IGG   DPL   promotes   environmentally   sustainable   industrial  

development   by   reducing   pollution   of   existing   industrial   plants   and   promoting   cleaner   sources   of  economic   growth.   The   associated   DPL  1   Prior   Action   requires   a   HP  Cabinet   amendment   to   the  Industrial  Policy  (2004)  that  promotes  cleaner  production  and  environmental  management  systems,  

disincentives   to   polluting   industries,   and   public   disclosure   of   the   status   of   polluting   units   and  clusters.  The  associated  DPL  2  Trigger   is  the  design  and  pilot  by  the  State  Department  of   Industrial  Development   of   economic   instruments   for   industrial   pollution   control   for   selected   priority  

pollutants.   This   SEA   for   the   Industrial   Sector   is   consistent   with   this   objective   of   the   IGG   DPL,   by  providing  guidance  to  facilitate  selection  of  an  appropriate  DPL  2  Trigger.  

Role of SEA The  general  objectives  of   the  SEA  Study  are:   (i)  to  assist   in   identification  of  priority  pollutants  and  industries;  (ii)  to  review  existing  institutional  structures  that  address  these  pollutants;  (iii)  to  identify  and  recommend  potential  reform  options  through  the  introduction  of  new  policy  approaches;  and,  

(iv)  to   identify   complementary   institutional   support   necessary   to   implement   such   a   program.   The  work  focuses  on  delivering  insights  and  recommendations  along  the  following  broad  themes.  

Theme  1:   Identification   and   diagnostic   of   key   environmental   issues   in   the   industrial   sector   of   HP,  including   identification   of   priority   pollutants   and   polluters   based   on   available   information.   This  

includes  listing  and  prioritization  of  primary  polluting  sources  (i.e.,  industries  and  sectors),  based  in  turn   on   a   listing   of   contaminants   of   concern   related   to   the   industrial   processes,   industrial   waste  (solid  and  liquid)  disposal  practices  and  infrastructure  and  assessment  of  the  key  environmental  and  

health   impacts.   A   large   number   of   pollution   problems   have   serious   economic   costs   in   terms   of  health,   production   costs,   tourism,   quality   of   life   and   ecology   that   exceed   the   alternative   cost   of  pollution  control;  however,  there  is  little  prioritization  of  these  problems  in  terms  of  their  economic  

impacts.   Therefore,   limited   financial   and   institutional   resources   are  dissipated  and  do  not   achieve  the   greatest   possible   effect.   The   SEA   thus   summarizes   available   economic   valuations   of   selected  environmental  and  health  costs  associated  with  pollutants  with  the  aim  to  inform  the  identification  

and  rank  of  priority  polluting  industries  and  sectors.  It  should  be  noted  that  much  of  the  ranking  has  already   been   undertaken   through   political   processes   that   recognize   the   importance   of   various  

                                                                                                                         2  World  Bank.  2012.  Development  Policy  Loan  (DPL)  to  Promote  Inclusive  Green  Growth  and  Sustainable  Development  in  Himachal  Pradesh.  August  6.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  2   December  2013  (Draft  23/12/13)  

industries,  while  also  reflecting  physical  impacts  on  human  health  and  environment;  putting  forward  the   economic   values   thus   complements   the   information   base   on  which   these   decisions   are  made  

and  priorities  are  set.  

Theme  2:  Identification  and  assessment  of  appropriate  policy  alternatives.  New  economic  conditions  require  a  reform  of  industrial  pollution  policies  toward  a  more  collaborative  approach  with  industry,  building  on  the  synergy  between  more  flexible  regulation  with  effective  enforcement  on  one  hand,  

and  market  driven  incentives  for  improved  environmental  management  systems,  on  the  other  hand.  The   SEA   thus   assesses   various   options   in   the   context   of   HP   to   address   the   priority   pollutants,  including   (i)  economic   instruments,   (ii)  command   and   control   instruments,   (iii)  public   disclosure  

instruments,   and   (iv)  other   methods.3,4  Other   methods   are   generally   at   a   higher   policy   level   and  might  include,  for  example,  incentives  for  attracting  cleaner  industries  or  extending  the  negative  list  to   other   categories   of   industries.   Given   the   continued   environmental   degradation   of   HP’s   fragile  

ecosystem   it   is  pertinent   to   revisit   the  negative   list  and  align   incentives  accordingly   for  both  clean  and  dirty   sectors.   The  SEA   considers   the  pros  and   cons  of  different  policy   alternatives  based  on  a  series   of   general   assessments   that   rely   on   experience   internationally   and   within   India,   and   upon  

local  institutional  considerations.    

Theme  3:   Recommendations   for   institutional   reforms   to   implement   the   suggested   policy   changes.  This   relies   on   a   review   of   institutional   frameworks   governing   the   environmental   aspects   of   the  industrial   sector   in   HP,   including   assessment   of   capacity   for   implementation   and   effectiveness   of  

implementation.  The  review  is  based  on  secondary  sources  and  is  intended  to  categorize  and  assess  the   relevance   and   effectiveness   of   existing   institutional   arrangements;   the   review   builds   on   a  comprehensive   assessment   undertaken   in   2009.   The   institutional   considerations   are   intended   to  

identify:   (i)  resources   that   will   be   required   to   address   existing   gaps   in   achieving   effective  environmental   management;   (ii)  appropriate   recommendations   that   can   be   implemented   in   the  

short,   medium   and   long   term;   (iii)  identify   potential   opportunities   and   challenges   to   the  implementation   of   such   recommendations;   and   (iv)  identify   institutional   roles   and   responsibilities  for   implementation.   The   recommendations   also   incorporate   initiatives   related   to   general  

institutional  capacity  building  within  HP.    

Approach The  SEA  was  undertaken  from  April  to  December  2013  based  on  secondary  data  collection,  existing  

literature  (Annex  A),  various  consultative  meetings  with  key  stakeholders  (Annex  B),  and  diagnostic  analyses  of  this  information.  The  main  elements  of  the  SEA  included  the  following.  

                                                                                                                         3  The   literature  shows  that  economic   instruments  such  as  pollution  taxes  for  environmental  policy  are  the  most  efficient  but  their  design  requires  significant  amounts  of  primary  data  and  a  vast  institutional  capacity  to  implement.  Introduction  of  pollution  taxes  may  also  require  legal  and  institutional  reforms,  besides  capacity  to  measure  and  monitor  pollution.  There  are   also   risks   that   they   invite   rent   seeking   (corruption)   as   shown   in   the   literature.   The   SEA   thus   examines   the   use   of  potential   economic   instruments   that   will   be   examined   in   the   HP   context   to   address   industrial   pollution   issues   in   the  broader  context  of  efficacy,  efficiency  and  sustainability.  As  HP  is  gearing  up  to  adopt  a  Goods  and  Services  Tax  regime,  it  is  also  an  appropriate  time  for  addressing  environmental  considerations.  4  Public   release  and  dissemination  of  emissions  data  and  environmental  performance   ranking   can  be  a  powerful   tool   to  promote   pollution   control.   Programs   of   public   disclosure   of   emissions   aim   to   promote   compliance   with   pollution  regulations   and   reward   good   performance.   Examples   of   such   schemes   include   PROPER   (Program   for   Pollution   Control,  Evaluation  and  Rating),  which  has  been  used  in  Indonesia  and  other  similar  schemes  that  have  been  used  for  monitoring  and   increased   transparency   of   information   that   have   been   used   for   example,   in   Colombia   and   Ghana.   There   is   an  increasing  appetite  in  HP  to  introduce  public  disclosure  building  on  their  existing  online  monitoring  of  pollution  from  key  industrial  sources.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  3   December  2013  (Draft  23/12/13)  

Initial  consultation  meetings  were  held  in  Himachal  Pradesh  in  June  2013  and  included  a  broad  range  of  stakeholders.  In  preparation  for  these  consultations,  key  issues  were  initially  identified  by  the  SEA  

Team  based  on  desk  reviews  of  data  and   literature.  This  provided  a  basis   for  outlining  preliminary  priorities  and  for  narrowing  down  further  analyses  and  associated  information  requirements.  

The   purpose   of   the   consultations   was   to   discuss   the   findings,   issues   and   preliminary   directions  suggested  by  the  desk  reviews  (presented  in  a  power  point  presentation),  and  to  initiate  a  work  plan  

for  amassing  additional  information.  These  meetings  also  kicked  off  a  broader  consultative  process,  recognizing   that   GoHP   has   already   embodied   a   consultative   philosophy   within   its   environmental  policy  program.  It  should  be  noted  that  the  consultations  paralleled  preparation  for  appraisal  of  the  

DPL.  

The  SEA  Team  worked  closely  with  the  State  Pollution  Control  Board  (SPCB)  and  the  Department  of  Industry  to  collect  available  data  and  information  to  inform  the  SEA.  Information  collection  involved  those  data   routinely   collected  by   the  SPCB,  as  well   as  a   series  of   case   studies  of  priority  polluting  

industries.   The   case   studies   were   selected   in   consultation   with   the   Industry   Department   and   the  SPCB:   those   chosen   covered   the   pharmaceutical   industry   in   Baddi   (Solan   District),   and   the   stone  crushing   and   food   processing   industries   in   Una   District.   Cost   effectiveness   were   subsequently  

considered  within  these  same  industries  but  at  a  state  wide  level;  information  constraints  relating  to  industrial   compliance   costs   and   institutional   costs   (described   in   this   report)   limit   the   scope   and  application  of  cost  effectiveness  analyses  at  this  stage  but  the  SEA  does  provide  selected  examples  

and   pro-­‐forma   templates   that   can   potentially   be   used   during   ongoing   institutional   information  collection  and  capacity  building  within  HP.  Such  capacity  building  is  regarded  as  a  core  requirement  for  moving  forward  and  is  described  more  fully  in  the  recommendations  arising  from  this  SEA.    

To   help   guide   the   selection   of   an   economic   instrument   for   pollution   control   to   meet   the   DPL  requirements  in  HP  a  literature  review  of  existing  practices  and  experiences  across  ten  countries  in  Asia  and  South  and  Central  America  was  undertaken.  This  experience  was  summarized  within  a  mid-­‐

study   recommendation   report   to   relevant   stakeholders   to   assist   in   the   design   of   an   appropriate  instrument  for  the  DPL  trigger.  

The  SEA  has  included  participatory  approaches  to  ensure  that  proposed  policy  changes  are  designed  and   implemented   in   a  way   that   is   responsive   to   the  different   segments   of  HP   society.  During   the  

course   of   the   work,   the   SEA  Team   worked   collaboratively   in   collecting   industry   information   and  providing   quality   control   on   that   information.   Various   databases   were   collected,   reviewed,   and  corrected   to   address   issues   associated   with   anomalies   such   as   improper   classification   and  

completeness.  Feedback  was  also  provided  by  the  SEA  Team  through  ongoing  discussions  relating  to  the   design   of   an   appropriate   economic   instrument   specifically   targeted   to   small   and   medium  enterprises:  these  recommendations  were  subsequently  validated  within  the  context  of  this  SEA  and  

form   a   core   part   of   the   overall   recommendations   arising   from   this   study.   The   SEA   also   provides  information  aimed  at  enhancing  future  social  learning  processes  through  the  use  of  case  studies  to  permit  evaluation  of  policy  directions.  A  key  aspect  of  this  is  the  elaboration  of  a  series  of  three  case  

studies   –   relating   to   the   pharmaceutical,   stone   crushing   and   food   processing   sectors   –   and   a  preliminary   review   of   cost-­‐effectiveness   considerations  within   these   sectors.   In   this   way,   the   SEA  seeks   to   promote   long-­‐term   sustainability   of   public   policies   beyond   the   mitigation   of   short-­‐term  

environmental  impacts.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  4   December  2013  (Draft  23/12/13)  

Country Context India’s  gross  domestic  product   (GDP)  growth   is   likely   to  remain   lower  than  what   it  was  before  the  global  financial  crisis  but  high  in  international  comparison.  India’s  GDP  growth  slowed  to  6.5  percent  in   FY2011-­‐12   from   8.4  percent   during   the   two   previous   years.   The   slowdown   was   led   by   lower  

investment,  which  reached  5.5  percent  in  FY2011-­‐12  compared  to  7.5  percent  in  the  previous  year.  Over  the  next  two  years,  GDP  is  expected  to  stay  around  7  percent.    

Most  environmental  indicators  in  India  suggest  that  economic  growth  is  extracting  an  increasing  toll  on  the  country's  natural  resources  -­‐  water,  land,  forests,  soils  and  biodiversity  -­‐  and  leaving  a  large  

pollution   footprint.   India   is  highly  vulnerable   to  climate  change;   cyclones,   floods  and  droughts  are  happening  with  increasing  frequency,  and  the  Himalayan  glaciers  that  feed  India‘s  largest  rivers  may  be   vulnerable   to   retreat.   Indeed,   climate   change   will   impact   India   first   and   foremost   through   its  

water   resources.   Rising   temperatures   will   also   affect   agricultural   yields,   forests,   and   marine   and  coastal   biodiversity.   India   will   need   to   better   manage   these   resources   (particularly   water)   and  reduce   the   burden   that   environmental   degradation   is   imposing   on   the   population,   particularly   on  

the  most  vulnerable  groups.    

A  World  Bank  (2013)  diagnostic  report  estimated  that  environmental  degradation  costs  India  about  US$80  billion  a  year,  nearly  6%  of  its  GDP.  The  biggest  problems  are  air  pollution,  land  degradation  and  poor  water  and  sanitation.  The  study  suggests  that  reducing  PM10  particles  by  30%  would  cut  

average  GDP  growth  by  0.04  percent,  but  would  save  US$47–US$105  billion  in  health  costs  annually  [tbv  if  annual  &  check  specific  reference].  

The  World   Bank   support   for   the  Himachal   Pradesh   Inclusive  Green  Growth   (IGG)  DPL   breaks   new  ground,  which  could  have  significant  demonstration  effects   in  promoting  the  green  growth  agenda  

throughout   India.5  HP’s   resource   base   and   pro-­‐active   policy   stance   places   it   in   a   position   to   show  leadership  at  the  state  level.  

State Context – HP as Leader The   Government   of   Himachal   Pradesh   (GoHP)   has   embarked   on   a   program   to   make   a  transformational  shift  toward  a  model  of  environmentally  sustainable  economic  growth,  at  the  core  of   which   is   the   objective   to   become   carbon   neutral   by   2020.   The   State’s   mountain   environment  

embodies  the  connectivity  between  different  economic  sectors;  industry,  together  with  energy,  rural  development   and   tourism   sectors,   is   one   of   the   key   engines   of   economic   growth   in   the   state   of  Himachal  Pradesh.6  

Himachal  Pradesh  has  witnessed  exponential  growth  in  industry  development.  From  a  modest  base  

of  22  large  and  medium  enterprises  and  6,969  small-­‐scale  industries  in  1979-­‐80,  by  2012  the  sector  had  accelerated  to  over  487  large  and  medium  enterprises  and  about  38,220  small-­‐scale  industries,  

                                                                                                                         5  The  India/World  Bank  Country  Assistance  Strategy  (CAS:  Report  No.  46509-­‐IN),  2009-­‐12,  recognizes  that  while  India  needs  to   grow   to   reduce   poverty   and   create   employment,   it   has   an   opportunity   to   do   so   in   a   way   that   is   sustainable   and  preserves  the  country‘s  natural  heritage.  CAS  identifies  the  following  priorities  for  engagement:  sustainable  management  of   natural   resources,   climate   change,   and   the   inclusive   green   growth   and   sustainable   development   agenda.   The   CAS  provides  a  framework  to  deal  with  the  challenges  of  achieving  rapid,  inclusive  growth,  ensuring  sustainable  development,  and  improving  service  delivery,  with  a  cross-­‐cutting  focus  on  improving  the  effectiveness  of  public  spending  and  achieving  monitorable  results.  The  CAS  suggests  that  special  strategies  are  required  for  the  Northeastern  and  Himalayan  States.  6  GoHP   is   in   the  process  of  preparing  a  new   Industrial   Strategy,  a  draft  of  which  was   received  and   reviewed  by   the  SEA  Team  in  September.  [If  this  is  finalized,  we  need  to  add  a  proper  reference  and  check  it  against  statements  in  this  SEA  and  add  some  text  later  in  this  Chapter.]  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  5   December  2013  (Draft  23/12/13)  

with  direct  employment  of  about  266,000  persons.  To  facilitate  the  establishment  of  new  industries,  a  State  Level  Single  Window  Clearance  and  Monitoring  Authority  was  constituted  to  clear  projects  

and   ensure   speedy   approval   from   various   departments.   Additionally   41   Industrial   Areas   and   15  Industrial  Estates  were  built  to  provide  infrastructural  facilities  to  the  sector.  

Industrial   growth   in   HP   has   been   fueled   by   incentives   provided   by   the   central   and   state  governments.   In   the   1980s,   subsidies   and   concessions   were   introduced   to   promote   investment,  

particularly   by   firms   utilizing   local   raw  materials   and   labor   and   compensate   for   the   high   costs   of  difficult   terrain   and   inadequate   industrial   infrastructure.   The   approach   however   soon   became  unsustainable   –   as   the   experience   with   infant   industry   support   has   demonstrated   globally.   GoHP  

recognizes   that   tax   breaks   and   fiscal   incentives   have   often   led   to   creation   of   uncompetitive  industries,  and  that  its  role  in  spurring  industrial  development  should  gradually  shift  from  providing  subsidies  to  creating  a  robust  business  environment  with  a  level  playing  field.  

Furthermore,  rapid  industrialization  in  HP  has  led  to  industrial  clusters  where  environmental  quality  

(air  and  water  pollution)   is   rapidly  deteriorating  and  causing  hazardous  conditions   for  neighboring  communities.  While   the   State   Pollution   Control   Board   (SPCB)   is  mandated  with   the   regulation   of  environmental   compliance   of   industries   and   identification   of   interventions   for   areas   which   have  

become  “pollution  hot  spots”,   the   Industries  Department  promotes  overall   industrial  development  in  the  state  with  limited  information  on  the  environmental  quality  of  the  various  industrial  clusters.  Further,   communities   themselves   have   little   information   on   environmental   performance   of  

neighboring  facilities,  so  stakeholder  monitoring  pressures  are  absent.  

The   GoHP   2004   Industrial   Policy   and   its   2006   amendments   continue   to   provide   an   impetus   to  industrialization.   The  Policy   includes   a  wide   range  of   incentives   aimed  at  boosting   the   investment  

climate   by   creating   and   upgrading   the   existing   infrastructure,   rationalizing   the   provision   of  incentives   and   streamlining   rules/procedures   including   the   provision   of   land   banks,   cheap  commercial  power,  skilled  manpower,  local  labor,  roads  and  transport  accessibility,  and  information  

technology   access   with   good   network   penetration   in   the   interiors.   Priority   industries   that   were  deemed   Clean   (such   as:   environmentally   sustainable   tourism,   information   technology,   bio-­‐technology  and  fruit  processing)  are  encouraged  and  financial   incentives  are  available  for   investing  

in  end-­‐of-­‐pipe  pollution  control  equipment  and  cleaner  technologies.  

Given  the  thrust  on  rapid  industrial  development,  the  inclusion  of  green  elements  and  incentives  in  the   2006   amended   Industrial   Policy   has   been  minimally   effective   for   attracting   cleaner   industries  and   adoption   of   cleaner   technologies.   Recognizing   the   need   for   reducing   the   environmental  

footprint   of   industrial   growth,   GoHP   has   agreed   to   create   a   joint   government-­‐industry   body   to  review  and  update   industrial  policy  focusing  on  environmental  sustainability  and  clean  production.  In   addition,   GoHP   recognizes   the   need   to   strengthen   collaboration   between   the   Industries  

Department,   the   Department   of   Environment,   Science   and   Technology   and   the   State   Pollution  Control   Board   to   reduce   pollution   from   industrial   sources,   while   also   enhancing   industrial  competitiveness.   Government   agencies   and   the   private   sector   have   agreed   to   jointly   review   the  

Industrial   Policy   2004   in   order   to   determine   policy   approaches   to   catalyze   or   accelerate   climate-­‐smart  industrialization  in  the  state.  [If  review  is  complete,  describe  and  reference  here;  cf.  Footnote  earlier  this  chapter.]  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  6   December  2013  (Draft  23/12/13)  

Environmental  degradation  is  particularly  impacting  the  region’s  natural  tourism  attractions  and  has  become  an  impediment  to  HP  achieving  its  full  tourism  potential.  A  major  challenge  has  been  lack  of  

coordination  between  the  Tourism  Department  and  the  Departments  of  Urban  Development,  Town  and  Country  Planning,  Environment,  Irrigation  and  Public  Health  in  formulating  a  coherent  strategy  for  improving  tourism  potential.  While  these  problems  are  already  evident,  they  are  set  to  become  

more  severe  and  widespread  without  urgent  actions  and  adequate  planning.  

The   State‘s   unique   and   fragile   hill   ecosystem,   including   its   protected   areas,   supports  many   of   the  State‘s  most   popular   tourist   activities,   including   trekking,   skiing,   angling,  mountaineering,   rafting,  and  watching  of  flora  and  fauna.  Pollution  from  wastewater  and  solid  wastes,  as  well  as  unplanned  

urban   growth,   not   only   threaten   the   fragile   ecosystem,   but   also   reduce   the   attractiveness   of   the  natural   and   pristine   areas   that   tourists   travel   to   visit.   The   tourism   sector   has   shown   remarkable  resilience  despite  over-­‐crowding   in   some  areas   and  has   the  potential   to  become  one  of  Himachal  

Pradesh’s   main   drivers   of   economic   growth.   In   2008,   Himachal   Pradesh   received   9.37  million  domestic   tourists   (1.6  percent   of   total   domestic   tourists   in   India)   and   377   thousand   international  tourists  (6.7  percent  of  total  international  tourists  in  India).  Among  Indian  states,  Himachal  Pradesh  

was   the   10th   most   visited   by   international   tourists   and   12th   most   visited   by   domestic   tourists.  Between  2001  and  2008,  visits  by  domestic  tourists  grew  by  8.9  percent  and  those  of  international  tourists  by  20.9  percent.  

Outline This   Final   Report   is   broadly   presented   in   three   parts.   Part  I   forms   a   foundation   for   focusing  subsequent   diagnostic   work   by   providing   more   extensive   detail   on   the   institutional   context,  

pollution   situation,   health   and   environmental   linkages,   and   opportunities   for   using   economic  instruments.   Part  II   performs   additional   diagnostic   analyses   to   inform   the   core   recommendations  relating  to  options  for  new  economic  instruments,  institutional  reforms  and  capacity  building;  these  

recommendations  are  presented  in  Part  III  (Chapter  12).  

Part  I   “Foundations”   continues   in   Chapter  2   with   an   institutional   review   and   then   in   Chapter  3  presents  a  summary  of   findings  relating  to  the   industrial  pollution  hotspots,   industries  and  criteria  pollutants  relevant  to  the  prioritization  exercise  in  Himachal  Pradesh.  The  institutional  review  builds  

on  a  detailed  diagnostic  first  conducted  in  2009,  and  was  informed  by  participatory  workshops  and  meetings  conducted  during  the  SEA  and  through  parallel  activities  associated  with  the  DPL.  The  work  

relating  to  pollution  hotspots  and  industries  relies  on  secondary  statistics  collected  by  government  and  on  validation  through  the  stakeholder  workshops.  A  discussion  of  health  linkages  in  Chapter  4  is  intended   to   provide   background   information   on   key   health   concerns   that   would   come   up   in   any  

industrial   context;   this   chapter   also   introduces   findings   of   the   valuation   work   related   to   human  health  and  environmental  quality  in  the  context  of  the  various  pollutants.  Chapter  5  introduces  the  framework  for  considering  different  types  of  economic  instruments  for  environmental  management;  

it  also  highlights  experience  with  such  instruments  in  HP.  

Part  II  “Diagnostics”  commences  in  Chapter  6  with  the  mid-­‐study  recommendation  report  relating  to  options   for   developing   an   incentive   system   to   improve   environmental   performance   of   MSMEs.  Chapter  7   commences   with   the   results   of   the   quality-­‐controlled   and   corrected   information  

assessment   exercise   conducted   of   all   industry   pollution   and   operational   information   for  Himachal  Pradesh;  it  subsequently  provides  more  specific  background  information  on  the  context  for  the  case  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  7   December  2013  (Draft  23/12/13)  

studies.  Chapters  8,  9  and  10  provide  a  separate  discourse  on  each  of  the  three  case  studies  for  the  pharmaceutical,  stone  crushing  and  food  processing  sectors.  Chapter  11  concludes  with  a  diagnostic  

of  cost  effectiveness  issues  addressed  in  this  SEA.  

Various  Annexes  provide  supplementary  information  tables  and  background  material.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  8   December  2013  (Draft  23/12/13)  

Part  I   FOUNDATIONS    

§2   Institutional  Review  

§3   Pollution  Hotspots  &  Priority  Polluting  Industries  

§4   Health  &  Environmental  Impacts  of  Industrial  Pollution  in  Himachal  Pradesh  

§5   Economic  Instruments  for  Environmental  Management  in  Himachal  Pradesh  

 

[insert  photo]  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  9   December  2013  (Draft  23/12/13)  

§2   Institutional  Review  

Introduction This   chapter   summarizes   the   institutional   structure   for   environmental   management.   An  environmental   institutional  assessment  was   conducted   to   inform   the   Inclusive  Green  Growth  DPL,  

and  to  help  operationalize  the  Department  of  Environment,  Science,  and  technology  (DEST),  which  was   formed   under   the   (now   closed)   Fiscal   DPL.   To   ease   capacity   constraints,   various   institutional  recommendations   are   contained   in   the   IGG   DPL   (based   on   the   institutional   assessment   done   in  

20097).   This   chapter   thus   summarizes   and   updates   the   state   of   institutional   capacity:   potential  pollution   control   interventions  will   need   to   be   considered   in   light   of   the   institutional   capacity   for  their  implementation.  This  will  provide  guidance  as  to  the  practicality  of  different  policy  alternatives,  

given   the   existing   and   evolving   environmental   governance   capacity   in   the   country.   The   chapter  commences   with   a   description   of   the   current   structure,   including   the   main   players   and   existing  policy  initiatives.  The  chapter  then  turns  to  the  2009  institutional  assessment,  which  also  provided  a  

series   of   recommendations   for   HP:   the   chapter   indicates   to   what   extent   these   have   been  implemented  or  the  reasons  for  delay  or  rejection.    

Current Structure

The  main  environmental  players:  DEST  and  SPCB  The  State  Pollution  Control  Boards  (SPCBs)  were  created  as  a  part  of  the  national  legislation  whereas  the  state  governments,  to  protect  the  particular  interests  of  the  state,  create  the  state  departments  of  environment.  The  HP  Department  of  Environment,  Science  and  Technology  (DEST)  is  responsible  

for   overall   environmental   management   in   the   state,   while   the   SPCB   is   the   main   implementing  agency   of   pollution   regulations   in   the   state.   DEST   exercises   administrative   oversight   to   the  functioning  of  the  HP  SPCB.  

The  HP  DEST  is  relatively  young.  It  was  created  in  April  2007,  in  accordance  with  the  TOR  provided  by  

the   GOI  MOEF   for   setting-­‐up   a   state   DOE.   The   first   World   Bank   DPL   assisted   in   its   capacity  development,   and   the   second   DPL   continues   that   assistance.   The   DEST   mandate   includes  implementing   all   environmental   legislation   that   the   SPCB   cannot   implement.   Hence   its   mandate  

includes:   (i)  environment   and   pollution   control;   (ii)  development/modification/adaptation   and  dissemination   of   new   technologies   for   state   development   needs;   and,   (iii)  formulation   and  implementation  of  a  state  biotechnology  policy.  

Under   its   environment   and   pollution   control   mandate,   DEST   is   responsible   for   implementing   the  

Environmental   Impact   Assessment   and   monitoring   associated   Environmental   Management   Plans  prepared  by  project  proponents.  DEST  is  responsible  for  certain  categories  of  industries  that  require  mandatory   state-­‐level   environmental   clearance.   In   accordance   with   the   GOI   EIA   mechanism,   the  

State  Environmental  Impact  Assessment  Authority  (SEIAA)  and  the  State  Expert  Appraisal  Committee  (SEAC)  have  been  established  within  DEST.  DEST  collaborates  with  the  SPCB  to  implement  national  EIA  legislation.  

                                                                                                                         7  World  Bank.  2009.  Institutional  Assessment  –  Environmental  Sector.  Part  A:  Issues  –  Priorities  and  their  Management.  A  Report   Draft   Version.   March;   and   Part   B:   Organizational   Assessment.   A   Report.   May.   Prepared   by   Environment   Team  SASDI.  New  Delhi.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  10   December  2013  (Draft  23/12/13)  

DEST  is  responsible  for  taking  punitive  action  against  industries  that  are  in  contravention  of  pollution  laws,  rules,  or  notification.  It  is  DEST  that  directs  water  and  electricity  utilities  to  stop  service  to  non-­‐

compliant  industrial  units.   In  the  case  of  PIL  actions,  DEST  is  the  GoHP  respondent  to  the  High  and  Supreme  Courts  of  India.  

The  DEST  mandate  also  includes  public  awareness  and  educations  programs,  pro-­‐active  disclosure  of  environmental   monitoring   information   and   environmental   management   practice   by   project  

proponents   and   regulators.   DEST   would   be   the   body   providing   the   Environmental   Information  System  (ENVIS)  node  for  the  MOEF.  

The  SPCBs  are  the  main  implementing  agency  for  both  national  and  state  prescribed  pollution  norms  and   standards.   The   CPCB   sets   environmental   standards,   and   with   the   assistance   of   the   SPCBs,  

monitors  environmental  performance  and  develops  and  facilitates  abatement  and  pollution  control  for  all  parts  of  the  country.  Although  DEST  provides  administrative  oversight  to  the  SPCB,  the  latter  functions  as  an  autonomous  body,   financially   independent   from  DEST.  The  SPCB  relies  on  Consent  

Fees  and  revenue  from  the  water  cess  to  cover  its  budget.    

There  are  10  regional  SPCB  offices  in  HP  that:  

• Monitor   pollution   sources   and   industries   to   ensure   that   the   conditions   of   the   Consent   to  

Establish   (CTE)   and   Consent   to   Operate   (CTO)   are   being  met   (see   Chapter  5   on   Economic  Instruments).  During  2010/11  the  SPCB  granted  355  CTE  and  332  CTO.  

• Conduct  “surprise  inspections”  as  per  the  Environment  Surveillance  Scheme  (ESS)  for  the  17  

categories  of  highly  polluting  industries.  

• Conduct   public   hearings   associated   with   EIA   processes   that   are   mandatory   for   certain  categories  of  projects.  During  2010/11,  the  SPCB  was  involved  in  5  EIA  processes.  

• Respond  to  public  complaints  and  mediate  between  industry  and  the  public.  

• Assess  and  collect  the  water  cess.  

• Monitor  the  generation  and  disposal  and/or  storage  of  biomedical  and  hazardous  waste.  

• Regulate  the  establishment  of  Sewage  Treatment  Plants  and  solid  waste  disposal  sites.  

The  2009  institutional  assessment  of  the  SPCB  found  that  it  was  operating  with  three-­‐quarters  of  its  

staff  positions  filled.  

Interaction  between  DEST,  SPCB  and  Industries  Department  The   HP   Industries   Department   implements   HP’s   Industrial   Policy   (2004).   It   plans   industrial   belts,  informed  by  a  Zoning  Atlas8  developed  by  the  HP  SPCB.  DEST  can  provide  the  industrial  sector  with  

incentives  for  cleaner  production  technologies  or  better  pollution  abatement  technologies,  or  it  can  provide  disincentives  for  dirtier,  older  technologies.  Depending  on  the  type  of  enterprise,  it  will  need  environmental  clearance  and/or  an  EIA  from  the  SPCB,  DEST,  or  the  MOEF.  

                                                                                                                         8  The  Zoning  Atlas  provides  information  as  to  the  carrying  capacity  of  different  regions.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  11   December  2013  (Draft  23/12/13)  

Both  DEST  and  SPCB  will  have   input  to  the  relevant  “negative   list”  and  “thrust   list”  of   industries   in  HP.  As  described  in  Chapter  3,  most  of  the   industries  on  the  “Negative”   list  are  those   identified  by  

the  GOI  in  the  national  industrial  policy;  HP  has  added  a  couple  more  to  the  list.  These  industries  are  not   banned,   but   are   generally   not   eligible   for   subsidies   and   are   scrutinized   for   environmental  impacts  and  mitigation  measures.  They  have  to  renew  periodically  their  Consents  to  Operate,  after  

demonstrating  their  compliance  with  the  relevant  environmental  standards.  It  is  the  responsibility  of  the  SPCB  to  ensure  that  required  renewals  are  undertaken.  

Ministry  of  Micro,  Small  and  Medium  Enterprises  The   GOI  Ministry   of  Micro,   Small   and  Medium   Enterprises   (MSME)   the  MSME   Development   Act,  

2006,   which   defines   these   three   tiers   of   enterprises.   The   Ministry   of   MSME   facilitates   industrial  growth   throughout   the   country.   The  Act   also  provides   a   legal   framework,   a   statutory   consultative  mechanism,   and   funds,   schemes,   and   services   for  MSME  promotion,   development,   and   enhanced  

competitiveness.  Among  the  schemes  to  reduce  the  environmental   impacts  of  MSMEs  is  the  Micro  and   Small   Enterprises   Cluster   Development   Program   where   a   number   of   service   facilities   are  provided  to  clusters  of  MSMEs.  

Environment  Policy  Guidelines  

The   HP   Environmental   Policy   Guidelines   have   been   developed   as   a   precursor   to   the   eventual  formulation   of   a   State   Environmental   Policy.   The   Guidelines   summarize   the   issues   in   different  environment  and  economic  sectors,  and  for  each,  provide  a  list  of  required  actions.  

Environment  Master  Plan  (EMP)  

The   formulation   of   an   EMP  was   initiated   in   October   2008   and   completed   in   2013.   It   is   based   on  vulnerability  assessments  and  the  identification  of  ecologically  fragile  zones.  It  is  a  tool  intended  to  

guide  strategic  development  planning,  to  promote  interagency  and  community  engagement,  and  to  aid  in  monitoring  regional  and  national  environmental  performance.  

Main  elements  of  the  EMP  (based  on  version  dated  __  2013)  reflect  the  following.  ____  ____  ____  ________   ________   ________   ________   ________   ________   ________   ________   ________  

________  ________  [brief  summary  to  be  inserted  based  on  most  recent  version  available]  ____  

Corporate  Responsibility  for  Environmental  Protection  (CREP)  The   MOEF   GOI   launched   the   CREP   program   in   March   2003   to   provide   a   means   for   bringing  government   and   industry   together   to   develop   measures   for   pollution   reduction   that   go   beyond  

simple   regulatory   compliance.   Within   the   CREP   program,   Action   Plans   to   meet   agreed   pollution  targets   are   to   be   developed   for   the   17   highly   polluting   industrial   sectors.   Sector-­‐specific   National  Task  Forces  are  constituted  to  monitor  the  implementation  of  each  Action  Plan.  The  CPCB  tracks  the  

progress  of  the  CREP.  

Expeditious  Clearance  HP   has   established   Single  Window   Clearance   and  Monitoring   (SWCM)   Agencies   and   a   State-­‐level  SWCM  Authority   to   ensure   rapid   clearances  of   industrial   projects.   The  Agencies   and   the  umbrella  

Authority  provide  a  forum  where  government  authorities  from  different  departments  and  agencies  meet  periodically   to  examine   industry  project  proposals.   Five  SWCM  Agencies  were  established   in  the  industrial  areas  of  Parwanoo,  Baddi,  Paonta  Sahib,  Kala  Amb,  and  Golthai.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  12   December  2013  (Draft  23/12/13)  

The 2009 Institutional Assessment In  2009  the  World  Bank  undertook  an  Institutional  Assessment  in  Himachal  Pradesh9  as  part  of  the  ongoing  Fiscal  DPL.  The  draft  findings  of  the  Institutional  Assessment  were  shared  with  the  Principal  Secretary   (Environment)   and   with   the   DEST   of   GoHP.   The   report   was   not   finalized   due   to   other  

priorities,  however,   it   served  as  a   reference  point   in   the  preparation  of   the  State’s   Environmental  Master   Plan   2013   (EMP)   and,  more   importantly,   as   a   basis   for   creating   new   positions   within   the  DEST.  

The   following   is   a   summary   of   recommendations   arising   from   the   Himachal   Pradesh   2009  

Institutional  Review  (Parts  A  &  B)  related  to  the  Department  of  Industry  and  to  DEST,  and  an  update  on  these  recommendations  as  of  November  2013.  

Industry Department – Update of 2009 Review Given   that   it   had   been   difficult   to   ensure   proper   environmental   management   in   the   existing  industrial   development   zones,   the   Institutional   Assessment   2009   recommended   that   the   Industry  Department  should  outline  a  clear  policy  that  eco-­‐sensitive  areas  and  its  surroundings  /  vicinities  will  

be  outside  the  purview  of  industries.    

Currently  the  state  operates  a  Single  Window  Clearance  system  for  industry.  The  Principal  Secretary  (Environment)   is   a   member   and   the   PCB   is   a   special   invitee   on   the   Single   Window   Clearance  committee.   If   a   project   is   located   in   an   eco-­‐sensitive   area   or   its   surroundings   /   vicinities,   it   is   not  

cleared.  Further,  as  per  the  EIA  notification  2006,  any  industry  project  located  in  eco-­‐sensitive  areas  requires  the  permission  of  the  MOEF  to  operate.  The  state  level  environmental  clearance  authority,  the   State   Environment   Impact   Assessment   Authority   (SEIAA),   cannot   provide   this   clearance.   The  

implementation  of  both  of  these  requirements  was  streamlined  in  2009.  

The   2009   Institutional   Assessment   found   that   Environmental   laws   addressed   end-­‐of-­‐the-­‐pipe  pollution  issues  but  did  not  encourage  cleaner  manufacturing.   It  was  therefore  recommended  that  the   Industry  Department  provided  a  policy  of  disincentives   for  old,  polluting  dirty   technologies  and  

incentives   for  cleaner   technologies,   production  processes  and  practices.   Industries   in  HP   should  be  urged,   facilitated   and   encouraged   towards   cleaner   manufacturing   and   encouraged,   through   the  upfront   adoption   of   better   approaches,   to   adopt   the   “polluter   internalizes   principle”.   It   was  

recommended   to   explore   the   establishment   of   a   Cleaner   Technology   Centre   within   the   Industry  Department  with   support   from  DEST.  Given   the  major   negative   environmental   impacts   caused   by  mining,  it  was  advised  to  select  the  mining  sector  to  pilot  cleaner  manufacturing  initiatives.    

Incentives   for   cleaner   technologies,  production  processes  and  practices  were   included  as  a   trigger  

for   the   DPL  II.   It   is   expected   that   the   Industrial   Policy   will   be   suitably   amended   to   include   the  incentive  policy  by  early  2014  [check  status].  

DEST – Update of 2009 Review The   specific   recommendations   of   the   2009   Institutional   Assessment   for   the  DEST   and   subsequent  related  actions  are  provided  below.  

                                                                                                                         9  World  Bank.  2009,  Institutional  Assessment  –  Environmental  Sector.  Part  A:  Issues  –  Priorities  and  their  Management.  A  Report.   Draft   Version.   March;   and   Part   B:   Organizational   Assessment.   A   Report.   May.   Prepared   by   Environment   Team  SASDI.  New  Delhi.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  13   December  2013  (Draft  23/12/13)  

Implementation  Responsibility  The  2009  Institutional  Assessment  recommended  that  DEST  should  assume  a  policy  formulation,  co-­‐

ordination   /   facilitation   /   advisory,   monitoring   and   compliance   role  without   any   implementation  responsibility.  If  implementation  experience  is  needed  to  enhance  its  advisory  role,  then  it  should  be  no  more  than  at  laboratory  or  pilot  scale.  Since  2009,  the  roles  of  the  DEST  have  been  streamlined.  

All   implementation   initiatives  related  to  environmental  management  are  now  being  carried  out  by  other  organizations,  e.g.  Aryabhatta  Geo-­‐Informatics  Space  Application  Centre  (AGiSAC).  

Multi-­‐disciplinary  Collaboration  The  2009  Institutional  assessment  recommended  the  creation  of  multi-­‐disciplinary  working  teams  at  

the  operational  level  to  promote  integration  and  better  enable  cross-­‐sector  issues  to  be  addressed.  Initially,   three   working   teams   were   recommended   covering   the   following   cross-­‐sectoral   issues:  (i)  urban,   industry,   transport   and   tourism;   (ii)  hydropower   and   roads;   and,   (iii)  rural   development,  

agriculture   and   horticulture.   Working   teams   should   include   representatives   from   the   respective  departments,  and  not  only  oversee  activities  such  as  studies  initiated  by  DEST  but  also  be  proactive,  through   field  visits  and  media  about  activities  and  practices   that  have  environmental   implications.  

Their  role  should  therefore  be  more  hands-­‐on  than  is  customary  of  inter-­‐departmental  committees.  The  working  teams  should  ensure  that  an  integrated  approach  is  developed  in  the  short-­‐term,  which  leads  to  a  better  prioritization  of  resource  allocation  and  utilization  in  the  medium  term.    

To  date,  multi-­‐disciplinary  teams  have  been  created  under  the  Climate  Change  Centre,  which   is  an  

organization   under   the   Science   and   Technology   Council.   This   has   resulted   in   cross-­‐sector   issues  being   better   addressed,   which   is   critical   in   the   context   of   climate   change.   Also,   in   the   recently  approved   Environmental   Master   Plan,   three   broad   sectors   –   Infrastructure,   Natural   Resources  

Management  and  Services,  encompassing  18  sub-­‐sectors,  are  covered10.  Guidelines  based  on  socio-­‐environmentally   vulnerability   assessment   are   in   place.   Implementation   of   these   guidelines   will  

require  a  multi-­‐disciplinary  approach.    

State  of  Environment  Reporting  The   2009   Assessment   recommended   that   the   periodic   state   of   environment   report   (SOER)   be  expanded.   Apart   from   addressing   the   environmental   status   issues,   it   should   include   a   chapter   on  

institutional   issues.   It   should   also   include:   (i)  information   on   the   activities,   outputs   &   outcomes  achieved  against  pre-­‐determined  performance   indicators  and  the  priorities  outlined  for  the  future;  and,  (ii)  the  environmental  sector’s  contribution  to  the  state’s  GDP  and  the  employment  generation.  

The  last  SOER  was  published  in  2010.  The  next  SOER  is  under  preparation  and  planned  for  release  in  

2014;   it   includes   a   chapter   on   institutional   actions,   efforts   and   initiatives.   This   will   include  information  on  the  activities,  outputs  and  outcomes  achieved  against  pre-­‐determined  performance  indicators   and   the  priorities   outlined   for   the   future,   and   the  environment   sector’s   contribution   to  

the  state’s  GDP  and  employment  generation.  

                                                                                                                         10  Infrastructure   includes   –   Road   and   transport,   hydropower,   tourism   and   ecotourism,   industry,   mining   and   geology,  irrigation   and   public   health,   health,   market   infrastructure,   rural   and   urban   planning.   Natural   Resource   Management  includes  –  agriculture,  horticulture,  animal  husbandry  livestock,  forest,  wildlife  and  wetlands  and  fisheries.  Services  include  –  education  and  vocational  training,  IT  and  telecom,  livelihoods,  waste  disposal.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  14   December  2013  (Draft  23/12/13)  

Cumulative  Impact  Assessment  It  was  recommended  in  the  2009  Assessment  that  DEST  should  identify  specific  geographical  areas,  

which  are  environmental  problem  areas.   Essentially,   these  are  areas  where   the   cumulative  effects  have   far   exceeded   the   carrying   capacity.   In   these   problem   areas,   DEST   should   have   in   place  enhanced  monitoring  and  should  focus  on  the  containment  of  pollution.  This  enhanced  monitoring  

should   include   third-­‐party   involvement,   preferably   community   monitoring   or   through   community  committees.  

This   is   being   implemented   in   relation   to   the   key   environmental   issue   in   the   state,   i.e.   river   basin  management.  To  determine  the  specific  environmental  problems  and  carrying  capacity  constraints,  

cumulative  impact  assessments  have  been  mandated  and  are  underway  in  each  of  the  river  basins.    

Extended  Responsibility  of  Polluter  The  2009  Assessment  recommended  that  compliance  penalties  went  beyond  closures  to  making  the  polluter   responsible   for   rectifying   the  pollution   created,   i.e.   the  polluter-­‐internalizes   principle.   The  

polluter  must  pay  to  rectify  or  clean  up  the  negative  outcomes  of  pollution.  To  date  there  has  been  no   initiative   taken   in   this   regard,   and   no   situations   have   arisen   for   the   state   to   implement   such  compliance  penalties.  

Work  Quality  

The  2009  Assessment   recommended   the  creation  of  additional  special  purpose  vehicles   /   societies  under  DEST  to  strengthen  and   improve  the  quality  of  work.  As  a  Government  department,  DEST   is  always  under  pressure   to  meet   the  day-­‐to-­‐day  needs  of   the  Government.  However,   this   does  not  

promote  a  mindset  for  executing  other  Government  responsibilities  that  require  focused  attention  and  commitment  over  a  prolonged  period  of  time.  Special  purpose  vehicles  or  societies  can  address  

this   by   providing   financial   resources   as   well   as   good   technical   assistance   through   collaborative  partnerships   with   expert   organizations.   The   day-­‐to-­‐day   activities   and   management   of   these   new  organizations  should  be  independent  of  the  DEST  but  leverage  on  their   linkages  with  DEST  and  the  

GoHP   to   implement   state-­‐of-­‐the   art   activities.   In   2009   there   were   two   special   purpose   vehicles  under  the  DEST  functioning  at  a   limited  scale.   It  was  recommended  that  DEST  expand  the  work  of  these  special  purpose  vehicles  to  include  new  areas  such  as  climate  change.  The  mandate  of  these  

new  organizations  should  be  large  and  be  modeled  based  on  the  best-­‐in-­‐class  organizations  globally.  Possible   organizations   along  with   their  mandates   for   consideration   cited   in   the   2009   Assessment  were:  (a)  HP  Environmental  Assets  Development  Corporation  –  land  availability  and  development  for  

environmental   enhancements;   (b)  HP  Climate  Change   Institute  –  adaptation  and  mitigation;   (c)  HP  Environmental  Management  Institute  –  proactive  facilitation,  training  and  demonstration  projects  in  Industry,   Urban   and   Construction   sectors;   and,   (d)  HP   Environmental   Information   &   Awareness  

Institute   –   a   single-­‐window   information   clearinghouse   on   environmental   issues   and   promoting  awareness  on  a  regular  basis  in  all  sections  of  society.  

Creation  of  special  purpose  vehicles   is  the  approach  adopted  by  the  DEST  since  2009.  Two  specific  examples  are  the  HP  Climate  Change  Centre  and  the  Aryabhatta  Geo-­‐Informatics  Space  Application  

Centre   (AGiSAC).   Both   these   organizations   have   been   established   by   the   DEST   through   the   State  Council  for  Science  &  Technology.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  15   December  2013  (Draft  23/12/13)  

Payment  for  Ecosystem  Services  (PES)  The   2009   Assessment   recommended   that   DEST   initiate   a   feasibility   analysis   on   raising   additional  

financial  resources  for  environmental  management  in  HP.  DEST  should  be  proactive  in  raising  funds  from  bilateral  and  multilateral  sources,  as  well  as  from  innovative  mechanisms  such  as  carbon-­‐linked  revenue  sources  and  payment   for  ecosystem  services   (PES).  Financial   resources   should  be  used   to  

conserve   the   environmental   assets   of   the   state   and   mitigate   the   environmental   impacts   of  developmental  activities.  

Currently,   a   PES   initiative   is   being   developed   as   a   part   of   the   DPL.   A   cross-­‐department   team   of  technical   experts   from   the   Forest   Department   has   worked   to   produce   an   assessment   of   water  

regulation  and  soil  retention  services  of  forests  for  hydropower  generation.  Also,  the  GoHP  piloted  a  Payment  for  Environmental  Services  (PES)  scheme  in  Palampur  and  provided  for  PES  in  the  current  Catchment  Area  Treatment  Plan   Implementation  Guidelines,  which   includes  a  provision   for  PES.  A  

GoHP  policy  on  PES  was  notified  in  November  201311.  Among  its  objectives,  the  notification  calls  for  a   sustained   flow   of   ecosystem   services,   and   enabling   experimentation   and   pilots   that   inform   and  refine   ecosystem   service   approaches;   incentives   are   linked   to   the   sustained   flow   of   ecosystem  

services.   Immediate   priority   elements   of   the   PES   program   include   quantification   of   ecosystem  service   flows;   (ii)  stakeholder   identification;   (iii)  stakeholder   engagement;   (iv)  determination   of  institutional   arrangements;   (v)  determination   of   types   and   levels   of   payments;   and,  

(vi)  incorporating  the  ecosystem  approach  into  decision-­‐making.  

Public  Feedback  The   2009   Assessment   recommended   that   DEST   evolve   as   one   of   the   departments   that   act   as   a  conduit   for  public  opinion  and   feedback   to   the  GOHP.  To  begin  with,  DEST   should  have  a  division  

that  specializes  in  seeking  public  and  stakeholder  opinion  in  relation  to  various  initiatives  (e.g.  DEST  work   or   major   public   investments).   This   division   should   network   with   key   non-­‐governmental  

organizations  and  community  groups  across  various  districts  in  the  state.  Through  this  network,  this  division   should   be   capable   of   obtaining   public   and   stakeholder   opinion   and   feedback   as   required,  and   to   communicate   this   to   the   GoHP.   DEST   should   also   maintain   excellent   documentation,  

preferably  electronic  and  web-­‐based,  and  should  operationalize  a  transparent  form  of  governance.  

There  have  been  no  follow-­‐up  initiatives  pertaining  to  this  recommendation.  However,  work  under  the   DPL  II   on   public   disclosure   should   improve   the   documentation   of   information   and   data   and  facilitate  communications  between  stakeholders.    

DEST  Structure  –  Functions  

The  2009  Assessment  recommended  that  DEST’s  environment  division  be  organized  along  functional  lines.   The   three   main   functions   are   policy,   advisory   and   co-­‐ordination.   The   Business   of   GoHP  (Allocation)  Rules,  1971  for  the  DEST  Environment  Division  covers  all  these  activities.  However,  when  

these   rules   were   to   be   next   revised,   the   2009   Assessment   found   that   it   would   be   preferable   to  structure   it   as   per   the   above   functions.   In   addition,   the   2009   Assessment   asserted   that   DEST  Environment  Division  needed  an   internal   systems  and  procedural  manual   that   outlined  work   flow  

and  work  prioritization.  

                                                                                                                         11  Government   of   Himachal   Pradesh   Department   of   Forests.   Notification   number   FFE-­‐B-­‐C   (15)-­‐3/2005-­‐11.   2  November  2013.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  16   December  2013  (Draft  23/12/13)  

Finally,  the  2009  Assessment  recommended  retaining  a  healthy  balance  among  different  functions.  For  instance,  the  DEST  Environment  Division  should  not  solely  focus  on  the  regulatory  functions  and  

become   a   “policing”   department,   but   work   with   the   other   line   departments   to   resolve  environmental   issues   proactively   through   its   Advisory   and   Co-­‐ordination   functions.   It   should   not  degenerate  to  only  providing  clearances,  monitoring  environmental  compliance  and  participating  in  

litigations  on  behalf  of  the  State  Government.  

The  functions-­‐based  organizational  restructuring  of  the  DEST  Environment  Division  was  considered  but  was  not  implemented,  as  it  was  not  viewed  as  a  priority.  As  restructuring  did  not  happen,  there  was  also  no  direct  initiative  to  create  a  “balanced”  structure.  However,  the  roles,  responsibilities  and  

authorities   of   each   position   in   DEST   have   been   clearly   laid   out   since   2009   and   there   are   no  implementation  overlaps.  

DEST  Structure  –  Staffing  The  2009  Assessment  recommended  that  DEST  create  limited  staff  positions  initially,  and  that  DEST  

adopt  a  needs-­‐based  growth  informed  by  periodic  performance  effectiveness  reviews.  At  the  outset,  one  Division  leader  and  two  staff  for  each  function  were  recommended.    

Also,   the  2009  Assessment  recommended  that  dual  staff  positions  be  avoided,  given  the  workload  for   the   proposed   positions   in   the   DEST   Environment   Division.   For   instance,   the   activities   started  

under  the  Society  for  Environment  Protection  and  Sustainable  Development  should  be  managed  by  separate   staff   and   should   not   become   a   part-­‐time   activity   of   the   staff   of   the   DEST   Environment  Division.  Strict  avoidance  of  dual   roles  has  two  benefits:   (i)  full  attention  of   the  appointed  staff  on  

the  management  aspects  of  the  three  functions;  and,  (ii)  more  individuals  are  involved  in  addressing  the  growing  environmental   problems  and   issues   confronting   the   state.   If   the   same   individuals   are  

involved  in  more  than  one  role,  then  there  are  two  concerns:  (i)  conflict  of  interest  situations;  and,  (ii)  fewer  people  involved  in  addressing  environmental  problems  and  issues,  when  the  involvement  of  a  larger  number  of  core  people  is  required.    

In   2010,   9   entry-­‐level   positions  were   created   (in   addition   to   the   Director,   PSO,   SSO-­‐Planning   and  

Environment   Engineer   positions).   Of   these   9   positions,   5   appointments   have   been  made.   For   the  remaining  4  positions,  DEST  is  still  seeking  the  right  candidate.  The  creation  of  middle-­‐level  positions  was   not   approved.   Also,   dual   roles   involving   day-­‐to-­‐day   functions   no   longer   exist.   Certain  

supervisory  responsibilities  continue,  e.g.  Director,  DEST   is  also  the  Member-­‐Secretary  of  the  State  Council  of  Science  &  Technology.  This  is  found  to  be  necessary  to  ensure  co-­‐ordination.  

DEST  Structure  –  Role  Attribution  The  2009  Assessment  recommended  that  the  DEST  Environment  Division  focus  on  the  management  

aspects  of  the  three  functions:  policy,  advisory  and  co-­‐ordination.  Hence  information  and  awareness  and   research   &   development   functions   should   continue   with   the   State   Council   for   Science   &  Technology.   In   addition,   DEST   Environment  Division   should   only   have   oversight   of   the   Society   for  

Environment  Protection  and   Sustainable  Development,  which  engages   in   consulting   type  activities  beyond  the  proposed  mandate  of  the  DEST  Environment  Division.  

In   line  with   these   recommendations   a   clear  distinction  of   roles  has  been   in  place   since  2009.   The  State  Council   for  Science  &  Technology  handles  scientific   research  activities  and   is  under   the   Joint  

Member-­‐Secretary  who  manages   it   independently.  There   is  no  overlap  in   implementation  with  the  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  17   December  2013  (Draft  23/12/13)  

DEST  Environment  Division.  The  same   is   the  case  with  the  Society   for  Environment  Protection  and  Sustainable   Development,   which   engages   in   monitoring   and   third   party   evaluation   activities.   The  

Society  has  6  positions   (3  are   in  place  currently)  and   their  activities  are   independent  of  DEST.  The  Climate  Change  Centre  and  AGiSAC,  are  also  independent  of  the  DEST.    

DEST  Structure  –  Implementation  Activities  The  2009  Assessment  recommended  that  DEST  Environment  Division  should  not  become  involved  in  

implementation.  Specifically,  it  should  not  directly  administer  GOI  schemes  on  environmental  issues  or  take  up  the  actual  execution  and  implementation  of  any  initiatives.  This  would  allow  it  to  focus  on  its  policy,  advisory  and  co-­‐ordination  functions.    

Implementation  activities  are  no   longer  being  done  by   the  DEST.  All   its  activities  pertain   to  policy,  

advisory  and  co-­‐ordination  functions.  

DEST  Structure  –  New  Organizations  The   2009   Assessment   recommended   the   aggressive   creation   of   new   organizations.   DEST  Environment   Division   had   already   taken   the   first   step   in   creating   a   Society   for   Environment  

Protection  and  Sustainable  Development  to  carry  out  initiatives  that  assist  in  the  implementation  of  environmental   management   plans   and   related   actions.   Other   suggestions   included:   (a)  HP  Environmental   Assets   Development   Corporation   –   land   availability   and   development   for  

environmental   enhancements,   (b)  HP  Climate  Change   Institute  –   adaptation  and  mitigation,   (c)  HP  Environmental   Management   Institute   –   Focus   proactive   facilitation,   training   and   demonstration  projects   in   Industry,   Urban   and   Construction   sectors;   and,   (d)  HP   Environmental   Information   &  

Awareness   Institute   –   an   information   clearinghouse.   It   was   recommended   that   DEST   should  deliberate   on   which   of   these   organizations   were   a   priority   and   initiate   necessary   action.   It   was  

regarded  as  vitally  important  to  have  and  build  more  technical  manpower  resources  to  address  the  growing  environmental  concerns.  The  DEST  Environment  Division  –  Co-­‐ordination  function  should  be  given  the  responsibility  for  creating  and  establishing  these  new  organizations.  

This   recommendation   has   been   addressed   through   the   establishment   of   four   functioning  

organizations,   i.e.   the   Climate   Change   Centre,   the   Biodiversity   Board,   AGiSAC   and   the   Society   for  Environment  Protection  and  Sustainable  Development.  

Closing Remark – From Himachal Pradesh This   closing   remark   regarding   institutional   capacity   and   aspirations   is   provided   by   an   active  

participant  in  the  consultations  in  Himachal  Pradesh.  According  to  Dr  SS  Negi  (Director,  Environment  –  DEST),   the  current   structures  and   regulations  are  not  enough   to  control  pollution  and   there   is  a  

need  to  incentivize  and  change  behavior.  There  is  a  limit  to  strict  regulatory  (Command  and  Control)  approaches,  as  it  is  not  possible  to  monitor  all  sites  all  of  the  time.  The  Department  of  Environment,  Science  and  Technology  is  therefore  looking  for  ‘the  next  level’  of  pollution  control  management.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  18   December  2013  (Draft  23/12/13)  

§3   Pollution  Hotspots  &  Priority  Polluting  Industries  

Introduction “Air  polluting  industries  should  not  be  allowed  to  be  set  up  in  the  future  at  Baddi  industrial  area,  Parwanoo  industrial  area,  Kala  Amb  industrial  area,  and  Gondpur  industrial  area  (Paonta  Sahib).”  

–  HP  Pollution  Control  Board,  Annual  Report,  2010/11,  p28.  

Any  prioritization  exercise  starts  by  necessity  with  basic  information  of  what,  where,  how  much  and  

by   whom.   In   the   context   of   this   SEA,   this   essentially   and   ideally   involves   an   inventory   of   all  industries,   their   location,   their   scale,   and   their   pollution   loads   associated   with   air,   water   and  hazardous  waste  pollution.  Such  detail  is  at  this  stage  scarce,  and  in  any  event  changes  quickly  in  an  

environment  of  rapid  and  diversified  growth.  One  advantage  of  a  rapidly  growing  industrial  sector  is  that  the  inclusion  of  best  available  technology  at  the  design  stage  can  often  address  both  economic  efficiency   and   environmental   sustainability.   This   is   most   notable   with   greenhouse   gas   (GHG)  

emissions:   such   emissions   are   highly   dependent   on   energy   usage   and   the   adoption   of   energy  conservation   technologies   in   process   design,   motor   specifications,   and   building   design   can   have  significant   impacts  on  energy  savings  and  GHG  footprints.  The  approach  of   the  SEA   is   therefore  to  

use  best  available  information  using  local  data  (relating  to  scale,  location,  and  industrial  mix)  as  well  as   national   and   regional   level   information   for   informing   the   types   of   pollutants   and   their   impacts  (see  Annex  C  for  selected  summary  tables,  for  example,  of  pollutants).  

This   Chapter   commences   with   looking   at   industrial   growth   trends   in   HP,   then   considers   the  

“hotspots”  geographically  where  such  growth  is  expected  to  be  most  pronounced.  Priority  industries  are   then  considered  within   the  historical   context  of   “Thrust”  and  “Negative  List”   industries,  which  formed   the   basis   for   incentivizing   certain   activities.   From   these   industries,   stakeholders   in   HP  

assisted  in  the  selection  of  three  priority  sectors,  which  are  dealt  with  in  greater  detail  through  case  studies   (Chapters  7–10).  Also,   the  prioritization  exercise   resulted   in  a  decision   that   the  DPL   trigger  should  be  associated  with  an  economic  incentive  scheme  applied  to  micro-­‐,  small-­‐  and  medium-­‐scale  

enterprises   (Chapter  6):   these   smaller   scale   operations   are   among   the  most   difficult   to   bring   into  compliance  with  modern  environmental  norms  yet  are  also  among   the  most  polluting.  Finally,   the  chapter  provides  a  look  at  the  sector’s  contribution  to  GHGs,  acknowledging  that  GHG  regulation  is  

not  a  direct  priority  (and  responsibility)  at  the  State  level.  

Industrial Profile of HP Efforts  to  develop  industry  in  Himachal  Pradesh  started  in  the  1980s.  Up  until  that  time,  there  was  

little   industrial  activity  apart  from  the  Mohan  Meakins  Brewery  (Solan  district)  and  Nahan  Foundry  (Sirmour  district),  and  cottage   industries  employing  traditional  skills.   Industrial  development   in  the  state   had   been   hampered   by   lack   of   access   to   markets,   poor   transportation   and   communication  

infrastructure,  shortage  of  capital  and  skills,  and  mineral  resources  of  limited  commercial  interest.  

Since  the   late  1990s,   industry   in  HP  has  accelerated  due  to  the  development  of   infrastructure  and  the  provision  of  economic  incentives  from  both  the  state  and  central  governments.  Industrial  sector  growth  was  particularly  high  after  2003  when  the  GOI  Special  Industrial  Policy  for  HP  was  introduced  

The  Special  Policy,  which  provided  a  number  of  incentives  to  industry  in  HP,  was  expected  to  run  for  a   10-­‐year   period   to   2013,   but   it   was   ended   in   March   2010.   However,   the   State   government  continues  to  provide  many  incentives  to  industries  through  its  own  policy.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  19   December  2013  (Draft  23/12/13)  

The  GoHP   Industrial  Policy  encourages   industrialization   through  a  number  of   incentives   (subsidies,  power  concessions,  tax  concessions,  land  access,  and  grants)  targeted  to  new  enterprises,  or  existing  

enterprises  proposing  significant  expansions.  Eligibility   for   the   incentives  depended  on  whether  an  enterprise  is  on  the  Negative  list  of  industries,  the  Thrust  list,  or  the  Specified  Category  of  Activities  list.  In  reality,  for  a  variety  of  reasons,  few  subsidies  are  paid  and  industries  seldom  apply.  

Most   of   the   industries   on   the   “Negative”   list   were   those   identified   by   the   GOI   in   the   national  

industrial  policy,  and  HP  added  a  couple  more  to  the  list.  These  industries  are  not  banned,  but  are  generally  ineligible  for  subsidies  and  are  scrutinized  more  for  environmental  impacts  and  mitigation  measures.  “Thrust”  industries  are  those  historically  promoted  by  the  GOI,  with,  again,  a  few  added  

that   are   specifically   promoted   by   HP.   “Specified   Category   of   Activities”   includes   agro/horticulture  produce/tourism  and  sectors  allied  with  these  types  of  activities,  which  are  promoted  by  Himachalis.  Industries  on  the  Thrust  and  Specified  Category  of  Activities  lists  receive  targeted  incentives.  

With  the  incentivized  investment  climate  in  HP,  the  numbers  of  both  small-­‐scale  industries  (SSI),  and  

medium   and   large-­‐scale   industries   have   increased   dramatically.   Since   2003   investment   in   SSI  increased  by  632%,  for  an  additional  8,044  units,  and  a  60%  increase   in  SSI  employment.  Table  3.1  shows  that  as  of  March  2012,  there  were  some  38,220  SSIs  registered  in  HP.  In  medium  and  large-­‐

scale  industry  sectors,  investment  increased  by  354%  for  a  148%  increase  in  the  number  of  medium  and  large-­‐scale  units.  

Table  3.2  shows  the  locations  of  HP  industries  –  small,  medium,  and  large-­‐scale  –  as  of  March  2012.  The   district   of   Kangra   stands   out   as   having   the   greatest   number   of   units:   8,984.   It   is   followed   by  

Solan  with  5,102.  However,  the  industrial  sector  in  Solan  employs  2.5  times  as  many  people  as  does  the  industrial  sector  in  Kangra.  The  average  size  of  an  enterprise  in  Solan  is  20  employees;  in  Kangra  

it  is  5  employees.  Kangra  is  dominated  by  small-­‐scale  industry,  while  Solan  is  medium  to  large-­‐scale.  The  district  of  Sirmour   is  the  third   largest   industrial  sector   in  terms  of  employment,  and   it  too  has  more  medium  to  large-­‐scale  enterprises.  

Table  3.1:  Industrial  Growth  in  Himachal  Pradesh  2003-­‐2012  

  2002/2003   2011/2012   %  change  

Small-­‐scale  Industry        

Cum.  Investment  (Rs  in  lakh)   70,977     519,269     632%  

Units   30,176   38,22012   27%  

Employees   129,871   207,314   60%  

Average  size   4   5    

Medium-­‐Large  Industries        

Cum.  Investment  (Rs  in  lakh)   237,806   1,079,784   354%  

Units   196   487   148%  

Employees   29,823   58,804   97%  

Average  size   152   121    

 

                                                                                                                         12  Reported  at  39,254  for  2013.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  20   December  2013  (Draft  23/12/13)  

Table  3.2:  Industrial  Location  in  Himachal  Pradesh  (March  2012)  

District   No  of  units   Investment  (Rs  lakh)  

Employment   Avg  size  

Bilaspur   2,320   542.116   10,005   4  

Chamba   1,784   34.9913   6,175   3  

Hamirpur   2,818   63.5772   10,086   4  

Kangra   8,984   555.546   40,897   5  

Kullu   2,540   84.9715   13,961   5  

Kinnaur   580   5.5044   1,818   3  

Lahaul&  Spiti   581   3.5079   1,607   3  

Mandi   3,919   109.056   16,169   4  

Shimla   3,469   249.912   13,237   4  

Solan   5,102   10,852.2   103,079   20  

Sirmour   3,235   1,771.08   28,501   9  

Una   3,375   1,718.11   20,583   6  

Total   38,707   15,990.5   266,118    

The  current  inventory  of  industry  approvals  and  registrations  suggests  that  in  the  coming  years,  the  number  of  medium-­‐  and  large-­‐scale  industries  may  increase  dramatically  in  the  districts  of  Solan  and  Sirmour,  and  to  a  lesser  extent  in  Una  and  Kangra.  These  same  districts  may  also  see  a  large  increase  

in   small-­‐scale   industries.   In   sum,   they  are  expected   to  absorb   the  bulk  of  748  medium-­‐  and   large-­‐scale   industries,  and  6,600  small-­‐scale   industries,  which  have  all  been  approved  or  registered  as  of  March  2012,  but  are  not  yet  up  and  running.  

These  apparent  trends  may,  however,  not  unfold  entirely  as  anticipated.  Some  industries  are  in  fact  

starting  to  move  out,  and  this  places  some  of  the  growth  on  a  fragile  footing.  The  industrial  incentive  package  was  withdrawn  in  2011,  and  there  is  the  expectation  that  a  number  of  industries  will  leave  Himachal   Pradesh   (HP)   as   a   result   –   especially   SMEs.   An   estimated   250   industries   have   already  

closed  down13.  Local  advocates  for  industrial  growth  cite  this  as  a  reason  for  not  putting  in  place  any  onerous  regulatory  or  tax  mechanisms:  any  such  reforms  are  regarded  as  potentially  destructive  to  the  potential  growth.  There  exists  therefore  a  policy  preference  for  less  restrictive  mechanisms  that  

facilitate   green   growth   through   promoting   clean   industries,   or   using   interventions   on   dirtier  industries   that   are   beneficial   to   the   bottom-­‐line  while   also   encouraging   operational   changes   that  improve   the   environment.   Experience   from   elsewhere   (as  will   be   shown   later)   does   illustrate,   for  

example,   that   proper  waste  management   and   energy  management   can   lead   to   lower   operational  and  maintenance  costs,  thus  also  benefiting  operational  financial  feasibility.  The  trigger  for  the  DPL  is   therefore   focused   on   introducing   a   positive   incentive   for   the   adoption   of   clean   technology,  

improved  pollution  control  practices,  or  compliance  with  regulations.14  

                                                                                                                         13  It   is   understood   that   the   Government   of   Himachal   Pradesh   (GoHP)   is   seeking   to   re-­‐instate   the   package   of   industrial  incentives;  the  likelihood  of  this  happening  is  unclear.  14  As  shown  in  Chapter  6,  the  emergent  priority  is  to  improve  the  environmental  performance  of  SMEs.  Larger  companies  generally  have   the  best  pollution  control  equipment   in  place  and  are  complying  with   regulations.  For   this   reason   it  was  agreed  to  design  an  economic   instrument  to   incentivize  SMEs.  The  desire  during  consultations  with  HP  was  that  the  SEA  thus   focus   on:   (i)  instruments   suitable   for   small   or   medium   size   industries   located   in   clusters   that   would   benefit   from  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  21   December  2013  (Draft  23/12/13)  

Hotspots Solan  district  has  the  largest  industrial  sector  in  HP,  and  industry  approvals  for  Solan  indicate  that  it  will   maintain   that   status.   Forty-­‐five   percent   of   the   total   approvals   since   2003,   for   all   industries  regardless  of  size,  are  for  Solan  district.  Its  rapid  industrial  growth  is  responsible  for  reports  of  high  

levels  of  pollution.  

The  industrial  sector  of  Solan  district  is  concentrated  in  two  general  areas:  (i)  a  belt  that  runs  along  the   south-­‐south-­‐east   border   of   HP  with  Haryana,   from  Parwanoo   in   the   south   to  Nalagarh   in   the  north;  and,   (ii)  another  area  that  runs  north-­‐east   from  Parwanoo  towards  Solan  city,   the  capital  of  

the  district.  

Both   Parwanoo   and   Baddi-­‐Barotiwala-­‐Nalagarh   (BBN)   are   fast-­‐growing   industrial   areas.   Eighty  percent  of  Parwanoo’s  population  is  engaged  in  industry.  Located  on  National  Highway  22,  it  borders  Panchkula  in  Haryana  district,  and  has  good  connections  to  both  Chandigarh  and  Solan.  BBN,  to  the  

northwest  of  Parwanoo,  is  considered  Asia’s  largest  pharmaceutical  hub.  Baddi  has  adequate  power  resources,  but   it   lacks   infrastructure  and  efficient   interstate  connectivity.   Its   fast   industrial   growth  has   drawn   a   large   migrant   labor   force,   but   chaotic   development   has   resulted   in   a   shortage   of  

housing,  hospitals,  and  roads.  There  are  plans  for  a  Chandigarh-­‐Baddi  rail  link,  but  its  construction  is  reportedly  stalled.  

The  Parwanoo   industrial  estates,  and  the  BBN  industrial  belt,  are  well  known  to  be  areas  suffering  from   air   pollution.   Air   pollution   of   PM10   is   reported   to   be   at   “critically   high”   levels   for   both  

Parwanoo  and  Baddi,  while  Nalagarh  is  reported  to  be  at  a  “high”  level  of  PM10.15  These  findings  are  consistent  with  anecdotal  reports  from  local  citizens  and  health  professionals  that  complain  of  toxic  fumes   and   increasing   incidents   of   respiratory   aliments.   Industrial   fires   have   become   frequent   in  

Parwanoo.  Care  must  be  taken  in  attributing  the  PM10  levels  all  to  industry:  some  is  attributable  to  the  transport  sector  due  to  vehicle  emissions  or  suspension  of  particulates  due  to  unpaved  roads.  

Both   are   also   known   to   have   stretches   of   severe   water   pollution.   The   HP   State   of   Environment  Report   (SOER:  check  and  provide   table   reference)  2007   indicates   that  overall  water  quality   is   very  

poor   in  the  Solan  district   industrial  areas   (Parwanoo  to  Nalagarh  and  Parwanoo  to  Solan  city).  The  Central   Pollution  Control   Board   (CPCB)   found   that   areas  of   the   Sirsa  River   are  heavily   polluted  by  industrial   and   domestic   effluent   from   Baddi,   Nalagarh   and   Barotiwala,   and   the   quality   of   the  

Sukhana  River  is  very  poor  from  both  industrial  and  domestic  effluent  from  Parwanoo.  

Sirmour   district   currently   ranks   third   in   terms  of   industrial   sector   employment,   and   its   industries,  like  those   in   the  Solan  district,   tend  to  be  on  the  medium  to   large  scale.  Also,   like  Solan  district,  a  

large   number   of   new   industries   have   been   approved   for   Sirmour,   so   the   industrial   growth   in   this  district  will  continue  to  be  very  strong.  The  district’s   industrial  area  is  concentrated  in  the  extreme  south,   in   the   border   cities   of   Kala  Amb   and   Paonta   Sahib,   both   of  which   are   known   to   have   high  

levels  of  pollution.  

                                                                                                                                                                                                                                                                                                                                                                                         common   treatment   facilities;   and   (ii)  economic   instruments   suitable   for   isolated   small   and   medium   size   industries   for  whom  it  is  not  economical  or  technically  feasible  to  connect  to  common  treatment  facilities.  15  Global  Burden  of  Disease  Workshop.  Presentation  by  CSE  13  February  2013.  Gulmohar  Hall,   India  Habitat  Centre,  New  Delhi;  CPCB  (2009);  and  HP  SPCB.  State  of  the  Environment.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  22   December  2013  (Draft  23/12/13)  

Kala  Amb   is   identified  by   the  CPCB   (2009)  as  having  severely  polluted  water  and  air.  The  HP  SOER  (2007)   reported  air  pollution   in  Kala  Amb  to  be   improving.  However,   it   is   still   rated  as  having  high  

PM10  levels.  Air  pollution  in  Paonta  Sahib  is  currently  rated  as  having  “critical”  levels  of  PM10.  

The  Haryana  SPCB  has  accused  the  Kala  Amb  industrial  sector  of  discharging  untreated  and  partially  treated   industrial   effluent   into   the  Markanda  River,   a   tributary  of   the   river  Ghaggar.   The  Haryana  SPCB  petitioned  both  the  CPCB  and  the  HP  PCB  to  improve  pollution  control  of  HP  industries  in  Kala  

Amb.16  

Kangra  district  is  home  to  a  large  and  growing  number  of  micro  and  small  enterprises  (MSEs).  Many  of  the  MSEs  and  larger-­‐scale  operations  are   involved  in  mining.  The  cities  of  Damtal  and  Ghanyara  are   both   important   centers   for   mining   activities,   and   with   the   associated   rock   crushing,   and  

transporting  of  rock  to  these  centers  have  elevated  levels  of  SPM  and  NOx.  Damtal,  a  city  of  about  4,000  people,  bordering  Punjab  has  at  times  been  declared  the  most  polluted  city  in  HP.  However,  it  is  currently  rated  as  having  only  a  “high”  PM10.  

Priority Industries Table  3.3   shows   a   list   of   17   high   priority  industries  at  the   India-­‐wide   level   (11  of  which  

are   present   at   some   scale   in   HP).   This   India-­‐wide   list   was   compiled   through   CPCB  consultations   with   SPCBs   and   industry   sector  

members   of   the   (national)   Charter   of  Corporate   Responsibility   for   Environmental  Protection   (CREP)  established   in  2002/03.  The  

CREP   facilitates   a   coordinated   approach  through   which   industry   associations   and  regulatory   agencies   (such   as   the   CPCB)   work  

together   to   identify   priority   sectors   and  appropriate   solutions   for   improved   pollution  control.   The   Charter   has   set   environmental  

targets   for   natural   resource   conservation   and  pollution  reduction  in  these  sectors,  complete  

with   action   points   for   pollution   control   for  each  sector.  

Three  of  these  industries  (pharmaceutical,  fermentation,  sugar)  have  recently  enjoyed  some  status  as   “thrust”   industries   in   HP;   pollution   mitigation   in   these   sectors   is   possible   but   would   require  

coordinated   efforts   to   ensure   that   human   and   ecosystem   health   is   not   compromised.   Priorities  would  normally  be  established  based  on  a  number  of  factors.  

                                                                                                                         16  A  detailed  study  of  the  source  of  water  pollution   in  the  Ghaggar  was  undertaken   in  2010  by  the  CPCB.  Parwanoo  was  included   as   a   potential   source   of   pollution   because   the   Kaushalya   River,   the   main   source   of   the   Ghaggar,   traverses  Parwanoo.  The  study  found  that   industrial  pollution  from  Parwanoo  was  not  contributing  significantly  to  pollution  in  the  Ghaggar,  and  that  the  industrial  ETPs  inspected  were  in  good  operation.  Similar  conclusions  followed  from  a  2011  study  of  water   quality   of   the   Kaushalya   River,   upstream   and   downstream   of   Parwanoo   town.   It   found   that   contamination   from  industrial   wastes   and   toxins   was   within   acceptable   standards.   Nonetheless,   there   remains   concern   in   Haryana   that  pollution  loading  by  Kala  Amb  industries  is  too  high.  

Table  3.3:  Priority  Polluting  Industries  India  (Bold  indicates  their  presence  in  HP)  “T”  indicates  some  or  all  on  HP  “Thrust”  List  “N”  indicates  some  or  all  on  HP  “negative”  List    

 1. Aluminium  Smelting  2. Basic  Drugs/Pharmaceuticals  Manufacturing  (T)  3. Chlor  Alkali/  Caustic  Soda  (N)  4. Cement  (200TPD  and  above)  (N)  5. Copper  Smelting  6. Dyes  and  Dye  Intermediate  (N)  7. Fermentation  (Distillery)  (N/T)  8. Fertiliser  (N)  9. Integrated  Iron  &  Steel  (N)  10. Leather  Processing  including  Tanneries  (N)  11. Oil  Refinery  12. Pesticide  Formulation  &  Manufacturing  (N)  13. Pulp  &  Paper  (30  TPD  and  above)  14. Petrochemical  15. Sugar  (T)  16. Thermal  Power  Plants  17. Zinc  Smelting  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  23   December  2013  (Draft  23/12/13)  

Briefly,  these  factors  would  include:  

• Current  level  of  industrial  activity  without  full  mitigation.  

• Scale  of  potential  growth  from  the  given  industry.  

• Significance  of  impacts  of  pollutants  from  the  source,  if  they  are  released  into  the  environment.  

• Potential  for  reducing  releases  through  applying  best  available  or  best  practicable  technology.  

• Net  costs  of  abatement.  

Each  of  these  can  be  applied  on  the  basis  of  detailed  inventory  data  and  knowledge  of  the  industry.  

For   example,   Table  3.3   shows   just   the   presence   of   selected   industries   in   Himachal   Pradesh   (see  greater  detail   in  the  assessment  in  Annex  C).  But  the  cement  industry  would  rank  as  a  high  priority  because   it   is  also  expected  to  see  ongoing  growth  from   industrial  demand  throughout   India  and   it  

has  significant  health  impacts  from  air-­‐borne  pollutants;  experience  elsewhere,  however,  has  shown  that   relatively   low   cost  methods   can   be   used   through   electrostatic   precipitators,   for   example,   to  reduce  substantially  the  air  pollution.  Moreover,  proper  land-­‐use  planning  can  reduce  the  mitigation  

costs  even  more.  Market-­‐based  incentives  can  also  play  a  role  in  such  circumstances.  

Whether  industries  are  part  of  a  “Thrust”  list  or  a  “Negative”  list  (Annex  C)  would  also  have  a  bearing  on  the  priorities:   the  “Thrust”   industries  are  expected  to  have  strong  future  growth  while  those   in  the   “Negative”   list   are   (presumably)   associated  with  more   significant   impacts.   Sugar   industry,   for  

example,   is   currently   present,   is   regarded   as   a   high   potential   polluter   nationally,   and   is   treated  historically  as  a  Thrust  industry  in  HP.  Also,  as  previously  noted,  pharmaceuticals  are  also  historically  a  Thrust  industry.  It  is  important  to  note  that  some  Negative  list  industries  may  still  see  substantial  

growth;   they   simply  do  not  qualify   for   the   same   levels  of   incentives  and   subsidies  enjoyed  by   the  Thrust  industries.  Also,  industries  not  currently  present  in  HP  may  at  one  point  be  developed:  there  are  unexploited  copper  deposits  in  Kangra  District  for  example.  

Data  gaps  are  primarily  associated  with  ensuring  that  an  up-­‐to  date   inventory  of   firms   is  available,  

and  secondly  that  the  degree  of  unmitigated  pollution  from  these  industries  is  known.  At  this  point,  it  is  also  important  to  highlight  that  some  industries  appear  on  the  Thrust  list  and  normally  have  very  low   environmental   footprints.   Ecotourism   is   an   obvious   case   in   point,   but   selected   biotech   and  

nanotech  initiatives  would  also  fall  into  these  categories.  In  effect,  such  industries  can  add  value  in  the   economic   supply   chain  while   also   contributing   positively   to   overall   environmental   quality.   HP  officials   are   open   to   this   idea:   a   Biotechnology   Park   has   been   proposed   (March   2013)   by  

Government   to   be   set   up   at   Nalagarh   (Solan   District).17  Also,   a   Nanotechnology   Park   has   been  proposed  on  a  400-­‐acre  site  near  the  Biotechnology  Park  at  Aduwal  near  Nalagarh.  

The   following   high   priority   sectors   were   identified   by   the   Department   of   Industry   and   the   State  Pollution  Control  Board:  Pharmaceuticals,  Mini  Steel  Plants,  Small  cement  plants,  Stone  crushing  and  

food   processing.   Their   numbers   and   location   are   summarized   in   Table  3.4.   Of   these,  pharmaceuticals,  stone  crushing  and  food  processing  plants  were  selected  for  detailed  study  within  the  SEA  (Chapters  7–10).  

                                                                                                                         17  India   Brand   Equity   Foundation.   2013   (March).   Himachal   Pradesh   –   The   Abode   of   Gods.   [PowerPoint   presentation,  accessed  April  2013,  http://www.ibef.org/download/Himachal-­‐Pradesh-­‐110313.pdf]  57pp.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  24   December  2013  (Draft  23/12/13)  

Table  3.4:  Overview  of  Industrial  sectors  prioritized  for  SEA  [to  be  verified  against  corrected  database]  

Industrial  sector  /  location   Estimated  number  of  companies   Pollution  indicator  

Pharmaceuticals  -­‐  BBN     439  companies  in  SPCB  database  in  Baddi  (254),  Bilaspur,  Jassur,  Paonta,  Parwanoo,  Una  

BOD,  COD  

Stone  crushing  –  Dahliwala,  Una  district  

271  companies  in  HP  recorded  in  the  SPCB  database  (Baddi  –  32,  Bilapur  –  35,  Chamba  –  6,  Jassur  –  72,  Kullu  –  26,  Paonta  –  13,  Parwanoo  –  20,  Rampur  –  5,  Shimla  –  18  and  Una-­‐  44)  

PM10  

Food  processing  –  Dahliwala,  Una  district  

20-­‐30  units   BOD,  COD  

Mini  Steel  plants  –  Kala  Amb,  Sirmour  district  

10-­‐12  plants  

[21  plants  in  SPCB  data  set  in  Paonta,  Jassur  and  Baddi]  

PM10  

Small  cement  plants  –  Poanta   5  plants  

{SPCB  28  plants,  6  in  Poanta)  

PM10  

Textiles,  Baddi   SPCB  15  plants  in  HP,  11  in  Baddi   BOD,  COD  

Greenhouse Gases & Low-Carbon Development

HP  Emission  Footprint  HP   is   generally   regarded   as   an   important   State   in   India’s   overall   strategy   to   reduce   national  GHG  emissions.   The   hydroelectric   generation   potential   of   HP   can   contribute   meaningfully   to   reducing  India’s  overall  dependence  on  fossil  fuels.  Moreover,  maintaining  the  forests  intact  is  an  important  

strategy   in   carbon   sequestration;   indeed,   HP   is   a   beneficiary   of   a   Central   government   scheme  proposed  by  the  11th  Finance  Commission  that  recommended  establishment  of  a  Rs  1,000  crore  fund  to  compensate  states  for  maintaining  critical  forest  habitats  in  key  watersheds  intact.18  In  addition,  

however,   reducing   the   actual  GHG  emission   footprint   of   industries   in  HP  will   become   increasingly  important,  especially  with  the  proactive  growth  in  many  energy-­‐intensive  industries.  

According  to  the  GHG  emissions  data,  HP  emitted  11.7  million  tons  of  CO2  equivalent  (tCO2e)  in  2010  without  adjusting   for   land  use,   land  use  change  and   forestry;  as   in   the   rest  of   India,   its  per  capita  

emissions  are  far  below  the  world  average.  According  to  the  inventory,  the  most  important  sectors  in   terms   of   GHG   emissions   were   (Figure  3.1):   cement   production   (44.2  percent),   industrial  

production   (27.5   percent)   residential   demand   (15.4  percent),   transportation   (5.6  percent),   captive  generation  and  consumption   (3.1  percent),   aluminum  production   (1.4  percent)   and   rice   cultivation  (1.2  percent),  among  others.  The  current  energy  mix  consists  entirely  of  hydropower  generation  and  

captive  generation  (mostly  diesel).  Among  other  objectives,  the  inclusive  green  growth  strategy  for  HP   includes   a   cost-­‐effective   approach   for   further   reducing   the   GHG   emissions   intensity   of   the  economy,  consistent  with  national  objectives.  

                                                                                                                         18  Other  on-­‐the-­‐ground  innovative  benefit  sharing  schemes  are  also  in  play  that  assist  villages  in  forested  watersheds  slated  for   hydro   development:   A   new   HP   Local   Area   Development   Fund   (LADF)   policy   provides   a   global   leadership   example  whereby   a   small   proportion   of   capital   costs   and   power   sales   (~1–1.5  percent)   from   projects   would   accrue   to   local  communities   living   in   the   affected   villages   during   the   development   and   life   of   power   projects.   Based   on   available  information,  the  LADF  is  currently  being  implemented  in  about  25  projects  with  an  estimated  Rs  1600  Million  ($33  Million)  that  has  been  either  spent  or  deposited  with  Local  Area  Development  Committees  (LADC)  by  the  developers.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  25   December  2013  (Draft  23/12/13)  

Figure  3.1:  Sectoral  Contributions  to  GHG  Emissions  in  Himachal  Pradesh  (2007  baseline)  

 

 

 

International  Experience  

The  OECD   recently   completed   a   global   analysis   of   the   efficiency  with  which   energy   is   used   in   the  manufacturing  industry.  It  reveals  how  the  adoption  of  advanced  technologies  already  in  commercial  use   could   improve   the   performance   of   energy-­‐intensive   industries,   especially   in   fast   growing  

economies  such  as  Himachal  Pradesh.  It  also  shows  how  manufacturing  industry  as  a  whole  could  be  made   more   efficient   through   systematic   improvements   to   motor   systems,   including   adjustable  speed   drives;   and   steam   systems,   including   combined   heat   and   power   (CHP);   and   by   recycling  

materials.  The  findings  demonstrate  that  potential  technical  energy  savings  of  25  to  37  exajoules  per  year   are   available   globally   based   on   proven   technologies   and   best   practices.   This   is   equivalent   to  600  to   900  million   tonnes   of   oil   equivalent   per   year.   These   substantial   savings   potentials   can   also  

bring   financial   savings.   Improved   energy   efficiency   contributes   positively   to   energy   security   and  environmental   protection   and   helps   to   achieve   more   sustainable   economic   development.   The  industrial  CO2  emissions  reduction  potential  amounts  to  1.9  to  3.2  gigatonnes  per  year,  about  7%  to  

12%  of  current  global  CO2  emissions.  

The   energy   intensities   of   emerging   and   transition   economies   show   a   mixed   picture.   Where  production   has   expanded   rapidly   in   the   absence   of   existing   infrastructure,   industry  may   be   using  new  plant  with  the  latest  technology.  For  example,  the  world’s  most  efficient  aluminum  smelters  are  

in  Africa  and  some  of  the  most  efficient  cement  kilns  are  in  India.  However,  in  some  industries  and  regions   where   production   levels   have   stalled   or   where   technology   has   become   locked   into  traditional   methods,   manufacturers   have   failed   to   upgrade   to   most   efficient   technology.   For  

example,   older   equipment   remains   dominant   in   parts   of   the   Russian   Federation   and   in   Ukraine.  Similarly,   the  widespread   use   of   coal   in   China   has   reduced   its   overall   energy   efficiency,   as   coal   is  often  a  less  efficient  energy  source  than  other  fuels  because  of  factors  such  as  ash  content  and  the  

need  for  gasification.   In  China  and  India,  there  have  been  constraints  to  the  adoption  of  new  large  scale   processes   because   small-­‐scale   operations  with   relatively   low   efficiency   continue   to   flourish,  driven  by  transport  constraints  and  local  resource  characteristics  (e.g.  poor  coal  and  ore  quality).  The  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  26   December  2013  (Draft  23/12/13)  

use  of  low-­‐grade  coal  with  poor  preparation  is  a  major  source  of  inefficiency  in  industrial  processes  in  these  countries.  But  with  this  situation  as  a  starting  point,  they  also  harbor  significant  potential  for  

improvement   through   adopting   globally   available   technologies   that   are   already   in   use   in   other  countries;  industrial  processes  and  products  are  more  or  less  the  same  across  the  world.  The  general  conclusion  is  that  with  proven  technology  manufacturing  can  improve  its  energy  efficiency  by  18%  to  

26%,  while  reducing  the  sector’s  CO2  emissions  by  19%  to  32%.  

To  harness  these  efficiencies,  the  OECD  recommends  that  in  all  countries,  government  and  industry  partnerships,   incentives,   and  awareness  programs   should  be  pursued.  New  plants  and   the   retrofit  and  refurbishment  of  existing   industrial   facilities  should  be  encouraged.  Small-­‐scale  manufacturing  

plants   using   outdated   processes,   low   quality   fuel   and   feedstock,   and   weaknesses   in   transport  infrastructure  contribute  to  industrial  inefficiency.  

Motor  and  steam  systems  offer  a  large  opportunity  for  energy  savings,  a  potential  that  has  remained  largely  unrealized  worldwide.  While  the  energy  efficiency  of  individual  components,  such  as  motors  

(85%   –   96%)   and   boilers   (80%   –   85%)   can   be   quite   high,  when   viewed   as   an   entire   system,   their  overall   efficiency   is   quite   low.   Motor   systems   lose   on   average   approximately   55%   of   their   input  energy  before  reaching  the  process  or  end-­‐use  work.  For  steam  systems,  the  losses  are  only  slightly  

better,  with  45%  of   the   input  energy   lost  before   the   steam  reaches  point  of  use   (USDOE,  2004)19.  Some   of   these   losses   are   inherent   in   the   energy   conversion   process;   for   example,   a   compressor  typically  loses  80%  of  its  input  energy  to  low  grade  waste  heat  as  the  incoming  air  is  converted  from  

atmospheric  pressure  to  the  desired  system  pressure.  Other  losses  are  due  to  system  inefficiencies  that   can   be   avoided   through   the   application   of   commercially   available   technology   combined  with  good   engineering   practice.   These   improvements   in   energy   efficiency   of   existing  motor   and   steam  

systems  are  cost-­‐effective,  with  costs  typically  recovered  in  two  years  or   less.  As  noted  in  the  case  studies  in  this  SEA,  a  number  of  firms  in  HP  have  also  started  to  implement  such  approaches  in  their  

operations  to  improve  their  efficiency.  

On  a  global  basis,   it   is  estimated   that   the  energy  efficiency  of  motor   systems  can  be   improved  by  20%   –   25%   using   commercially   available   technologies   and   steam   systems   can   be   improved   by   at  least  10%  (more  if  steam  lines  are  initially  uninsulated),  as  documented  by  program  experiences  in  

the  United  States,  United  Kingdom  and  China.  

At  present,  most  markets  and  policy  makers  tend  to  focus  on  individual  system  components,  such  as  motors   or   pumps,   with   an   improvement   potential   of   2%   –   5%,   instead   of   optimizing   systems.  Equipment   manufacturers   have   steadily   improved   the   performance   of   individual   system  

components,   e.g.  motors,   boilers,   pumps   and   compressors,   but   these   components   only   provide   a  service   to   the   users’   production   process   when   operating   as   part   of   a   system.   Even   when   new  technologies   emerge   at   the   component   level,   such   as   a   94%   efficient   boiler   currently   under  

development  in  the  United  States,  their  significant  energy  efficiency  advantages  can  be  negated  by  a  poorly  configured  system.  Terms  such  as  “supply  side  efficiency”  that  seek  to  limit  the  definition  of  system  energy  efficiency  to  the  compressor  room,  boiler  room,  or  pump  house  are  misleading  in  the  

context   of   system   optimization.   There   is   little   benefit   in   producing   compressed   air,   steam,   or  pumped  fluids  efficiently  only  to  oversupply  plant  requirements  by  a  significant  margin  or  to  waste  

                                                                                                                         19  United   States  Department   of   Energy.   2004.   Energy  Use,   Loss,   and  Opportunities  Analysis:  Manufacturing   and  Mining,  prepared  by  Energetics  and  E3M,  Washington,  DC.  See  also:  http://www.eere.energy.gov/.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  27   December  2013  (Draft  23/12/13)  

the   energized   medium   through   leaks   or   restrictions   in   the   distribution   system.   System   energy  efficiency  requires  attention  to  the  whole  production  scheme;  otherwise  the  result  is  often  failure  to  

realize  a   significant  proportion  of   the  energy  savings  potential.   Improved  energy  system  efficiency  can  also  contribute  to  an  industrial  facility’s  profitability  at  the  same  time  as  improving  the  reliability  and   control.   Increased   production   through   better   use   of   equipment   assets   is   frequently   an  

associated   benefit.   Maintenance   costs   also   decline   because   better   matching   of   equipment   to  demand  results  in  less  cycling  of  equipment  operation,  thus  reducing  wear.  Optimizing  the  efficiency  of   steam   systems  may   result   in   excess   steam   capacity   that   can   be   used   for   heating   applications.  

Payback  periods  for  system  optimization  projects  are  typically  short  –   from  a  few  months  to  three  years   –   and   involve   existing   commercially   available   products   and   accepted   engineering   practices.  Applying   such   system   changes   would   have   significant   additional   energy   efficiency   benefits   in  

Himachal  Pradesh,  but  their  adoption  would  be  more  rapid  in  a  fast  growing  setting  as  they  are  more  suitable  for  new  plant  construction  that  can  optimize  all  processes.  

Building  Codes  A  final   target   for   lowering  GHG  emissions  and  energy  demand   is   in  new  commercial  and   industrial  

buildings.  Probably  the  most  significant  potential  improvement  in  energy  efficiency  is  that  related  to  commercial   buildings.   Because   of   Himachal   Pradesh’s   rapid   industrialization   and   expansion   of   its  service  sector,  the  energy  efficiency  improvements  of  buildings  alone  can  contribute  substantially  to  

the  lowering  of  energy  intensity  in  the  region.  Studies  conducted  elsewhere  in  Asia  (du  Pont,  2005)  show   that   use   of   appropriate   building   codes   for   industry   and   commercial   establishments   can  significantly   reduce   energy   requirements,   and   thus   associated   GHG   emissions.   Analyses   of   the  

potential  energy  efficiency  showed  an  average  annual  energy  use  in  the  study  sample  of  the  order  of  340  kWh  per  square  meter,  with  the  best  buildings  using  72%  less  energy  than  this  average,  and  the  

worst  buildings  using  about  4  times  as  much  as  the  average.  Adoption  of   improved  building  codes  improved  energy  intensity  by  as  much  as  30%  over  the  long-­‐term.20      

                                                                                                                         20  The  du  Pont  (2005)  estimates  were  also  based  on  earlier  demand-­‐side  management  and   inventory  work  conducted  by  the  International  Institute  for  Energy  Conservation  (IIEC).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  28   December  2013  (Draft  23/12/13)  

§4   Health  &  Environmental  Impacts  of  Industrial  Pollution  in  Himachal  Pradesh  

Introduction Environmental  pollution  causes  diseases   that  are  a  burden   to  both   the   individuals  affected  and   to  society   as   a  whole.   Removing   such   a   burden   falls   on   the   economic   ‘benefit’   side   of   the   equation  

when   pollution   loads   are   reduced,   thus   valuation   of   the   health   burden   of   pollution   helps   set  priorities  when  faced  with  multiple  pollution  sources.  For  site-­‐specific  valuations  of  health   impacts  of   pollution,   a   complexity   of   data   is   desirable:   pollutant   exposure,   dose-­‐response   function,  

consideration  of  cumulative  effects,  and  mitigation  efforts  by  households.  Such  a  collection  of  data  with  original  research  goes  beyond  the  scope  of  this  SEA,  but  an  indicative  health  impact  valuation  is  undertaken  using  best  available  information.  This  section  thus  describes  some  of  the  health  impacts  

of  environmental  pollutants   in   India  and  HP.  Annex  D  outlines  economic  valuation  methodologies,  and  lists  valuation  work  related  to  the  cost  of  environmental  degradation  associated  with  pollution.  

Health Situation in HP A  diagnostic  study  by  the  World  Bank  assessed  the  costs  to  health  of  environmental  degradation  in  India   (World   Bank   2013).   The   Bank   assessment   found   that   air   pollution   is   the   most   costly  environmental   pollutant   in   the   country.   The   assessment   estimated   the   costs   of   six   types   of  

environmental   damage:   air   pollution   (outdoor   and   indoor),  water   pollution,   and   land   degradation  (soil,   rangeland   and   forests).   Of   this   list,   the   cost   of   air   pollution   to   human   health   ranks   first,  

accounting   for   29%   –   Rs  1.1  trillion   –   of   the   estimated   total   damages   of   Rs  3.75  trillion  (US$80  billion)  from  six  types  of  environmental  degradation.  

In  HP,  the  human  health  effects  of  air  pollution  show  a  similar  importance.  In  Table  4.1,  DEST  ranks  the   sources   of   the   disease   burden   in   HP.   According   to   the   ranking,   COPD,   closely   linked   to   air  

pollution,   is   the   No  1   cause   of   the   health   burden   of   disease   among   males;   it   ranks   No  2   among  females.   Other   diseases   indicative   of   air   pollution   –   asthma,   and   upper   and   lower   respiratory  infections  –  were  also  shown  to  be  among  the  top  10   leading  causes  of  disease   for  both  men  and  

women   in   Himachal   Pradesh.   Diarrhea   disease   –   an   indicator   of   water   quality,   sanitation,   and  hygiene,  is  a  middle-­‐ranking  source  of  the  disease  burden  for  both  men  and  women.  

Table  4.1:  Leading  Causes  of  Disease  Burden  (DALY)  in  Himachal  Pradesh,  ca  2007  

Male   %   Female   %  

Chronic  Obstructive  Pulmonary  Disease   15.22   Iron  Deficiency  Anemia   12.95  

Iron  Deficiency  Anemia   8.28   Chronic  Obstructive  Pulmonary  Disease   11.03  

Other  Unintentional  Injuries   7.14   Diarrhea  Diseases   8.39  

Dental  Caries   4.13   Other  Unintentional  Injuries   8.16  

Diarrhea  Diseases   3.59   Other  Infectious  Diseases   7.48  

Asthma   3.46   Dental  Caries   4.70  

Other  Infectious  Diseases   3.05   Asthma   3.77  

Upper  Respiratory  Infections   2.80   Tuberculosis   3.61  

Lower  Respiratory  Infections   1.89   Road  Accident   3.46  

Otitis  Media   1.33   Upper  Respiratory  Infections   3.07  Source:  Department  of  Environment,  Science  &  Technology.  State  of  Environment  Report.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  29   December  2013  (Draft  23/12/13)  

Valuation of Health & Environmental Impacts The  economic  cost  of  pollution  can  be  valued  using  various  methods.  For  example,  the  World  Health  Organization  estimates  country-­‐specific  DALYs  (Disability  Adjusted  Life  Years)  which  are  years  lost  to  death  and  illness  because  of  diseases  such  as  diarrhea,  lower  and  upper  respiratory  infections,  and  

pulmonary  obstruction,  among  others.  Given  the  value  of  a  lost  year  (per  capita  income),  the  DALYs  permit  a  valuation  of  the  human  health  effects  attributable  to  environmental  pollutants.  

Other  methods  of  economic  valuation  use  survey  work  to  determine  the  amount  that  people  would  be  willing   to  pay   to  avoid  exposure   to  pollution   through,   for  example,   the   installation  of  pollution  

abatement   facilities.   For   example,   Dasgupta   (2004)   found   that   the   health   cost   of   contaminated  water  to  urban  dwellers   in  Delhi  was  Rs  1094  per  household   in  1999;  while  the  World  Bank  (2005)  estimated  that  the  cost  of  chronic  bronchitis  in  Delhi  was  Rs  1.5  million  per  case.    

In   the   absence   of   site-­‐specific   data   and   original   research,   economic   valuation   of   environmental  

goods  and  services  often  relies  on  “benefit  transfer”  methods.  In  these  valuations,  estimated  values  from   research   in   regions/localities   similar   to   the   region/locality   of   interest,   are   “transferred”.   The  estimated   values   are   typically   adjusted   for   local   conditions:   population   and   household  

characteristics,   the  number  of  reported  cases  of  different  health  effects   (cases  of  COPD,  restricted  activity,   etc.),   and   other   factors   that   may   be   important   to   valuation.   Using   benefit-­‐transfer,   the  recent  Bank  assessment  of  the  health  cost  of  air  and  water  pollution  for  India  as  a  whole  can  be  used  

to  provide  an  indication  of  the  health  cost  of  environmental  degradation  in  Himachal  Pradesh.  

The  Bank  study  calculated   India-­‐specific  DALYs.  DALYs  are  based  on  exposure   to   the  pollutant  and  the  concentration-­‐  or  dose-­‐response.  For  air  pollution,  data  from  the  CPCB  on  PM10  concentrations  in   Indian  urban   centers,   and  dose-­‐response   coefficients   from   the   literature,   allowed  estimation  of  

the   expected   DALYs   per   health   effect.   Health   effects   include   mortality   and   various   forms   of  morbidity   due   to   elevated   PM10   concentrations.   To   assess   DALYs   for   illness   related   to   water  pollution  in  India,  the  Bank  study  relied  on  national  health  and  vital  statistics,  as  well  as  international  

experience  and  WHO  estimates.  Health  effects   include  mortality  and  morbidity   from  diarrhea  and  typhoid  in  adults  and  children  under  five.  

The  DALYs  permit  an  economic  valuation  because  a  DALY  represents  a  lost  year  of  productive  time.  Typically   per   capita   income,   adjusted   to   capture   income   differences   among   populations   (urban  

versus  rural,  employed  versus  unemployed)  is  applied  to  calculate  the  opportunity  cost  to  society  of  the  illness.  The  Bank  study  estimates  assume  an  average  wage  rate  of  Rs  150  per  day,  which  includes  

an   adjustment   to   capture   the   economic   value   to   society   of   both   income  earning   and  non-­‐income  earning  individuals.  

Health Cost of Outdoor Air Pollution in HP Using   parameters   estimated   in   the  World   Bank   (2013)   India   study,   the   health   cost   of   outdoor   air  

pollution   in  HP  was  estimated   for   this   report.  As   in   the   India  study,   the  estimation   focuses  on   the  urban  population,  as  it  is  the  most  exposed  to  above  normal  concentrations  of  PM10.  For  lack  of  HP-­‐specific  data  on  the  incidence  of  different  health  effects  from  air  pollution,  the  estimation  assumes  

that   the   percentage   of   DALYs   from  mortality   and  morbidity   caused   by   air   pollution   in   the   Indian  urban  population  is  the  same  as  that  experienced  in  the  urban  population  of  Himachal  Pradesh.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  30   December  2013  (Draft  23/12/13)  

The  total  population  of  HP  is  6.9  million  (0.57%  of  India’s  total  population).  HP’s  urban  population  is  only  10%  of  the  total,  or  689  thousand.  Applying  the  air  pollution-­‐related  DALYs  for  the  Indian  urban  

population   (423   per   100,000),   the   excepted   DALYs   from   air   pollution   in   HP   are   about   2,900   for  mortality21  and   2,500   for  morbidity.22  Applying   the   per   capita   income   rate   in   HP23  to   these   DALYs  yields  an  economic  cost  of  Rs  315  million  (US$5.2  million).  See  Table  4.2.  

Table  4.2:  Summary  of  Health  Costs  for  Himachal  Pradesh  

Health  Cost  Source   Rupees  Million   US$  Million  

Air  Pollution  (PM10)  –  all  urban  areas  

Mortality  

Morbidity  

315.6  

170.6  

145.0  

5.2  

2.8  

2.4  

Water  Pollution  (Diarrhea)  –  urban  &  rural  

Rural  

-­‐  Mortality  (under  5)  -­‐  Morbidity  

Urban  -­‐  Mortality  

-­‐  Morbidity  

3,312.0  

3,137.1  2932.3  204.8  

174.9  153.1  21.8  

55.2  

52.3  48.9  3.4  

2.9  2.5  0.4  

Table  4.3  shows  that  the  PM10  levels  reported  for  Baddi,  Nalagarth,  Parwanoo,  Paonta  Sahib,  Kala  Amb,  Shimla,  and  Damtal  are  “High”  to  “Critical”;  only  Shimla  PM10  is  reported  as  “Moderate”.  The  respective  districts  of  these  cities  are  Solan,  Sirmour,  Shimla,  and  Kangra.  As  their  combined  urban  

population  is  65%  of  HP’s  total  urban  population,  the  cost  of  air  pollution  to  the  four  districts  may  be,  proportionally,  in  the  order  of  Rs  205  million  (US$3.4  million).  

Table  4.3:  Ambient  Air  Quality  Assessment  in  HP  Cities  for  2010  (14  stations)  

  SO2   NO2   PM10  

Annual  Average  (μg/m3)  

Pollutant  Level1  

Annual  Average  (μg/m3)  

Pollutant  Level1  

Annual  Average  (μg/m3)  

Pollutant  Level1  

Baddi   3   L   16   L   105   C  

Damtal   2   L   11   L   68   H  

Kala  Amb   3   L   18   L   79   H  

Nalagarh   3   L   18   L   86   H  

Parwanoo   3   L   12   L   84   H  

Paonta  Sahib   3   L   17   L   135   C  

Shimla   3   L   13   L   58   M  Source:  CPCB.  2012.  National  Ambient  Air  Quality  Status  &  Trends  in  India:  2010.  January.  1Rankings:  Low  (L),  Moderate  (M),  High  (H),  Critical  (C).  People  living  and  working  in  and  around  these  cities  are  at  an  elevated  risk  of  air  pollution  related  diseases.  Generally,   the   greater   the   number   of   people   affected,   the   greater   will   be   the   social   health   burden   and  corresponding   economic   value   of   pollution   impacts;   such   social   burdens   can   be   associated   with   lost  productivity,  increased  treatment  costs  (both  public  and  private),  and  deaths.    

                                                                                                                         21  Mortality  includes  mortality  among  adults  and  children  under  5.  22  Morbidity   includes  chronic  bronchitis,  respiratory  hospital  admissions,  emergency  room  visits,  restricted  activity,   lower  respiratory  illness  in  children,  and  other  respiratory  symptoms.  23  Annual  per  capita  income  in  Himachal  Pradesh  is  Rs  58,493  (Statistical  Abstract  2011).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  31   December  2013  (Draft  23/12/13)  

Health Cost of Water Pollution in HP The  estimation  of  the  cost  of  water  pollution  in  HP  is  done  similarly  to  the  case  of  air  pollution.  It  is  assumed  that  the  percentages  of  DALYs  from  mortality  and  morbidity  caused  by  water  pollution  in  the   rural   and   urban   populations   of   India   are   the   same   as   those   percentages   in   the   respective  

populations   of  HP.   In   the  Bank’s   estimate   for   all   of   India,   the   largest   category   of  water   pollution-­‐related  of  DALYs  is  mortality  in  children  under  5.  For  all  of  India,  the  DALYs  in  this  category  account  for  92%  of  the  total.  The  mortality  rate  of  children  under  5  in  Himachal  Pradesh  differs  little  from  the  

national  average.  Hence,  the  assumption  that  the  percentage  of  DALYs  due  to  water  pollution  in  HP  mirrors  the  national  percentage  seems  credible.  

Based  on   the   India   study,  DALYs  are  estimated   for   rural   and  urban  populations  of  HP.  Among   the  rural,  50,130  DALYS  result  from  child  under  5  mortality  due  to  water  degradation;  among  the  urban  

population,   child  mortality   accounts   for   2,618  DALYs.   The   large  difference  between   the   two  DALY  estimates   is   expected   given   that   HP’s   rural   population   accounts   for   90%   of   the   state   total  population.  Rural  and  urban  DALYs  due  to  morbidity  are,  respectively,  3,502  and  373.  

The  average  per  capita  income  for  HP  (Rs  58,493)  is  applied  to  these  HP-­‐specific  DALYs  due  to  health  

effects   (mortality   and   morbidity)   from   water   pollution.   Shown   in   Table   4.2,   the   cost   of   water  pollution  in  HP  is  in  the  order  of  Rs  3.3  billion  (US$55  million),  the  bulk  of  which  stems  from  the  cost  of  mortality  in  children  under  5  years  in  rural  areas.  

The  results  of  Table  4.2  seemingly  contradict  those  in  Table  4.1  that  show  air  pollution-­‐related  illness  

in  HP  as  accounting  for  the  greatest  percentage  of  combined  disease  burdens  of  male  and  females.  In   that   ranking   diarrhea   ranks   fifth   among  men   and   third   among  women,   as   a   disease   burden   of  these  groups.  However,  Table  4.1  appears  to  concern  itself  only  with  the  adult  population.  

The   cost   analysis   of   Table   4.2   looks   at   health   costs   from   environmental   degradation   in   both   the  

urban  and  rural  populations  of  HP,  while   the   focus  of   this   report   is  HP’s   industrial   sector,  which   is  found  for  the  most  part  in  HP’s  urban  sector.  Therefore,  if  only  the  urban  population  is  considered,  the   health   cost   of  water   degradation   is   Rs  174.9  million   (US$2.9),   and   air   pollution   is   the   greater  

threat   –   to   the  HP  urban  population.   It   should   be   noted,   however,   that   the  DALY   calculations   for  water   degradation   were   based   on   human   health   effects   that   manifest   in   terms   of   diarrhea   and  typhoid.  Data   for   the   types  and   incidence  of  health  effects   from   industrial   effluents   carrying   toxic  

chemicals  in  urban  centers  are  unavailable.  

Summary Industrial  pollution  will  have  negative  impacts  on  human  and  ecosystem  health  if  not  mitigated.  Air  

pollution   from  PM10   is  a   leading  cause  of   the  disease  burden   in  HP;  most  water  pollution  disease  burden  is  more  associated  with  non-­‐industrial  sources.  The  primary  implications  for  priority  setting  are  that  interventions  need  to  be  preventative  for  most  pollutants  –  targeting  future  developments,  

but   for   air   pollution   they  may   also   need   to   be   restorative   to   address   the   pollution   impacts   from  existing  facilities.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  32   December  2013  (Draft  23/12/13)  

§5   Economic  Instruments  for  Environmental  Management  in  Himachal  Pradesh  

Introduction to Framework This   Chapter   treats   the   overall   framework   for   applying   economic   instruments,   and   also   outlines  some  of  the  experience  that  India  and  HP  already  have.  

Economic   policy   instruments   for   pollution   control   can  be  placed   along   a   continuum   reflecting   the  

polluter’s   ability   to   decide   how   much   to   pollute   (Table  5.1).24  At   one   end,   the   polluter   cannot  participate   in   the   decision.   These   are   strict   CAC   instruments:   government   sets   the   level   of  permissible  pollution,  and  then  controls  for  compliance.  Moving  down  the  continuum,  influenced  by  

market-­‐based   incentives,   the  polluter  participates  more   in   the  decision  as   to  how  much  to  pollute  and  how  to  tackle  abatement.  Reaching  the  other  end  of  the  continuum,  the  polluter  choses  his  own  

level  of  pollution,  and   the  community  decides   if   it   is   an  acceptable   level.  At  both   these  extremes,  there  are  incentives  for  the  polluter  to  maintain  permissible  levels  of  pollution:  at  the  CAC  extreme,  non-­‐compliance  risks  sanctions  imposed  by  the  government.  At  the  MBI  extreme,  pollution  beyond  

what   the   community   will   tolerate   results   in   citizen   advocacy   and   litigation,   with   probable  compensation  to  pollution  victims,  and  closure  or  loss  of  business.  

Table  5.1:   Economic   policy   incentives   currently   used   in   India   and   Himachal   Pradesh   for  industrial  pollution  control  

Instrument  Type   Target  Regulation  and  Sanctions    

• MINAS  (industry  specific)  supported  by  sanctions  such  as  closure  or  loss  of  power  or  water  services  

• EIA  legislation  • Consent  mechanism  –  Consent  to  Establish,  Consent  to  Operate  

Charges,  Taxes,  Fees  and  subsidies  

• Charge  (cess)  –  for  water  consumption  (industrial  and  large  domestic)  • Tax  rebate  on  water  cess  for  investment  in  effluent  treatment  • Solid  waste  user  charges  in  some  states  • Charge  –  on  produced  and  imported  coal  • Subsidy  –  CETP  

Market  Creation   • Tradeable  Renewable  Energy  Certificates  • Tradeable  Energy  Saving  Certificates  • Clean  Development  Mechanism:  Payment  for  Ecosystem  Services  (PES)  

Final  Demand  Intervention   • Eco-­‐labeling  to  inform  consumers  about  environmentally  friendly  products  Liability  Legislation   • Pubic  interest  legislation  

 

In   the   middle   of   these   two   extremes   are   economic   policy   instruments   with   varying   degrees   of  government   involvement  and  polluter  decision-­‐making  power.  Here  one   finds   the   frequently  used  taxes   and   subsidies,   and   less   frequently   used   property   right  mechanisms   such   as  market   creation  

schemes   that   allow   polluters   to   trade   amongst   themselves   to   collectively   achieve   a   set   pollution-­‐loading   objective.   There   are   also   final   demand   instruments   that   start   to   bring   the   citizen’s   or  consumer’s  power  to  bear  on  the  activities  of  polluting  industries:  polluting  starts  to  become  bad  for  

business.  

                                                                                                                         24  Annex  E  provides  additional  background  information  to  the  framework  for  discussing  economic  policy  incentives.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  33   December  2013  (Draft  23/12/13)  

Regulations and Sanctions Minimum   National   Standards   (MINAS).   CPCB   provides   industry-­‐specific   MINAS   for   effluent   and  emissions.  Water  effluent  parameters   include  BOD,  COD,  suspended  solids,  and  pH,  among  others  depending   on   the   industry   concerned.  MINAS   for   air   emissions   include   limits   for   PM,   SPM,   VOC,  

among  others.  Prescribed  actions/equipment   for  meeting   the  MINAS  are  part  of   the  conditions  of  the  Consent  Mechanism.  All   industry  units  must  be  able  to  provide,  on  demand,  all   information  on  their   levels   of   pollution   loading,   and   the   operation   and  maintenance   of   their   pollution   treatment  

equipment.  

Consent  Mechanism.  Consent  of  the  SPCB   is  required  by  all  development  projects,   industrial  units,  tourism  projects,  hydroelectric  projects,  mining  unit`s,  and  sewage  treatment   facilities.  Consent   to  Establish  (CTE)  is  granted,  subject  to  certain  conditions,  after  the  project  is  evaluated  for  its  pollution  

potential.  Typically,  installation  of  pollution  control  systems  is  part  of  the  conditions.  

If  the  conditions  of  the  CTE  are  met,  a  Consent  to  Operate  (CTO)  is   initially  granted  for  a  period  of  one   year,   renewable   thereafter   if   pollution   systems   are   operated   and  maintained   to   comply  with  prescribed  emission/effluent  standards.  The  SPCB  is  to  monitor  the  systems  regularly.  In  the  event  of  

non-­‐compliance,  the  SPCB  can  issue  directions  to  suspend  production  and  disconnect  the  power  and  water  supplies.  

In  2010/11  the  HP  PCB  conducted  10,336  inspections,  a  handful  of  which  lost  their  CTE  or  CTO.  

Environmental   Impact   Assessment   (EIA).   Environmental   clearance   from   central   or   state   impact  assessment  authorities  is  mandatory  for  all  significant  projects  (mostly  industrial)  anywhere  in  India.  

Central  and  state  governments  share  the  responsibility  for  the  clearance  and  EIA  process,  according  to  the  type  of  project,  its  potential  impacts,  and  state  capacity  to  undertake  the  process.25    

HP  has   established   the   requisite   State   Level   Environmental   Impact  Assessment  Authority   (SEACA),  and  the  Expert  Group  and  Committees,  to  assess  (Category  B)  projects  for  Environmental  Clearance.  

Once  clearance  has  been  obtained,  it  is  up  to  the  SPCB  to  monitor  the  fulfillment  of  the  conditions  prescribed  by  the  EIA  and  contained  in  the  CTEs  and  CTOs.  

Under   the   EIA  Notification,   the   SPCB  must   also   conduct   the   Public   Hearings   as   part   of   the   public  consultation  mechanism  prescribed  by  the  GOI.  The  HP  PCB  noted  in  its  2010/11  Annual  Review  that  

with   respect   to   hydroelectric   projects,   it   was   finding   it   difficult,   given   its   resources,   meeting   the  mandatory  monitoring  provisions  of  the  Environmental  Clearance  process.  

Charges, Taxes, and Fees The  water  cess  is  a  charge  on  the  quantity  of  water  consumed  by  different  categories  of  industries  and   local   water   authorities.   For   industrial   users,   the   tariff   ranges   from   5   to   30   paise   per   kiloliter  depending  upon   the   intended  use  and  quantity.  The   tariff   is  higher  above  certain   levels  of  overall  

consumption,  and  when  the  wastewater  contains  pollutants  that  are  not  easily  biodegraded  and/or  toxic.  

                                                                                                                         25  Schedule  of  EIA  Notification,  2006,  issued  by  the  MOEF,  GOI.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  34   December  2013  (Draft  23/12/13)  

A   rebate   for   effluent   treatment   is   available   to   any   person,   industry,   or   local  water   authority   that  installs   a   sewage   or   effluent   treatment   plant,   up   to   25   percent   of   the   cess   payable.   Laboratory  

analysis  is  required  as  proof  of  treated  effluent.  

Solid   waste   charges   for   urban   Solid   Waste   Management   (SWM)   are   being   encouraged   in   Indian  cities.   Mahabaleshwar   introduced   a   pollution   tax   to   generate   revenue   for   urban   management.  Maharashtra  has  introduced  a  tax  for  5  years  on  old  vehicles,  in  a  similar  effort  to  raise  revenue  to  

pay  for  the  implementation  of  various  pollution  control  measures.  

A   nationwide   coal   cess   of   Rs  50   (US$1)   per   metric   ton   of   coal   is   charged   on   both   produced   and  imported  coal.  Coal  cess  receipts  finance  a  “clean  coal  fund”  to  be  used,  for  example,  to  defray  the  costs  of  augmenting  transmission  networks  to  enable  power  distribution  from  clean  energy  sources  

such  as  solar  plants  and  wind  farms.  

A  subsidy  for  Common  Effluent  Treatment  Plants  (CETP)  was  initiated  by  the  GOI  in  1991  to  enable  clusters   of   compatible   small-­‐scale   industries   to   upgrade   or   install   CETPs.   It   was   revised   in  March  2012  to  reduce  the  proponent’s  outlay  to  25%  of  the  capital  costs.  The  central  government  provides  

a  subsidy  of  50%  of  capital  costs,  and  the  state  subsidizes  the  remaining  25%.    

Market Creation During   the   last   few  years,   India  has  established  a  number  of   innovative  market   creation   schemes.  

The   Renewable   Energy   Certificates   (RECs)   program   promotes   clean   energy,   and   the   Perform,  Achieve   and   Trade   (PAT)   program   aims   to   reduce   energy   demand   in   energy   intensive   industries  (aluminum,  fertilizer,  and  textiles,  among  others).  

The   Clean  Development  Mechanism   is   essentially   a   Payment   for   Ecosystem   Services   (PES)   system  

transferring   the   value   of   the   global   benefit   of   emission   reduction   to   those   responsible   for   the  reduction.  One-­‐third  of  the  Certified  Emission  Reduction  (CER)  credits  earned  through  CDM  projects  in  India  are  for  energy  efficiency.  Another  third  is  for  renewable  energy  projects,  including  biomass  

utilization.  Industrial  processes  and  fuel  switching  account  for  most  of  the  remainder.  

Final Demand Interventions Ecomark  was  launched  in  1991  for  easy  identification  of  environmentally  friendly  products  that  meet  

specified  environmental  criteria  and  Indian  standards.  It  is  a  voluntary  scheme  wherein  eligibility  for  labeling   is  determined  by   criteria   that  examine   the  product’s   cradle-­‐to-­‐grave  processes.   (Although  energy  efficiency   labeling   is  mandatory   for  air-­‐conditioners  and  refrigerators.)  Eligibility  criteria   for  

Ecomark   products   are   determined   by   concerned   sectors,   while   the   Bureau   of   Indian   Statistics  handles  assessment  and  certification.  

Public Interest Litigation Throughout   India  Public   Interest  Litigation  (PIL)   is  becoming  a   frequent  response  to  environmental  degradation,   to   enforce   compliance   and   compensation   from   the   responsible   industries.   HP   is   no  exception.  The  SPCB  reported  in  its  Annual  Review  that  because  of  increasing  PIL  and  the  associated  

increasing  workload,  the  SPCB  was  contemplating  increasing  its  legal  staff.  

There  is  a  backlog  of  PIL  cases  across  the  country,  which  prompted  the  establishment  of  a  National  Green  Tribunal   (NGT)   to   settle   cases   relating   to  environmental  protection,   conservation  of   forests  and  other  natural  resources,  and  the  enforcement  of  any  legal  right  relating  to  environmental  goods  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  35   December  2013  (Draft  23/12/13)  

and   services.  The  Tribunal   is  dedicated   to  environmental  matters  only,   so   it   is  expected   to  handle  expeditiously   the   cases   brought   to   it   (within   6  months),   to   rule   on   compensation   for   damages   to  

persons  and  property  by  perpetrators,  and  to  reduce  the  amount  of  litigation  waiting  to  access  the  higher  courts.  

Different Objectives When  MBIs  were  initially  touted  some  decades  ago  as  an  effective  means  of  reducing  pollution,  the  primary   argument   was   that   they   were   a   more   cost-­‐effective   mechanism   for   achieving   a   given  abatement  result  than  were  CAC  options.  This  result  was  essentially  a  theoretical  argument,  based  

on  asymmetric  information:  companies  and  polluters  knew  their  own  operations  best,  so  were  in  the  best   situation   to   determine  what   the   cost-­‐efficient  mechanism   should   be.   This   outcome   has   only  been   partially   supported,   mainly   because   of   imperfect   institutional   structures.   Essentially,   few  

“ideal”   experiments   have   been   conducted   within   the   complexity   of   national   legislation   and  regulation,  and  competing  interests  among  environmental,  economic,  and  social  concerns.  At  best,  therefore,  even  with  1000s  of  examples  from  which  to  choose  globally,  we  are  reduced  to  observing  

a  number  of  “stylized  facts”  about  the  effectiveness  of  the  various  mechanisms.  Most  notably,  a  key  stylized   fact   is   that   no   single   instrument   is   capable   of   effectively   addressing   all   three   objectives  frequently   cited   by   policy-­‐makers:   (i)  pollution   abatement;   (ii)  revenue   generation;   and,   (iii)  cost  

effectiveness.  

The   first   two  –  abatement  and   revenue  generation  –  are   sometime  at   complete  cross-­‐purposes:  a  simple   pollution   charge  meant   to   dissuade   pollution   loading,   if   effective,  will   eventually   generate  zero   revenue   even   though   initially   it   may   generate   significant   funds.   The   last   objective   –   cost  

effectiveness  –  is  complicated  as  much  by  definition  as  by  measurement:  cost-­‐effectiveness  from  a  private  firm’s  perspective  (choosing  an  optimal  process  technology  to  achieve  a  given  environmental  standard)  can  be  quite  different  from  cost-­‐effectiveness  from  a  social  perspective.  The  State  would  

normally   consider:   (i)  the   value   of   externalities   (such   as   human   or   ecosystem   health   impacts);  (ii)  cumulative  impacts  from  different  polluters  and  pollutants;  (iii)  distributional  impacts  of  pollution  on  different  segments  of  society;  and  (iv)  the  availability  of  policy  options  that  would  be  anathema  

to  some  in  the  private  sector  (such  as  shutting  down  or  discouraging  entire   industry  groups).  Such  issues  generally  stimulate  discussions  on  (and  experiments  with)  different  mechanisms,  and  hybrids  emerge  that  may  be  as  much  an  accident  of  history  as  an  act  of  deliberate  policy  planning.  From  this,  

economists  often  identify  a  category  of  “perverse  incentives”:  these  are  well-­‐intentioned  incentives  that  nonetheless  have  unintended  negative  environmental  consequences  once  implemented  within  

real  world  situations.  Identifying  and  dismantling  such  perverse  incentives  is  frequently  the  first  step  in  any  set  of  policy  reforms.  

Pollution  Abatement  experience  To   consider   India’s   experience   with   pollution   abatement,   one   can   look   at   compliance   experience  

with  regulated  MINAS.  Generally,  for  the  industrial  sector  as  a  whole,  enforcement  of  the  conditions  of   the   Consent  Mechanism   is   the   responsibility   of   the   SPCB.   Additionally,   a   program   for   surprise  inspections  (Environment  Surveillance  Scheme)  focuses  on  the  negative  list  industries.  Assessments  

of  the  effectiveness  of  CAC  instruments  have  concluded  that  the  provision  of  penalties  for  polluters  needs   strengthening   (Kumar   and   Managri   2009).   Also,   studies   routinely   suggest   that   small-­‐scale  industries  cannot  afford  pollution  equipment:  research  found  that  the  cost  of  an  ETP  to  a  SSI  costs  

about  as  much  as  the  capital  cost  of  the  main  plant  (Murty  et  al.  1999).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  36   December  2013  (Draft  23/12/13)  

There   are   guidelines   for   the   frequency   of   inspections   by   the   SPCBs,   depending   on   the   size   of   the  industry   and   its   pollution   potential,   but   adherence   to   the   guidelines   is   mixed.   An   assessment   by  

OECD   (2006)   found   that   although   the  number  of   site   inspections   is   high,  most   SMEs  are   rarely  or  never  inspected.  Also,  the  shortage  of  SPCB  staff  often  results  in  inspections  that  are  too  rapid  to  be  effective.  

• A   CTO   is   issued   with   emission   and   effluent   limits,   and   self-­‐monitoring   and   reporting  

schedules.   In   practice   only   large   and  medium-­‐sized   facilities   obtain   the   required   permits,  while  most  small-­‐scale  industries  operate  without  consents.  But  the  MSMEs  are  responsible  

for  about  70%  of  total  nationwide  pollution.  

• A   2005   review   of   78   of   the   88   CETPs   constructed   under   the   subsidy   scheme   found   the  

performance   of   CETPs   to   be   very   unsatisfactory,   largely   because   of   poor   operation   and  maintenance,   and   recommended   improved   monitoring   of   CETPs   and   compliance  enforcement  by  SPCBs.  

• Indian  experience   shows   that  most  of   the  action   for   reducing  pollution   is   the   result  of  PIL  

cases  filed  by  various  interest  groups.  

• Institutional  structures  for  EIA  are  strengthening   in   India.  But  problems  remain  particularly  

with  monitoring   and   compliance   enforcement.   Cumulative   impacts   from  micro,   small   and  medium  enterprises  (MSMEs)  can  be  significant  but  are  often  ignored.  

Revenue  Generation  experience  

Fees   from   the   Consent   Mechanism   and   the   Water   Cess   are   both   important   for   financing   the  operations  of  the  SPCB.  The  Consent  fees  are  by  far  the  greater  source  of  revenue.  The  purpose  of  the   water   cess   on   water   consumption   as   described   in   the   Water   Cess   Act,   1977,   is   to   dissuade  

wasteful   use.   Most   studies   show   that   it   is   not   high   enough   to   encourage   efficient   use,   but   it  nonetheless   is   an   important   source   of   revenue   for   the  HP  PCB.   Indeed,   some   authors   (Murty   and  Kumar,   2011   [check   source])   have   recommended   that   it   be   increased   substantially   to   generate  

revenue  and  act  as  a  more  effective  incentive  to  discourage  wasteful  practices.  

Some   states   (Andhra   Pradesh,   Maharashtra   and   West   Bengal)   use   bank   guarantees   to   ensure  compliance   with   pollution   standards   by   new   industries,   or   industries   seeking   renewal   of   their  Consent  to  Operate.  Typically,  the  amount  of  the  guarantee  is  10%  of  the  particular  industry’s  cost  

of  compliance,  and  is  related  to  an  action  plan  for  meeting  compliance  for  the  particular  industry.  In  the  case  of  non-­‐compliance,  part  or  all  of  the  guarantee  is  forfeited.  This  instrument  is  considered  an  effective  deterrence,  but  it  is  also  a  significant  source  of  revenue  for  the  Pollution  Control  Board  in  

the  States  where  it  is  used.  However,  the  use  of  bank  guarantees  does  not  work  well  in  the  case  of  MSMEs:  most  cannot  afford  to  post  a  bank  guarantee.  Also,  to  date,  bank  guarantees  are  not  used  in  HP.  

Assessments  of  the  HP  fiscal  situation  frequently  conclude  that  there  are  under-­‐utilized  mechanisms  

for  revenue  generation  throughout  the  available  envelope  of  taxes,  charges  and  levies.  On  the  one  hand,   this  may  reflect  HP’s  desire  to  attract   investment  and  stimulate  savings.  On  the  other  hand,  there   are   likely   to   be   mechanisms   available   that   would   contribute   to   overall   revenues   without  

distorting  or  discouraging  investment.  For  example,  many  jurisdictions  have  found  that  carbon  taxes  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  37   December  2013  (Draft  23/12/13)  

on   fuels   can  be  an  effective   revenue  generating  mechanism:   they  have  a  modest   incentive  effect,  but  generate  revenues  that  can  be  redirected  to  other   incentives  or  commitments  associated  with  

environmental   management   goals   (such   as   GHG   emission   reduction   or   carbon   sequestration).   A  budget-­‐neutral   carbon   tax   may   be   worth   considering   at   some   future   date   as   a   form   of   revenue  generation  in  HP.  

Cost-­‐effectiveness  experience  

A  number  of  lessons  have  been  drawn  from  experience  with  various  approaches  in  HP.  Many  of  the  historical  approaches  have  in  fact  imposed  greater  costs  on  either  the  regulator  or  industry  without  necessarily  achieving  any  pollution  abatement  benefits.  As  the  industrial  sector  grows  in  HP,  so  will  

the   resource   requirements   of   the   SPCB.   Industrial   compliance   with   pollution   law   is   typically   first  sought  through  a  consultative  approach.  This  saves  time  and  costs  because  recourse  to  the  courts  is  avoided.   But,   the   greater   the   number   of   industries,   the   greater   will   be   the   number   of   non-­‐

compliance  cases  and  PIL  action,  and  consequently,  the  greater  the  demand  for  legal  and  mediation  intervention  from  the  SPCB.    

The  imposition  of  non-­‐compliance  penalties  is  only  possible  through  court  action,  but  even  if  a  case  is  successful,  monetary  fines  are  too  low  to  be  an  effective  deterrence.  Also,  the  lack  of  standardized  

procedures   for   inspection   often   undermines   the   government’s   court   case   against   violators.   The  courts  are  overburdened,  so  enforcement  by  court  action  is  slow,  while  its  cost  to  the  SPCB  is  high.  As   a   result,   SPCBs   resort   to   other   methods   such   as   cutting   the   power   or   water   supply   to   the  

offending   facility,   issuing   closure   orders,   or   revoking   the   Consent.   The   latter   is   the   least   effective  because  it  does  not  guarantee  that  operation  will  cease.  Closure  is  the  most  effective.  

Regulated  compliance  with  MINAS  does  not  provide  the  necessary   incentives  to  polluters  to  adopt  

least  cost  methods  of  pollution  control.  Tax-­‐rebates  on  end-­‐of-­‐pipe  treatment  technologies  have  not  promoted  upstream  efficiency  of  resource  use  in  industrial  processes.  

Tax   concessions   for   adoption   for   pollution   control   equipment   are   usually   specified   for   identified  abatement   technologies   and   activities,   rather   than   for   providing   dynamic   incentives   for  

technological  innovation  and  diffusion  (Murty  and  Kumar,  2011).  

Summary To   summarize,   HP   does   have   some   experience   with   market-­‐based   incentives,   but   institutional  capacity   can   still   hinder   their   effectiveness.   Command   and   Control   (CAC)   and   Market-­‐Based  

Instruments   (MBIs)   both   incentivize   industry   to   control   pollution:   either   or   both   can  make   policy  sense  in  a  given  institutional  context.  

A   mix   of   CACs   and  MBIs   can   address   different   goals:   cost-­‐effectiveness,   pollution   reduction,   and  

revenue   generation.   Historical   developments   can   generate   a   sub-­‐optimal   mix   of   approaches,  implying   that   the   first   step   involves   reforming   or   changing   “perverse   incentives”   that   have  unintended  negative  environmental  impacts.  

India   and   Himachal   Pradesh   already   have   experience   with   a   number   of   CAC   and   MBIs;   future  

initiatives  in  the  State  can  potentially  build  effectively  on  this  experience  if  properly  targeted.  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  38   December  2013  (Draft  23/12/13)  

Part  II   DIAGNOSTICS    

§6   MSME  Scheme  –  Mid-­‐Study  Recommendation  Report  

§7   Background  to  the  Case  Studies    

§8   Case  Study  1  –  Pharmaceuticals  

§9   Case  Study  2  –  Stone  Crushing  

§10   Case  Study  3  –  Food  Processing  

§11   Cost  Effectiveness  

[photo]  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  39   December  2013  (Draft  23/12/13)  

§6   MSME  Scheme  –  Mid-­‐Study  Recommendation  Report  

Background to Request This   Chapter   presents   the   mid-­‐study   recommendation   report   of   the   SEA   regarding   regulation   of  MSME  sectors  in  HP.  

Building  on  past  experience,  and  cognizant  that  economic   instruments  can  contribute  to   improved  

compliance,   stakeholders   in   HP   requested   that   early   work   in   the   SEA   process   was   targeted   to  conducting   a   rapid   assessment   for   developing   economic   incentive   options   relating   to   MSME  pollution   loads.   As   noted   previously,   these   are   among   the   most   difficult   to   regulate   effectively  

because  of  high  compliance  monitoring  requirements,  geographic  dispersion,  and  the  sheer  number  of   firms   involved   (often   at   household   enterprise   level).   Also,   the   request   was   made   that   the  approach  did  not  further  burden  industry  with  high  costs;  given  the  recent  removal  of  the  incentive  

package  for  industry  in  HP,  the  Government  of  Himachal  Pradesh  (GoHP)  does  not  want  to  introduce  new  dis-­‐incentives  to  industry.  The  trigger  for  the  DPL  is  therefore  focused  on  introducing  a  positive  incentive   for   the  adoption  of   clean   technology,   enhanced  pollution   control  practices,   and   systems  

that  are  in  compliance  with  regulations.  

Introduction Building  on  a   review  of  existing  economic   instruments  applied   to   Industry   in   ten   countries   in  Asia  

and   South   and   Central   America,   five   economic   instrument   approaches   have   been   considered   for  potential  application   in  Himachal  Pradesh26.  At  a  practical   level,   these  economic   instruments   focus  on  incentivizing  SMEs  to  participate  in  the  Common  Effluent  Treatment  Plant  (CETP)  currently  under  

construction  in  the  district  of  Baddi,  Himachal  Pradesh.  

In   addition   to   reviewing   the   experience   of   these   ten   countries,   lessons   also   draw   from   India’s  experience.   Murthy   (2011),   for   example,   in   a   comprehensive   discussion   of   SMEs   and   the   use   of  various  economic  incentives,  advocates  the  need  for  a  multi-­‐prong  approach:  no  single  instrument  is  

likely  to  be  effective.  Some  existing  mechanisms  in  India  already  take  such  a  multi-­‐prong  approach  (Box  6.1).  Experiences  elsewhere  also  demonstrates  that  the  complexity  of  the  SME  issues  merits  a  hybrid  approach  that  combines  a  basket  of  incentives  and  eventual  disincentives  to  gain  compliance  

with  pollution  control  objectives.27    

The   recommended   model   thus   includes   elements   of   all   five   different   economic   instruments  reviewed   here:   (i)  environmental   fee   tied   to   operating   permits   (on   pollution   discharge   with  exemptions);   (ii)  capital   grant   provisions   for   environmental   technology;   (iii)  soft   loan   scheme   for                                                                                                                            26  The  countries  covered  in  the  review  of  existing  economic  instruments  are:  Bangladesh,  Brazil,  China,  Indonesia,  Malaysia,  Mexico,   the   Philippines,   South   Korea,   Thailand   and   Vietnam.   The   review   does   not   provide   an   exhaustive   list   of   all  instruments:   all  of   these   countries  have  had   some  decades  of  experience   in   testing  various  approaches  and   the   lessons  drawn   from   this   are   reflected   in   the   recommendations   contained   here.   Background   research   was   also   undertaken  respecting   Chilean   experience   with   property   right   systems;   these   are   not,   however,   covered   in   this   review   because  implementation  of  such  approaches  in  HP  is  not  advised.  27  A  review  of  environmental  management  of  SMEs  in  Argentina,  Chile,  Columbia  and  Mexico  supports  the  application  of  a  ‘consolidated’   instrument  (UN,  2006).  The  study  recommends:  (i)  integrated  policies  –  at   least   in  the  areas  of  productive  development,  productivity  and  competitiveness  –  with  environmental  policy,   in  order  to  avoid  contradictions  that  create  problems   for   firms;   (ii)  the   development   of   economic   instruments   and   new  means   of   obtaining   financing;   (iii)  a  mix   of  instruments  including  direct  regulation,  economic  measures  and  voluntary  instruments,  as  no  single  method  can  be  relied  upon;  (iv)  partnerships  between  large  businesses  and  SMEs,  as  well  as  among  SMEs  as  a  means  of  fostering  sustainability  and   gaining   footholds   in   emerging   markets;   and,   (v)  a   focus   on   training   and   information   to   advance   technology   and  management.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  40   December  2013  (Draft  23/12/13)  

SME   support;   (iv)  accountability   instruments;   and,   (v)  economic   incentives   associated  with   supply-­‐chain   management.   In   this   mid-­‐study   recommendation   report,   each   of   these   approaches   is  

summarized   in   terms   of   a   general   description,   examples   from   the   study   set   of   countries,   their  advantages/disadvantages   and   their   application   in   the   HP   context.   The   final   hybrid   of   these   is  described  as  the  “Himachal  Pradesh  SME  Green  Incentive  Scheme.”28  

The  proposed  hybrid  –  the  SME  Green  Incentive  Scheme  –  is  described  in  the  context  of  the  Baddi  

CETP.  As  this  is  the  first  CETP  in  HP  that  includes  a  significant  investment  in  addressing  river  quality  concerns,   it  could  be  a  model   for  similar  green   investments  elsewhere   in  the  State  and,   indeed,   in  India.  

The  proposed   SME  Green   Incentive   Scheme  also   reflects   some   realities   or   “stylized   facts”   directly  

experienced  by  other  countries.  First,  SMEs  are  the  most  difficult  industries  to  regulate  or  incentivize  effectively  anywhere  in  the  world,  although  they  are  also  among  the  most  important  for  economic  growth  both  in  terms  of  their  own  production  for  end  markets  and  for  their  production  of  inputs  into  

a  domestic  or  global  supply  chain  of  larger  partners.  Second,  successful  incentives  generally  included  some   form   of   moral   suasion,   social   pressure,   or   access   to   financial   markets.   Finally,   successful  compliance  always  required  some  eventual  “stick”,  either  in  terms  of  fines  or  closure  (even  if  grace  

periods  were  provided).  

Box  6.1.  Existing  Initiatives  supporting  MSMEs  in  India  

The  Small  Industries  Development  Bank  of  India  (SIDBI),  set  up  in  1990,  is  the  principle  financial  institution  for  the  promotion  and  development  of  the  Micro,  Small  and  Medium  Sized  Enterprise  (MSME)  sector.  It  promotes  investment  in  clean  production  and  energy  efficient  technologies.  In  respect  to  CETPs,  Gujarat  Environ  Protection  &  Infrastructure  Ltd.  has  been  assisted  to  set  up  Treatment  Storage  and  Disposal  Facilities  (TSDF)  in  Surat  to  help  MSME  textile  dyeing  and  printing  units  in  proper  waste  disposal.  The  majority  of  the  300  MSME  member  units  have  been  able  to  become  compliant  with  pollution  control  norms.  In  Bangalore  Eco  Green  Solution  Systems  (P)  Ltd.  has  been  assisted  to  set  up  a  TSDF  facility  for  toxic  waste  generated  from  the  electroplating,  powder  coating,  and  metal  finishing  industries,  which  has  helped  more  than  300  MSMEs  in  the  reuse  and  recycling  of  treated  effluent,  and  in  the  reduction  in  waste  treatment  costs  per  unit.  

Under  the  MSME  Financing  and  Development  Project  (MSMEFDP)  being  implemented  by  SIDBI,  Credit  Facility  (CF)  has  been  provided  to  over  2,050  MSMEs  across  major  cluster  centers  in  India.  This  cluster  development  initiative  is  aimed  at  soft  infrastructure  development,  and  is  adopting  a  long-­‐term  intervention  strategy.  Starting  with  value  chain  mapping  of  a  cluster,  an  action  plan  is  devised  in  consultation  with  stakeholders.  Instilling  Energy  Efficiency  (EE)  in  these  adopted  clusters  has  emerged  as  a  cross  cutting  issue.  

SMER  Rating  Agency  of  India  Ltd  (SMERA),  under  MSMEFDP,  is  the  country's  first  rating  agency  focused  primarily  on  Micro,  Small  and  Medium  Enterprises  (MSME).  SMERA's  primary  objective  is  to  facilitate  flows  of  credit  from  the  banking  sector  to  MSMEs.  Better  ratings  from  SMERA  have  benefitted  MSMEs  through  lower  collateral  requirements,  reduced  interest  loans,  simplified  lending  norms  and  faster  access  to  credit.  SMERA  has  introduced  a  “Green  Rating”  model.  This  initiative  is  aimed  to  encourage  MSMEs  engaged  in  industrial  activity  to  adopt  better  technologies  and  processes  to  prevent  un-­‐mitigated  environmental  damage.  It  will  act  as  a  risk  mitigation  tool  for  MSMEs  to  assess  continuity  risks  associated  with  rapidly  changing  regulation  on  environment  governance  &  compliance.  

                                                                                                                         28  Note  that  this  is  a  working  title.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  41   December  2013  (Draft  23/12/13)  

Option 1 – Basic Environmental Fee

Description  The  notion  of  an  environmental  fee,  pollution  charge,  or  effluent  tax  is  a  long-­‐standing  basis  for  the  polluter  pay  principle.  It  essentially  places  a  monetary  burden  on  firms  linked  to  their  presumed  or  actual  amount  of  pollution.  They  are  thus  found  in  many  jurisdictions  in  various  guises:  these  range  

from  simple  fees  attached  to  operating  licenses,  to  complex  pricing  formulas  dependent  on  pollution  standards  and  effluent   levels.  Equally   important,  however,   in  structuring  these  fees   is  the  relief  (in  terms  of  payment   level  or  exemption  period)  which   is   available   to   firms   if   they   comply,  or  before  

compliance   becomes   mandatory.   Application   of   any   such   fees   to   SMEs   is   often   either   politically  problematic   (because   of   distributional   impacts)   or   financially   problematic   (to   the   extent   that   the  burdens  of  such  charges  are  unaffordable  and  simply  put  the  firms  out  of  business  or  otherwise  fail  

to  incentivize  them).  A  unilateral  application  of  fees  or  taxes  on  SMEs  thus  typically  fails.  

But  such  charges  and  fees  are  included  here  because  they  do  have  a  number  of  important  roles  to  play.  First,  exemption  of  such  fees   is  a  powerful  economic   incentive   instrument:  an  environmental  fee  can  be  attached  to  all  operating  permits  with  incentives  attached  to  refund  or  waive  the  fee  for  

responsible  SMEs.   Second,   the  exemption  periods  and  waivers   can  be   targeted   to   reflect  political,  financial,  and  environmental  requirements  in  any  given  area;  adjustment  periods  of  5  years  or  longer  are   not   unusual.   Third,   the   administrative   structure   of   the   instrument   provides   a  mechanism   for  

attaching   other   incentives   or   inducements,   including   performance   subsidies   that  may   exceed   the  amount   of   the   basic   fee.   Fourth,   it   creates   a   monitoring   structure   through   its   attachment   to  operating   permits   (or   licenses)   where   the   monitoring   protocols   themselves   can   be   more   flexible  

once  compliance  levels  have  been  achieved  (and  thus  less  costly  to  participants  and  regulators).  

International  application    As   noted   above,   fees   and   charges   are   commonly   used   as   incentives   or   for   revenue   generation   in  some  form  but  the  following  provide  some  examples.  

Ø Brazil’s  Federal  Water  Law  January  1997  introduced  quality  and  quantity  related  water  charges   into  

the   regulatory   framework.   Water   charges   are   intended   to   provide   funding   to   projects   related   to  pollution  control.  Brazil  adopts  a  decentralised  &  participative  water  management  approach  with  the  

river  basin  committee  as  the  cornerstone  of  the  sector's  institutional  arrangements.  In  Paraiba  do  Sul  industrial  users  pay  a  charge  for  water  withdrawal,  consumption  (i.e.  proportion  of  withdrawn  water  

not   returned   to   water   bodies),   and   effluent   discharge   (which   depends   on   the   percentage   and  efficiency   of   the   effluent   discharge).   Analysis   based   on   a   survey   of   488   plants   located   within   the  

Paraiba  do  Sul  River  Basin   indicates   that  a   significant  proportion  of   the   industrial  plants  approve  of  the   water   charge   mechanism   and   that   increasing   water   costs   are   inducing   them   to   undertake  conservation  measures  with  limited  impact  on  firms’  competitiveness.    

Ø China  passed  a  new  Directive  in  June  2013,  which  will  further  compel  firms  to  improve  their  pollution  control  equipment  and  strengthen  enforcement  and  collection  fees  and  penalties  that  companies  pay  

based  on  their  emissions.  In  China,  if   institutions  have  paid  the  pollutant  discharge  fee  but  have  not  met   the  discharge   standards   for   three   years,   the  pollution  discharge   rate   increases  by   five  percent  

each   year   thereafter.   Conversely,   institutions   that   have  met   the   discharge   standards,   or   markedly  decreased   the   quantity   and   concentration   of   the   discharged   pollutants,   may   apply   to   the   local  

environmental  protection  department  to  terminate  or  reduce  the  discharge  fee.  The  discharge  fee  is  paid  into  a  special  fund  for  environmental  protection  used  for  the  control  of  pollution  sources  in  key  

discharge  institutions  and  integrated  control  of  environmental  pollution.  If  institutions  cannot  afford  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  42   December  2013  (Draft  23/12/13)  

pollution   control,   a   certain   amount   may   be   subsidized   through   application   to   the   environmental  protection  and  financial  departments  by  their  competent  authorities.  

Ø Indonesia   initially  experimented  with   fees  and  charges  applied   to  SMEs  but   still   lacks   the   legal  and  

regulatory   framework   to   apply   such   charges.   It   has   thus   relied   more   extensively   on   other  mechanisms,   with   fines   and   shutdown   being   the   final   “stick”   for   non-­‐compliant   smaller   scale  polluters.  

Ø Philippines  1977  legislation  relating  to  the  Laguna  Lake  area  is  regarded  by  many  as  international  best  practice  of  an  Environmental  User  Fee  System  that  is  based  on  discharge  levels  and  applied  commonly  

to   all   polluters.   To   date,   only   individual   households   (and   household   scale   SMEs)   are   effectively  exempt   (in   fact   100%   subsidized);   as   a   result   of   on-­‐going   evaluations   the   mechanism   is   being  

increasingly   connected   to   other   incentives   such   as   training   and   financing   of   pollution   control.  Compliance  achievement   after   20   years  of   implementation  was  >80%  with   visible   improvements   in  environmental  quality  in  a  previously  highly  degraded  area.  

Ø Thailand   is  currently  (2013)  reintroducing  a  pollution  charge  system  across  all   industries  after  some  decades  of  ad  hoc  application  of  different  instruments,  going  now  for  a  more  standardized  instrument  

that  could  permit  greater  flexibility.  While  final  legislation  is  not  yet  passed,  it  is  largely  based  on  the  Pollution   Management   Fee   (PMF)   structure   that   is   universally   applied   and   attached   to   licenses,  

although  with  more  relaxed  provisions  available   for  SMEs.  The  PMF   is  designed  to  be  reimbursed   if  companies   decide   to   install   or   upgrade   waste   management   facilities;   some   proportion   is   always  

retained  by   the  regulator   for   larger   firms  but  scope  exists   for  a   full  waiver.  The   fee   is   structured  to  permit  waivers   for   any   action   that  mitigates   environmental   impact   (installing   equipment,   changing  inputs,  changing  processes).  

Ø Vietnam  relies  on  fees  for  effluent  discharges  and  fines  for  discharges  over  permitted  levels.  SMEs  are  incapable   of   paying   the   discharge   fees   and   regulators   rarely   apply   available   sanctions   to   SMEs.  

Dispersal,  size,  and  legal  status  make  monitoring  difficult,  hence  SME  regulation  and  control  is  largely  ineffective.  

Advantages:   provides   an   incentive   structure   that   can   be   designed   to   be   revenue   neutral   to   the  

Government.  This  would  require  the  fee  to  be  applied  to  large-­‐scale  operations  as  well  as  SMEs,  with  exemptions   and   special   considerations   being   given   only   to   the   SMEs.   This   is   an   important  consideration  in  HP,  where  the  Government  has  not  been  able  to  finance  existing  incentives  offered,  

for  example,  on  the  installation  of  new  pollution  control  devices.  

Disadvantages:  Transaction  costs  are  typically  high  with  SMEs  because  of  fixed  costs  associated  with  compliance  monitoring.   These   can  be   substantially   reduced   through  making   them   independent   of  discharge  levels.    

Potential  application  to  SMEs  in  Baddi  CETP  

Within  the  context  of  SMEs  in  HP,  the  structure  of  such  an  instrument  would  include:  

Ø an  annual  environmental  fee  associated  with  an  operating  license  for  the  business  of  the  SME;  

Ø eligibility   for  operating  subsidies   through  CETP  tariff   relief  equivalent   to   the   lesser  of:   (a)  the  actual  tariff;  (b)  the  capital  charge  of  the  tariff  if  the  tariff  is  based  on  full  cost  recovery29.  

Ø a  temporary  holiday  period  of  not  more  than  (x:  suggest   five)  years  during  which  time  the  firm  can  

comply   to   standards   either   through   equipment   installation,   process   changes,   or   location  within   an  industrial  estate  that  has  access  to  a  CETP  to  which  it  is  tied;  

                                                                                                                         29  This  provision   is   recommended  because  the  capital  portion  of   the  tariff  has,   in   India,  often  been  covered   implicitly  by  State  and  National  Governments  through  cost-­‐sharing  of  the  ETP  capital  costs.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  43   December  2013  (Draft  23/12/13)  

Ø permanent  exemption  of  the  fee  as  long  as  compliance  continues;  

Ø payment  of  the  fee  for  a  maximum  of  (y:  suggest  ten)  years.  After  (z:  suggest  five)  years,  the  firm  will  be   obliged   to   adopt   a   supervised  management   plan   for   the   remainder   of   the   (y-­‐z)   year   period   to  reduce  pollution  impacts  or  it  will  be  closed.  

It  is  important  to  note  that  the  above  structure  is  intended  to  be  appropriate  for  SMEs  both  inside  or  outside  a  CETP  (e.g.,  Baddi)  although  only  those  having  access  to  the  CETP  would  benefit  from  the  

CETP  subsidy.  

Option 2 – Capital Grant Provision

Description  Subsidized  access   to   capital  enables  SMEs   to   respond   to  environmental  objectives.   For   small-­‐scale  

firms,   the   capital   cost   of   pollution   abatement   equipment   –   or   clean   production   equipment   –   is  prohibitive.  Research  in  India  has  found  it  to  be  as  high  as  the  capital  cost  of  the  plant.  In  some  cases  where   SMEs   have  made   an   investment   in   pollution   treatment   equipment,   they   subsequently   find  

that   they   cannot   pay   the   operating   costs.   They   operate   the   equipment   only   in   anticipation   of   an  inspection.  

The   incentives   could   include   provision   of   land   in   an   industrial   estate   giving   access   to   common  effluent   treatment,   a   capital   subsidy   through   excise   tax   exemption,   or   accelerated   capital   cost  

depreciation  when   calculating   taxable   income  within   the   tax   system.   Capital   equipment   generally  eligible  for  incentives  includes  new  or  retrofit  requirements,  either  for  end  of  pipe  treatment  or  for  process  changes.  

The  nature  of   the   incentive   is   that   it   is   typically  a  non-­‐repayable  grant  or  direct  cash   incentive   for  

pollution  equipment.  This  contrasts  to  loans,  which  are  typically  more  flexible  and  are  repayable.  

International  application    Selected   examples   of   capital   grants   as   pollution   control   incentives   and   financial   relief   follow.   It  should  be  noted  that  most  of  these  are  provided  at  a  national  level  and  are  not  necessarily  targeted  

to   SMEs,   but   their   universality   provides   further   efficiencies   as   they   can   be   applied   using   existing  administrative  structures  such  as  the  tax  system.  

Ø Bangladesh  is  currently  proposing  removal  of  import  duties  and  taxes  on  selected  green  equipment.  This  is  isolated  to  the  textile  industry  and  SMEs  are  eligible  within  the  same  context  as  other  firms.    

Ø China   has   a   specific   centrally   financed   fund   for   supporting   the   development   of   SMEs   in   industry  clusters   with   local   characteristics   through   financial   aid,   subsidies   for   loan   interest   and   capital  

investment.  The  Fund  can  be  used  to:  promote  technological  innovation;  promote  energy-­‐saving  and  emission  reductions;  strengthen  cooperation  between  SMEs  and  backbone  enterprises;  promote  the  

industrial   upgrading   of   SMEs;   support   the   brand-­‐building   of   SMEs;   and,   improve   the   service  environment  for  SMEs.  China  also  has  a  scheme  for  Micro  and  Small  Sized  Enterprises  (MSE),  which  

among  other  things  facilitates  the  development  of  clusters  for  MSEs.  Stevens  et  al.  (2013)  argue  that  government   legislation   and   financial   support   are   necessary   to   improve   SME   environmental  

performance   in   China.   As   a   result   the   Government   has   issued   a   number   of   financial   subsidies   to  support  SMEs  to  reduce  their  operating  costs,  invest  in  greener  production  systems,  and  boost  green  innovation.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  44   December  2013  (Draft  23/12/13)  

Ø Malaysia   provides   a   partial   reduction   in   taxable   income   for   a   specified   period   for   investment   in  environment  friendly  processes.  This   is  targeted  to  SMEs,  and  also  intends  to  promote  relocation  to  industrial  estates.  

Ø Thailand  in  its  early  stages  of  environmental  management  employed  an  unusual  form  of  capital  grant:  a  capital   subsidy  and   fine.  Under   the  Thai  Factory  Act,  an  Environmental  Fund  was  established  that  

permitted  the  fund  to  finance  100%  of  pollution  control  equipment  for  non-­‐compliant  industries,  but  the   capital   was   subsequently   recovered   through   a   repayment   scheme   that   also   recovered   an  

additional  30%  fine.  This  scheme  did  have  the  desired  effect  of  cleaning  up  pollution  problems  while  providing   a   form   of   financing   (albeit   at   high   cost)   to   industry   incapable   of   meeting   regulatory  obligations.  

Ø Vietnam  provides  industrial  land  price  subsidies  to  SMEs  that  relocate  to  designated  industrial  zones.  The  policy  has  created  land  price  distortions  and  has  been  abused  by  residential  developers  and  large-­‐scale  enterprises.  

Advantages:   direct   positive   impact   on   cash   flow.   Linked   directly   to   pollution   control.   Waiver   of  import  duties   is  a  potentially   low  cost  option  for  government   in  terms  of  direct  outlays,   if  reduced  

import  receipts  are  recovered  through  other  employment  or  profit  taxes.  

Disadvantages:  An  import  duty  waiver  could  create  innovation  bias  due  to  lower  cost   imports  that  reduce  incentive  to  produce  home  grown  clean  technologies.  Incentive  is  often  inadequate  to  cause  changes  in  polluting  behavior  if  it  is  just  a  tax  deferral  or  if  capital  charge  is  low  compared  to  overall  

firm   cost   structure.   May   not   adequately   capture   process   changes   as   candidates   for   pollution  discharge  control.  

Potential  application  to  SMEs  in  Baddi  CETP  Capital   grants   through   the   taxation   system   are   generally   problematic   at   a   State   level,   but   their  

inclusion   within   State   policy   could   be   possible   if   they   targeted   firms   with   access   to   a   CETP   and  covered  part  or   all   of   the   costs  of  pre-­‐treatment.   For  example,   the  Baddi  CETP   caters   to  different  industries  and  some  of  these  may  still  require  some  pre-­‐treatment  before  the  discharges  meet  the  

inlet  specifications  of  the  CETP.  

The   structure   of   the   instrument   could   address   operations   both   inside   and   outside   of   a   CETP  installation  and  could  thus  take  the  form  of:  

Ø a  capital  grant  of  yy%  of   incremental   installed  equipment  cost  will  be  provided   to  SMEs  not  having  

access   to   a   CETP,   for   equipment   required   to   meet   State   standards.   For   any   year   in   which  environmental  standards  are  not  met,  usual  applicable  sanctions  will  be  applied  plus  an  amount  equal  to  (zz%:  suggest  10%)  of  the  amount  of  the  subsidy.  

Ø a  capital  grant  of   xx%  of   the   incremental   installed  equipment  cost  will  be  provided   to  SMEs  having  

access   to   a   CETP,   for   equipment   required   to  meet   pre-­‐treatment   standards  of   the  CETP.   [Note:   no  non-­‐compliance  clause  is  necessary  here,  as  a  non-­‐compliant  operator  would  not  be  able  to  use  the  CETP  and  a  condition  of  any  annual  license  would  remain  that  its  waste  is  treated  by  the  CETP.]  

Option 3 – Soft Loan Scheme

Description  Availability  of   financing  any  type  of  capital  cost   is  a  problem  for  many  SMEs,  and   lack  of  access  to  finance   is   typically  one  of   the  most   common   issues   identified   in  SME   industrial   surveys.  The   small  scale  of  such  firms,  often  coupled  with  a  short  operating  history,  lack  of  physical  assets,  and  aversion  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  45   December  2013  (Draft  23/12/13)  

to   bureaucratic   lending   processes   create   barriers   to   investment.   Such   barriers   extend   also   to  environmental   investments,   which   are   often   perceived   not   to   generate   any   inherent   economic  

return  beyond  reducing  the  risk  of  regulatory  fines  or  closure.  

Financing  schemes  and  soft  loan  provisions  are  thus  a  common  feature  of  a  new  brand  of  economic  instrument   that   intends   to   induce   compliance   with   environmental   standards.   These   are   in   some  ways   no   different   than   the   capital   grants   mentioned   previously,   but   they   work   through   financial  

markets   instead   of   through   taxation   or   grant   schemes.   Moreover,   they   have   greater   flexibility  because  there  is  still  a  possibility  for  them  to  be  forgiven  (in  which  case  it  becomes  a  grant  scheme).  Also,  the  loans  can  be  structured  such  that  they  can  be  used  for  more  than  just  pollution  equipment.    

International  application    

Selected  examples  of  loan  and  financing  schemes  follow.  A  notable  aspect  of  all  of  these  is  that  they  permit  targeting  to  SMEs  within  selected  industries  or  sub-­‐industries.  

Ø Bangladesh  currently  proposes  to  strengthen  “green  credit  lines”  for  textile  firms  to  invest  in  cleaner  

production   and   pollution   abatement   equipment.   It   is   available   to   all   industry   including   SMEs,   and  covers  water  and  energy  efficient  manufacturing  equipment.    

Ø Brazil’s   study   of   325   medium   and   large   firms   found   that   market   incentives   are   influential  

determinants  of  environmental  performance.  Cost  savings  on  inputs  and  subsidised  credit  are  found  to  be  equally  important.  The  study  recommends  flexible  pollution  control  instruments  that  capture  a  

firm's   differentials   in   characteristics   &   compliance   as   well   as   dissemination   of   information   on  environmental  control  and  cost  saving  opportunities  (Serôa  da  Motta  2006).  

Ø Indonesia’s   Ministry   of   Environment   has   environmental   soft   loan   programs   for   micro,   small   and  

medium  enterprises  to   invest   in  environmental  pollution  control  and   improve  production  efficiency.  The  target  group  of  these  programs  are  companies  that  have  potential  to  pollute  and  are  financially  

credit-­‐worthy   though   not   bankable.   In   recent   surveys,   half   of   all   companies   taking   advantage   of  environmental  loan  facilities  were  SMEs.  

Ø Malaysia  has  formalized  much  of  its  support  to  SMEs  through  the  SME  Corp  or  previously  “SMIDEC”  (Small  and  Medium  Industries  Development  Corporation).  Among  many  types  of  support,  it  provides  

soft   loans,   investment   advice,   and   special   incentives   for   relocation   to   designated   areas   including  100%  national   income   tax   exemptions   for   five   years.   Various   grant   and   loan   schemes   are   available  

(usually   as   matching   funds   to   a   maximum   of   50%   of   costs)   for   equipment   costs,   production   and  processing   improvements,   product   testing,   or   certification   (e.g.,   ISO  13485,   ISO  14000,   ISO  22000).  

Notably,  the  incentives  go  far  beyond  just  environmental  management  but  extend  to  all  parts  of  the  business   and   once   registered   as   operating   firms   they   generally   become   eligible   for   broad-­‐based  programs.  

Ø South   Korea   provides   capital   subsidies   (through   grants   and   soft   loans)   and   related   technical  assistance   to   enable   SMEs   to   provide   certifiably   clean   products   to   larger   industries   in   key   export  sectors.  

Ø Thailand   relies   extensively   on   SMEs;   in   early   industrial   restructuring   efforts   it   allocated   some  $1  billion  through  the  National  Industry  Restructuring  Plan  (NIRP),  which  targeted  SMEs  and  provided  

information  on  control   technologies   (through  a  Cleaner  Technology  Unit)  and  preferential   loans.  By  2000,  after  evaluating  185  clean  technology  options  some  25  were  identified  for  partial  financing  by  

government   through   grants   and   loans.   Firms   targeted   in   a   two-­‐year   period   realized   fuel   savings   of  80%,  energy  savings  of  60%,  and  chemical  savings  of  80%.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  46   December  2013  (Draft  23/12/13)  

Advantages:   Long   term   revenue   neutrality,   strong   uptake   by   SMEs   especially   if   financing   can   be  spread  to  non-­‐environmental  capital.  Can  convert  loan  to  grant  as  additional  incentive.  

Disadvantages:  cannot  be  done  in  isolation  of  disincentive  (i.e.,  eventual  fine  or  shutdown  for  non-­‐

compliance);   requires   a   financial   partner.   Financial   security   requirements   need   to   be   lightened   or  eliminated  entirely  at  times  before  SME  is  willing  to  borrow.  

Potential  application  to  SMEs  in  Baddi  CETP  The  structure  of  the  soft   loan  scheme  can  be  part  of  a  grant  scheme  or,  more  commonly,  a  stand-­‐

alone  scheme  that  can  incorporate  a  grant  element.  At  the  Baddi  CETP,  the  amount  would  generally  include  an  environmental  management   loan  to  cover  connection   fees   for  SMEs  and  pre-­‐treatment  equipment,  and  an  additional  loan  that  expands  scope  to  other  costs.  The  provisions  are  thus  similar  

to  those  of  the  grant  scheme  described  previously,  with  the  exception  that  it  might  include  also  an  additional   credit   available   for  up   to   zzz%   (suggest  100%   initially)  of   the   cost  of   the  environmental  loan.   This   additional   credit   could   be   used   in   parts   of   the   business   (for   capital   or   operations)   not  

directly  linked  to  environmental  management.  

Option 4 – Accountability Instrument

Description  An  accountability  instrument  motivates  the  SME  to  maintain  the  green  momentum.  Often,  after  the  

initiation  of   some   kind  of   pollution   control  measure   –   the  purchase  of   abatement   equipment,   for  example   –   SMEs   return   to   previous   polluting   practices.   An   accountability   instrument   provides   the  means   for   continuous   social   surveillance.   Pollution   control  measures   have   been  most   effective   in  

cases   where   public   stakeholders   (communities)   are   empowered   to   some   degree,   through   the  provision  of  information  or  the  right  to  inspect.  

The  instrument  typically  involves  both  a  rating  and  a  disclosure  process  with  an  eventual  compliance  requirement:  ultimately  a  firm  will  be  shut  down  if  it  does  not  comply  with  the  standards  in  place.  In  

some  cases,  especially  where  the  firm  is  selling  into  international  markets,  the  accountability  can  be  tied  into  international  certification  systems  such  as  ISO  14000  and  its  various  sub-­‐categories.    

International  application    Selected  examples  of  accountability  instruments  follow.    

Ø China’s   Green  Watch   program   has   coincided   with   higher   rates   of   compliance   among   participating  

plants.   The   program   targets   industrial   firms   and   rates   performance   in   categories.   Participation   in  ISO  14001  has  been  found  to  be  correlated  with  multinational  status,  exporting  to  industrial  countries  and  size.  

Ø Indonesia  is  acknowledged  internationally  for  its  public  disclosure  programs  initiated  in  1995.  PROPER  (Rating   Program   for   Business   Performance   in   Environmental  Management)   has   generally   proven   a  

successful  program.  The  number  of  PROPER  participants  has  increased  every  year  from  95  companies  in   2003   to   521   in   2007,   with   consistent   increases   since   that   time   extending   also   to   SMEs,   which  

otherwise   elude   effective  management   in   the   country.  Other   parallel   linked   programmes   for   clean  rivers  (PROKASIH)  and  clean  air  (PRODASIH)  have  similarly  benefited  from  public  disclosure  and  social  

pressure  to  achieve  voluntary  compliance.  It  should  be  noted,  however,  that  none  of  these  programs  can   claim   100%   success,   and   that   the   threat   of   administrative   sanctions   still   weighs   on   firms   to  achieve  compliance.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  47   December  2013  (Draft  23/12/13)  

Ø Mexico   has   an   internationally   recognized   successful   program   targeting   small   brick   kilns   that  made  available   a   subsidy   for   voluntary   adoption   of   clean   fuel   (propane).   This   was   available   to   highly  

dispersed  SMEs,  and  was  regarded  as  a  success  due  to  community  pressures,  trade  associations,  and  regulators.   It   should   be   noted   that   a   parallel   voluntary   non-­‐subsidized   initiative   (Clean   Industry  

Certification)  targeted  to  larger  firms  met  with  mixed  success  because  it  continued  to  depend  mostly  on  inspections  and  fines  as  a  final  motivating  factor.  

Ø South   Korea   maintains   a   system   of   operating   permits   issued   to   all   industries   (including   SMEs)   for  

wastewater   discharge.   Inspection   and   enforcement   was   previously   inadequate,   but   has   improved  subsequent   empowerment   of   “civic   environmental   monitoring   teams”,   which   participate   in  environmental  inspections  of  industry.  

Ø Thailand  has  from  the  early  stages  of  its  environmental  management  encouraged  all  exporting  firms  to   pursue   ISO  14000   certification   and   has   for   a   long   time  been   a   leading   participant   in  ASEAN   and  

APEC  in  obtaining  such  certificates.  The  program  was  complemented  by  a  reduction  in  the  number  of  inspections  of  certified  companies,  automatic  renewals  of  permits,  and  (in  some  cases)  reduction  of  operating  permit  fees  by  50%.  

Advantages:  Reduced  transaction  costs.  In  the  case  of  HP,  would  build  on  existing  successful  reliance  in  India  on  such  mechanisms.  

Disadvantages:   Some   of   the   mechanisms   addressing   international   certification   may   not   apply   to  

SMEs  targeting  only  domestic  markets  or  buyers.  

Potential  application  to  SMEs  in  Baddi  CETP  A  rating  and  disclosure  system  is  currently  being  developed  for  HP  under  the  Inclusive  Green  Growth  DPL.  Initially  this  is  likely  to  be  targeted  at  the  large  industries.  Once  in  place  there  is  the  opportunity  

to   link   high   ratings  with   charge   exemptions,  while   revenue   from   charges   applicable   to   less   highly  rated  companies  could  be  used  to  support  SMEs  in  terms  of  pre-­‐treatment  costs  or  CETP  charges.  In  addition  to   incentivizing  companies  to  be  environmentally  responsible,  the  setting  up  of  the  rating  

and  disclosure  system  is  expected  to  enable  HP  to  be  more  ‘data  ready’  for  the  potential  application  of  other  economic  incentives.  

Option 5 – Supply Chain Management (SCM) Instrument

Description  The   supply   chain   for  a  product  or   family  of  products   (pharmaceuticals,   textiles)   is   the   set  of   firms  linked  to  each  other  by  the  flow  of  intermediate  goods  and  services  necessary  for  the  production  of  that  particular  product  or  family  of  products.  

“Greening”   the   supply   chain   is   a   form   of   management   that   seeks   to   develop   collaboration   and  

partnerships  among  the  stakeholders  in  the  supply  chain,  and  to  foster  cleaner  production  practices  by   the  members   of   the   supply   chain.   The   goal   is   to   improve   industrial   production   efficiency   and  profitability  by  promoting   the  optimal  use  of  natural   resources,  while   reducing   the  environmental  

impacts   of   industrial   activity.   The   stakeholders   in   the   supply   chain   are   of   course   the   implicated  private   sector   firms,   but   also  may   include   the   government,   the   financial   sector,   and   international  players/donors  who  facilitate  and  encourage  supply  chain  collaboration.  

Green   SCM   incentivizes   firms   within   the   chain   –   many   of   whom   are   SMEs   –   to   adopt   cleaner  

production  practices  because  their  customers  –  the  downstream  members  of  the  chain  –  establish  criteria  that  their  input  products  must  meet.  For  example,  Sony  only  buys  from  its  “Green  Partners”:  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  48   December  2013  (Draft  23/12/13)  

those   input   producers   who   have   adopted   certain   cleaner   production   practices.   Large   textile  producers  are  also  placing  input  production  criteria  on  their  suppliers  –  most  of  which  are  also  SMEs.  

International  application    

Supply   chain   greening   is   a   recent   phenomenon   as   larger   international   firms   are   becoming   more  responsible   to   their   shareholders’,   employees’   and   consumers’   demands   for   sound  environmental  practices.   Government   participation   is   not   necessarily   required,   but   it   can   provide   further  

encouragement  or  facilitation  as  shown  below.  

Ø Bangladesh  has  proposed  the  development  of  harmonized  clean  production  guidelines:  these  target  mainly  SME  suppliers  within  the  textile  industry  supply  chain.  

Ø Malaysia   through  SME  Corp   includes  a  comprehensive  commitment  to   integration  of  SMEs   into  the  

global   supply   chain.  This   includes  all   levels  of   certification,  quality   control,   audit  and  compliance   to  regional  or  global  standards.  

Ø South   Korea   encourages   large   firms   to   develop   Supply   Chain   Environmental   Management   (SCEM)  where  suppliers  to  the  larger  firms  adopt  clean  production  practices.    

Advantages:   Reduced   regulatory   responsibility.   Research   shows   that   cleaner   production  interventions  for  all  sizes  of  industry  can  reduce  resource  and  pollution  compliance  costs.  

Disadvantages:  Not  necessarily  a  strong  incentive  for  firms  selling  only  into  India  that  cater  to  final  demand  by  consumers  in  India.  

Potential  application  to  SMEs  in  Baddi  CETP  

The  pharmaceutical   industry,   as  well   as   other   export   industries,   provides   a   useful   target   for   SCM.  Government  could  provide  facilitation  for  smaller  firms  through  creating  networks  to  larger  firms  in  the   supply   chain   (as   was   done   in   Bangladesh   textile   industry).   Preferentially,   such   incentives   and  

facilitation  would  only  be  available  to  firms  using  the  services  at  a  CETP  (as  these  are  more  readily  monitored  by  Government)  and  this  would  provide  one  potential  addition  to  any  incentive  package  for  SMEs.  Such  a  package  also  indirectly  addresses  a  practice  of  “dirty  outsourcing”  to  SMEs,  which  

some  large  firms  employ  to  sidestep  their  environmental  compliance  obligations.  

Consolidated Instrument: HP SME Green Incentive Scheme

Description  Based  on  the  previous  elaboration,  the  Himachal  Pradesh  SME  Green  Incentive  Scheme  consists  of  

five  incentives  in  two  distinct  elements.  These  include:  

Part  I.   License   Fee/Subsidy.   This   takes   the   form  of   a   basic   fee,  with   a   subsidy   attached   to   it   as   a  waiver   or   rebate   as   described   in   Option  1   of   this   chapter.   Within   the   Baddi   CETP,   this   is  characterized  by:  (i)  an  annual  environmental  fee  associated  with  the  operating  license;  (ii)  eligibility  

for   operating   subsidies   through   CETP   tariff   relief;   and,   (iii)  partial   fee   exemption   if   operations  continue  with  delivery  of  waste  to  CETP.  Outside  of  the  Baddi  CETP,  state-­‐wide  provisions  could  be  applied  with  holiday  periods  as  described  in  Option  1.    

Part  II.  Complementary  Compliance  Incentives.  This  takes  the  form  of  four  additional  incentives  for  

which  SMEs  are  eligible   if  and  only   if   they  have  a  valid  operating   license  and  are  compliant  under  Part  I.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  49   December  2013  (Draft  23/12/13)  

IIa.   Capital   Grant   Scheme.   Provides   a   capital   grant   for   eligible   treatment   or   pre-­‐treatment   capital  costs.  (see  Option  2)  

IIb.  Soft  Loan  Scheme.  Provides  financing  support  in  the  form  of  soft   loans  for  eligible  treatment  or  

pre-­‐treatment  capital  costs,  as  well  as  additional  financing  for  other  SME  capital  and  operations  up  to  defined  limits.  (see  Option  3)  

IIc.  Rating  &  Disclosure.  Provides  technical  assistance   in  meeting  rating  and  disclosure  standards.   It  

will  also  make  SME  eligible  to  receive   information  on  clean  technologies.  Upon  attainment  of  these  standards,   the   SME   will   be   eligible   for   full   fee   exemption   and   reduced   reporting   and   inspection  requirements  by  State  authorities.  

IId.   Supply   Chain   Management   (SCM).   Provides   facilitation   and   technical   assistance   to   SMEs   in  meeting  SCM  needs  of  larger  firms.  

Priorities  and  Implementation  Options  

There  remains  considerable  discretion  over  the  definition  and  full  scope  of  this  scheme.  

Priorities.   In   principle,   the   minimum   package   would   consist   of   Part  I   and   either   Part  II(a)   Capital  Grants  or  Part  II(b)  Soft  Loans.  This  provides  a  long  term  incentive  to  maintain  operating  compliance  

(through   Part  I)   and   financial   assistance   to   overcome  what   are   traditionally   the   greatest   financial  hurdles   encountered   by   SMEs   (through   Part  II(a)   or   II(b)).   Accountability   and   SCM   incentives   in  Parts  II(c)  and  II(d)  may  require  some  longer  phase-­‐in  period,  but  commitment  to  such  schemes  on  

the   part   of   Government   is   a   logical   entry   point   to   begin   to   establish   institutional   capacity   and  network  capacity  among  all  stakeholders.30  

Fee   Phase-­‐in.   It   is   recommended   that   any   fee   structure   be   set   at   zero   for   a   phase-­‐in   period   that  provides   immediate   relief   but   nonetheless   provides   a   long-­‐term   incentive   for   compliance.   The  

nature  and  time  of  the  phase-­‐in  period  is  discretionary,  and  for  illustrative  purposes  it  can  be  set  to  five  years.  For  higher  priority  industries  or  for  large  producers  the  phase-­‐in  period  may  be  reduced.  

Scope.  There  is  a  distinct  advantage  to  making  the  structure  of  this  incentive  scheme  universal  to  all  industries  independent  of  sector  or  scale,  and  it  is  readily  adaptable  to  further  nuancing  within  such  

structure.  For  example,  exemptions  of  fees  and  accessibility  to  capital  grants  may  be  available  only  to   SMEs   within   high   priority   sectors   (e.g.,   pharmaceutical).   Large   firms   may   be   eligible   for   only  partial  fee  exemptions  and,  moreover,  soft   loans   in  such  instances  may  be  unavailable  or  available  

only   for   partial   financing).   As   a   start,   for   example,   the   scheme   could   be   targeted   to   SMEs   in   the  Pharmaceutical  sector  with  access  to  a  CETP.  

Complementary   SCM   Incentives   for   Large   Firms.   SCM   is   a   powerful   mechanism   but   in   India’s  context  still  would  benefit  from  state  facilitation.  Large  firms  selling  into  domestic  markets,  or  firms  

with  little  ability  to  monitor  compliance  within  SMEs,  may  have  few  incentives  to  engage  in  quality  control  SCM.  The  current  incentives  (which  create  “dirty  outsourcing”)  are  largely  a  consequence  of  this.   To   support   SMEs,   Government   may   also   consider   some   token   complementary   financial  

assistance  (e.g.,  in  preparing  a  management  plan  for  SCM)  targeted  to  large  domestic  firms.  

                                                                                                                         30  Government   of   HP  might,   for   example,   consider   obtaining  matching   funds   from   the  Ministry   of  MSME  Development  Bank   (SIDBI)   to   reduce   information  and   transaction  costs   to  SMEs.  Also,  note   that  experience   in  Malaysia  demonstrates  that  a  strong  SME  institutional  support  structure  (e.g.,  SME  Corp)  that  delivers  a  package  of  incentives  is  a  strong  incentive  to  become  compliant  with  regulatory  norms.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  50   December  2013  (Draft  23/12/13)  

Next  Steps  The  HP   SME  Green   Incentive   Scheme   is   a   concept   that   can   contribute   positively   to   the   Industrial  

Green   Growth   strategy.   Acceptance   of   such   a   concept   may   require   on-­‐going   consultations   with  industry   on   the   priorities,   scope   and   phasing   of   some   of   its   elements,   as   noted   above.   Upon  agreement,   necessary   budgetary   commitments   can   be  made   by   Government.   It   should   be   noted  

that  any  adopted  structure  has  design  elements   that  can  work   towards  some   level  of  cost-­‐sharing  and  cost  neutrality.  Also,  the  initial  scope  and  scale  of  the  package  can  be  adjusted  to  work  within  budgetary  constraints.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  51   December  2013  (Draft  23/12/13)  

§7   Background  to  the  Case  Studies  

Introduction The  purpose  of  this  chapter  is  to  introduce  interpreted  diagnostic  information  relating  to  the  state-­‐wide   industrial   sectors   in   Himachal   Pradesh.   This   was   used   to   inform   the   three   case   studies   in  

Chapters  8–10.  The  in  depth  case  studies  were  selected  based  on  consultations  with  the  Industries  Department  and  SPCB:  Pharmaceuticals  –  Baddi,  Solan;  Stone  crushing  –  near  Dahliwala,  Una;  Food  processing   –   near   Dahliwala,   Una.   The   case   study   sample   represented   questionnaire   distribution  

followed  by  interviews  of  18  firms  out  of  over  300  potential  companies  (Table  7.1);  a  full  census  was  beyond   the   scope   of   this   SEA   but   the   case   study   provides   insights   into   some   of   the   operational  realities  of  the  three  sectors.  

The  chapter  first  provides  summaries  of  the  polluting  characteristics  of   industries  based  on  various  

databases  accessed  for  this  SEA.  These  are  for  all  industries,  based  on  SPCB  monitoring  information.  While   the   information   is   from   existing   sources,   it   should   be   noted   that   some   of   it   was   of  mixed  quality  with  only  partial   information   sets  or   containing   improperly   classified   firms.   The   clean  data  

files  are  available  as  a  separate  output  to  this  SEA,  and  are  summarized  graphically   in  the  opening  section  of   this  chapter.  Second,   the  chapter   introduces   locational   information   relating  primarily   to  the  Baddi-­‐Barotiwalla-­‐Nalagarh  area;  this  serves  as  general  background  information  to  a  number  of  

the  specific  case  studies.  

Table  7.1  Overview  of  Case  Studies  

Industrial  sector  /  location   Estimated  number  of  companies     Scope  of  Survey  

Pharmaceuticals  –  BBN     254  units  in  Baddi  (one  bulk  and  formulations  company,  all  the  other  are  formulations  only)  

7  companies  (4  large,  2  medium,  1  small)  

Stone  crushing  –  Dahliwala,  Una  district  

44  in  Una   5  companies  

Food  processing  –  Dahliwala,  Una  district  

20-­‐30  units  (?)   6  companies  

Industry Structure & Pollution Characteristics Databases   from   the   HP   PCB   were   obtained   and   analyzed   to   separate   attributes   of   six   industrial  sectors:   Stone  Crushing   (271   firms   in   Jassur,  Una,   Bilaspur,   Baddi,   and  Kullu   districts);   Textiles   (15  

firms   in  Baddi,  Una,  Paonta,  and  Kullu  districts);  Food  Processing   (64   firms   in  Una,  Baddi,  Bilaspur,  Parwano,  and  Jassur  districts);  Steel  (20  firms  in  Paonta,  Baddi,  and  Jassur  districts);  Pharmaceutical  (254  firms  in  Parwano,  Paonta,  and  Baddi  districts);  and,  Cement  (27  firms  in  Bilapur,  Jassur,  Baddi,  

Paonta,  and  Parwano  districts).  Selected  information  on  each  of  these  is  shown  in  Annex  Figure  F.1  to   Annex   Figure  F.6;   the   full   database   of   corrected   statistics   is   available   from   [need   to   agree   on  format  of  access  to  spreadsheets].  

Background on Baddi-Barotiwalla-Nalagarh The  friendly  industrial  policies  and  incentives  package  of  the  state  have  boosted  industrialization  in  the   area   stretching   from  Barotiwala   to  Nalagarh   in   Solan   district,   forming   an   industrial   corridor31.  

                                                                                                                         31  The  Department  of  Industries  approved  1,940  projects  in  SSSI/Tiny  sector  for  Baddi  /  Barotiwala  after  the  announcement  of  the  incentive  package  (with  effect  from  07.01.03  to  31.03.2007)  having  an  investment  of  Rs  2045.99  cr.  These  units  have  proposed  an  employment  of  75,129  persons  leading  to  rapid  increase  in  population  in  the  region.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  52   December  2013  (Draft  23/12/13)  

Industrial  growth   in  the  Baddi-­‐Barotiwala-­‐Nalagarh  area   is  also  due  to   its  proximity   to  Chandigarh,  availability  of  land  for  development,  and  good  connectivity  with  neighboring  states  of  Haryana  and  

Punjab.   Baddi-­‐Barotiwalla-­‐Nalagarh   (BBN)   comprises   three   distinct   industrial   areas   located   along  National   Highway   21   and   River   Sirsa,   on   flat   land   bounded   by   the   Dharampur   range,   Surajpur-­‐Haripur-­‐Mandhala  range  and  Shivalik  hills  (Figure  7.1).  

BBN   is   the   major   contributor   to   the   State’s   industrial   production   accounting   for   around   75%   of  

industrial   units   in   HP.   In   Baddi   there   are   about   2,000   industries,   of   which   about   1,700   have   a  Consent  to  Operate  (CTO)  and  are  included  in  the  SPCB  online  data  base.  

The   main   type   of   industries   in   the   area   include   food   &   beverages,   engineering   &   metal,   plastic,  pharmaceuticals,   textiles,   chemicals,   electrical   and   electronics   classified   under   small,  medium   and  

large   scale  production  units.   Industries   in   the  area  also   include  almost  44  working  brick   kilns.   The  area  has  also  emerged  as  a   textile  hub   in  Himachal  Pradesh  and  out  of   the   total  504,000  spindles  installed  in  the  state,  426,000  spindles  have  been  installed  in  Baddi-­‐Barotiwala-­‐Nalagarh  area  itself.  

The  area  has  experienced  a  high  population   growth   rate   (40.8%  and  46.9%   for   last   two  decades):  

much  higher   than   the  national   average  of   17%   for   the  past   last   decade.   The  population  of  Baddi-­‐Barotiwala-­‐Nalagarh   (BBN)  planning  area   is  150,000.  The  urban  population   increased   from  7.5%   in  1991  to  22.15%  in  2001  reflecting  the  large  population  that  has  migrated  to  Baddi  from  outside  this  

region  &  state   in   line  with  the   industrialization.  However,   it   is  anticipated  that  the  growth  rate  for  future  years  will  be  lower  due  to  the  stabilization  of  industries  (SENES,  2012).  

Figure  7.1  Location  Map  for  Baddi,  Himachal  Pradesh  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  53   December  2013  (Draft  23/12/13)  

The   Comprehensive   Environmental   Pollution   Index   (CEPI)   for   Baddi   is   69.07,   ranked   47   out   of   88  industrial   clusters   (Central   Pollution   Control   Board,   200932),   indicating   a   severe   level   of   pollution  

(bordering  on  critical).  The  area  has  grown  erratically  with  many  industries  coming  up  in  a  short  time  span  with  their  associated  human  settlements  and  colonies.  It  has  not  been  possible  to  manage  this  growth  with  the  existing  civic  management  services,  leading  to  environmental  degradation  of  quality  

of  life  in  the  area.  

Sirsa  is  the  main  river  in  Nalagarh.  It  flows  from  the  hills  above  Kalka  North  West  along  the  base  of  the   Shivaliks   eventually   joining   the   Sutlej   at   Avankot   in   Ropar   district.   The   region   is   drained   by  tributaries   of   Sirsa   River   such   as   Ratla,   Ballad,   Surajpur   choe   and   Nanakpur   emanating   from   the  

Kasauli   range.  Other   tributaries  of   Sirsa,   such  as  Kundlu   ki   Khad,  Chikni   Khad,   Khokraka   choe,   Kali  nadi,  Pola  Nala,  are  ephemeral  streams  which  remain  dry  for  most  of  the  year  and  are  prone  to  flash  floods  during  monsoons.    

In  the  Baddi-­‐Barotiwala  region,  the  chota  kalta  Nala,  Pula  Nallah,  Sandholi  Nallah  etc  are  the  minor  

tributaries  bringing  water  to  the  River  Sirsa.  These  natural  drains  usually  accommodate  runoff  during  the  monsoon   season.   However,   following   the   industrial   development   in   the   region   these   nallahs  carry   industrial  effluents  as  well  as  runoff  and  during  the   lean  period  they  are  used   just  as  natural  

industrial   drain   carrying  wastewater   from   the   adjacent   industrial   clusters.   There  have  been  public  complaints  regarding  river  pollution  (UPL,  2010).  

There   is   a   Common   Effluent   Treatment   Plant   (CETP)   under   construction   for   the   Baddi-­‐Barotiwalla  (BB)   area,   and  a  Detailed  Project  Report   (DPR)   for   a  CETP   for  Nalagarh   for  which   funding   is  being  

sought33.   For   hazardous  waste,   the   Shivalik   Solid  Waste  Management   Limited   located   in  Nalagath  caters  for  the  entire  State.    

Municipal   Solid  Waste   (MSW)  management   is   considered   to   be   a   key   issue   in   Baddi   as   there   are  

currently  no  facilities   for  non-­‐hazardous  waste,  although  there   is  a  DPR  for  the  BBN  area,  which   is  awaiting   Ministry   of   Environment   and   Forests   (MOEF)   clearance34.   The   Municipal   Corporation   in  Nalagarh   is   also   in   the  process   of   constructing   a   solid  waste  management   site.  Water   quality   and  

quantity  is  also  increasingly  becoming  an  issue.  With  increasing  water  scarcity  industries  try  to  reuse  treated  effluent   so   as   to   reduce   their   raw  water   requirements.  While   availability   of   labor   is   not   a  problem,  there  are  no  low-­‐income  housing  areas  in  BBN.  About  75  areas  of  private  land  have  been  

identified  to  address  this  gap.35    

Baddi  Barotiwala  Nalagarh  Development  Authority  (BBNDA)  is  a  Special  Area  Development  Authority  created   by   the   state   government   of   Himachal   Pradesh   for   comprehensive   and   regulated  development   of   the   Baddi-­‐Barotiwala-­‐Nalagarh   area   (BBNA),   which   is   identified   as   one   of   the  

                                                                                                                         32  Central  Pollution  Control  Board,  2009.  Comprehensive  Assessment  of   Industrial  Clusters.  Ministry  of  Environment  and  Forests.  The  CEPI  is  explained  with  national  information  in  Annex  F.  33  UPL  Environmental  Engineers   Ltd.  2013.  Treatability   Study   for  Nalagarh  and  Lodhimajra   Industrial  Areas.  Prepared   for  the   Department   of   Industries   Single  Window   Clearance   Agency   –   Industrial   Area   Development   Agency   –   Baddi,   District  Solan  H.P.  34  SENES   Consultants   India   Pvt.   Ltd,   2012.   Detailed   Project   Report.  Municipal   Solid  Waste  Management   Plan   for   Baddi,  Barotiwala  &  Nalagarh  Area,  Himachal  Pradesh.  Submitted  to:  Baddi  Barotiwala  Nalagarh  Development  Authority  (BBNDA).  35  There  are  a  number  of  squatter  camps  apparently  used  by  (migrant)  workers  on  the  outskirts  of  Baddi  and  the  border  with  Harayana  State  (observed  on  field  trip).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  54   December  2013  (Draft  23/12/13)  

important  growth  centers  of  Himachal  Pradesh  having  two  major  urban  centers  i.e.  Baddi-­‐Barotiwala  and  Nalagarh.    

Industries  in  BBN  have  come  together  to  form  the  Baddi  Barotiwala  Nalagarh  Industrial  Association  

(BBNIA),  which   is   a   powerful,   proactive   and   environmentally   sensitive   industrial   association36.   The  association  is  playing  a  key  role  in  creating  and  maintaining  communications  between  government,  industries  and  society  at  large,  and  disseminating  information  to  its  constituent  members.  Members  

of  the  BBNIA  include  pharmaceutical  industries  (largest  in  number),  textiles,  food,  electroplating  and  other   miscellaneous   industries.   In   2006,   BBNIA   took   the   lead   in   establishing   the   State’s   Transfer  Storage  and  Disposal  Facility   (TSDF)   in  Nalagarh  through  a  Special  Purpose  Vehicle,  which   includes  

equity  contributions  from  about  1,000  industries  in  BBN.  More  recently  they  have  led  in  establishing  the   Baddi   Infrastructure   company,   responsible   for   the   design,   construction   and   operation   of   the  CETP.  BBNIA  has  three  main  ongoing  projects:  (i)  the  CETP  (total  cost  of  Rs  650  million);  (ii)  14.5  km  

of  road  construction  –  Rs  150  million;  and,  (iii)  a  Skill  Development  Centre  –  Rs  100  million.  

PCB views on incentives The   Baddi   PCB   felt   that   incentives   should   not   be   given   to   industries   for   their   private   assets   or  

equipment,  as  there  is  no  way  to  determine  whether  these  are  actually  purchased  and  used.  Instead  the  focus  of  incentives  should  be  to  create  public  industry  infrastructure  such  as  the  CETP.  BBNIA’s  CETP   covers   industries   in   Baddi   &   Barotiwala   industries,   but   other   areas   in   HP   such   as   Nalagarh,  

Parwanoo,   Paonta   Sahib   /   Kala   Amb   and   Una   also   need   CETPs.   Incentives   could   be   provided   to  establish  these  CETPs.  

Other   areas   that   could   be   promoted   through   (financial)   incentives   in   Baddi   are:   (i)  recharging   of  groundwater   through   watershed   approaches   and   greening   initiatives;   and,   (ii)  industrial   waste  

management.  

Common Effluent Treatment Plants (CETP)

Baddi  CETP  A   CETP   in   Baddi   is   being   financed   through   a   Central   Government   grant   (Rs  580  million);   a   State  Government  grant   (Rs  70  million);  PCB  grant   (Rs  30  million),   industry  contributions   (Rs  100  million),  

with  the  balance  expected  to  be  sourced  through  financial  institutions  as  loans.    

Construction  of  the  CETP  started  in  February  2013.  It  has  a  design  capacity  of  25  MLD,  which  could  be  expanded   to  40  MLD   in   the   future  with  additional   investment.  A  High  Court  order  has  made   it  mandatory  for  all  the  industries  in  the  Baddi-­‐Barotiwala  (BB)  area  to  connect  to  the  CETP37.  The  SPCB  

has   also   indicated   that   CTO  will   only   be   renewed   if   an   industry   is   a   CETP  member.   As   it   is   being  mandated,   the   Baddi   PCB   is   of   the   view   that   there   is   no   need   for   any   incentive   schemes   for  industries   to   release   their   effluent   to   the   CETP.   However,   the   strict   mandate   may   not   be  

                                                                                                                         36  BBNDA  is  facilitating  an  ongoing  greening  initiative.  About  100  areas  of  Government  land  have  been  identified,  and  NOC  have  been  obtained.  The  next  step  is  to  develop  agreements  with  various  industries.  In  addition,  10-­‐12  km  of  roadside  tree  plantations  have  been  planned.  Line  Departments,  e.g.  Electricity  Board,  IPH  and  HIMUDA  are  being  encouraged  to  green  their  respective  areas  and  the  Municipal  Council  is  being  encouraged  to  revive  its  15  parks.  It  is  planned  to  rename  a  circle  Paryavaran  Chowk  (Environment  Circle),  which  the  PCB  will  then  maintain.  37  Recall  that  some  1,700  have  a  Consent  to  Operate.  Given  its  location  (in  Baddi),  the  CETP  will  not  connect  any  industries  from  Nalagarh.  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  55   December  2013  (Draft  23/12/13)  

enforceable,  or  may  result  in  the  closure  or  loss  of  some  firms,  especially  those  of  smaller  scale.  For  these,  schemes  such  as  those  identified  in  Chapter  6  may  be  warranted.  

A  special  purpose  company  of  BBNIA,  Baddi  Infrastructure,  is  responsible  for  the  investment  and  has  

contracted  UPL  Consultants  to  complete  the  project  by  August  2014.  Baddi  Infrastructure  is  actively  encouraging  industries  to  become  CETP  members.  Membership  involves  a  contribution  towards  the  CETP’s   fixed   and   operating   costs,   based   on   an   agreed   formula   included   in   the   Detailed   Project  

Report  (DPR)  and  compatible  with  a  model  for  a  CETP  in  operation  in  Ankleshwar,  Gujarat.  To  date  183  industries  have  become  CETP  members  providing  around  Rs  45  million  in  funding  (about  50%  of  the  total  anticipated  industry  contribution).  The  existing  members  account  for  about  18  MLD  of  the  

plant’s  capacity.  Most  of   the  remaining   industries   to  sign  up  are  small,  with  a  corresponding  small  effluent   load.  Once  the  CETP  is  operational,  operating  charges  will  be  collected  from  companies  or  operating  units  based  on  the  effluent  load  being  treated.  

With  a   land  area  of  nearly  35  km2   the  Baddi  &  Barotiwala   industrial  belt   accommodates  a  diverse  

group   of  wet   processing   plants   like   textiles,   food,   beverages,   paper,   detergents,   pharmaceuticals,  pesticides,  chrome  plating  and  pickling.  As  such  the  effluent  likely  to  be  discharged  into  the  common  effluent  treatment  plant  will  be  heterogeneous  in  character.  Most  of  the  units  are  already  equipped  

with   their   own   waste   treatment   devices,   but   the   complexity   of   the   effluent   makes   it   extremely  difficult   to   meet   the   statutory   standards   despite   best   efforts   (UPL,   2010).   The   DPR   presents   the  results  of  a  sector  specific  effluent  load  investigation.  While  food  waste  is  easily  biodegradable,  the  

pharmaceutical  effluent  is  extremely  harsh  in  the  breakdown  of  non  biodegradable  recalcitrant,  as  is  the  handing  of   the   residual   refractory  chemicals  once   the  biodegradable  portion   is  eliminated  out  for  the  detergent  industries.  The  paper  sector  has  the  challenge  of  suspended  solids.  Textile  effluent  

poses  a  major  problem  of  color  removal  as  well  as  its  total  dissolved  solid  management  which  raises  the  TDS   level  exorbitantly  of   the  resultant   treated  stream  unless  some  suitable  technique   is  called  

for  in  the  very  beginning  of  its  proper  management.  

In  addition,   there  are   some  miscellaneous  wastes   such  as  chrome  plating  and   the  pickling  wastes,  which  do  not  possess  biological  matter,  but  are  contaminated  with  toxic  heavy  metals,  acidity  and  high   inorganic   salts   placing   them   in   the   red   listed   category   alongside   pesticides.   Fortunately,   the  

volume   of   such   effluent   is   small.   There   are   also   a   few   oil   industries   in   the   locality.   Its   effluent  parameter   is   also   found   in   the   extreme   range   despite   the   fact   its   share   in   the   overall   effluent  management  is  remarkably  low.  

The  CETP  is  the  first  in  India  to  adopt  a  segregated  treatment  approach.  The  separate  treatment  of  

effluents  is  being  pursued  to  reduce  running  cost  and  to  reclaim  the  water;  it  can  serve  as  a  model  for  other  CETPs  across  the  country.  Separate  treatment  is  planned  for  (i)  textile,  food  and  paper  –  16  MLD;   (ii)  Soaps   &   surfactants   –   2   MLD;   (iii)  Pharmaceuticals   –   2   MLD;   (iv)  Dyeing   concentrates  

(Textiles)  –  2  MLD;  and,   (v)  Electroplating  and  miscellaneous   industries  –  0.7  MLD.  Of   the   total  25  MLD  effluent  that  the  CETP  will  be  treating,  13  MLD  will  be  from  textiles  (7  industries),  2  MLD  each  will   be   from   paper,   pharmaceuticals   and   soap   &   surfactants,   2   MLD   will   be   from   miscellaneous  

industries,  0.9  MLD  will  be  from  food  and  about  3  MLD  will  be  the  sewage  from  industrial  sources.  

A  pilot  plant  is  being  commissioned  in  late  2013  to  inform  the  final  design  of  the  commercial-­‐sized  plant,  which  is  expected  to  be  commissioned  by  August  2014.  The   industries  are  scattered  over  a  large  area  and  transportation  of   the  effluent   is  a  concern.  Fabrication  of  the  pipeline  has  started  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  56   December  2013  (Draft  23/12/13)  

and   the   pipeline   network   and   route   have   been   identified.   Completing   the   pipeline,   however,   is  recognized  as  a  major  challenge.  About  70  km  Glass-­‐lined  Reinforced  Plastic  (GRP)  pipeline  will  need  

to   be   laid   over   a   23  km   stretch.   For   isolated   industries,   for  which   the   cost   of   installing   a   pipeline  connection  is  considered  to  be  too  high,  a  tanker  system  will  be  used  to  collect  effluent.    

The   CETP   will   help   to   address   the   industrial   pollutants   released   into   the   4   /   5   natural   drains   or  nallahs  leading  to  the  Sirsa  River.  However,  even  with  the  CETP  in  place  the  natural  drains  /  nallahs  

leading  to  the  River  Sirsa  will  continue  to  carry  untreated  sewage  as  there  is  no  sewerage  treatment  plant  in  BB.  There  is  an  initiative  to  expand  the  CETP  into  a  combined  plant  to  treat  sewage  as  well.  The  estimated  cost  of  this  is  Rs  700  million  (About  Rs  400  million  for  the  pipeline  and  Rs  300  million  

for  the  plant  expansion).    

Raw   and   treated   water   is   a   scarce   commodity   and   reuse   of   CETP’s   treated   water   is   also   being  considered.  According  to  the  DPR  the  recovery  and  reuse  of  the  respective  streams  are:  

• Pharmaceuticals   effluent  will   yield   the   nano  permeate   of   less   than   10  COD  and   TDS<1500  

mg/L.   This   could   be   reused   in   any   industry   except   the   food   and   pharmaceutical   sector.  2,200  KLD  is  expected  to  be  recovered.    

• Textile  dye  effluent  will  yield  around  2,000  KLD  of  high  saline  water  with  TDS  40,000  -­‐  50,000  

mg/L.  This  could  be  reused  in  the  textile  cotton  dyeing  process.    

• The   major   part   of   water   will   be   reclaimed   through   textile,   food,   paper   and   sewerage  

contributing  to  20  MLD  under  full  capacity  utilization.  

Table  7.2:  Overall  Load  Profile  of  Baddi  CETP  

Parameter     Sector  

Total  load  Textile   Food   Paper   Detergent   Pharma   Electro  

plating  Misc  

Volumetric  Loading  KLD   12,989   2,432   2050   1,961   2,903   42   193   22,570  

Average  COD  Load  (kg/d)   14,300   8,232   1086   18,606   8,271   203   902   51,600  

Average  BOD  Load  (kg/d)   4,661   4,411   429   4,706   3,466   2   21.4   17,696  

Average  TDS  Load  (kg/d)   43,229   4,039   2388   5,343   7,001   360   189   62,549  

Non-­‐biodegradable  load  (kg/d)  

2,648   -­‐   13.5   6,841   -­‐   200   849    

Average  COD,  mg/L   1,101   3,384   530   9,488   2,849   4,788   4,675    

Average  BOD,  mg/L   359   1,813   209   2,400   1,194   46   111    

Average  TDS,  mg/L   3,328   1,661   1165   2,724   2,412   9,747   980    

Average  COD/BOD   3.1   1.9   2.5   4.0   2.4   -­‐   42.1    

Source:  DPR  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  57   December  2013  (Draft  23/12/13)  

Table  7.3:  Sewage  load  by  sector  

Sources   Sewage  Load,  KLD  

Textile,  food  &  paper   945.25  

Pharmaceuticals   363.45  

Soap  &  detergents   192.5  

Total  of  above  units     1,051.2  

Provisional   1,051.2  

Future  aspects   2,000  

TOTAL  SEWAGE  LOAD     4,102.4  

Source:  DPR  

Table  7.4:  Draft  Treatment  Costs  by  Sector  

Sector   Basic  Treatment  Cost  /KL  

Conveyance   Maintenance  (20%)  

Depreciation  

Depreciation   Profit  (15%)   Total  /  KL  

Textile,  food,  paper  &  sewage  

Rs  6   Rs  2   Rs  1   Rs  1.5   Rs  1.5   Rs  12  

Soap  &  detergent  

Rs  10   Rs  2   Rs  2   Rs  2   Rs  2   Rs  18  

Pharma   Rs  16   Rs  2   Rs  4   Rs  4   Rs  3   Rs  29  

Textile  Dye  Effluent  

Rs  14   Rs  2   Rs  4   Rs  4   Rs  3   Rs  27  

Misc   Rs  50           Rs  50  

Source:  DPR  

Proposed  CETP  Nalagarh  and  Lodhimajra  Industrial  Areas  Nalagarh   and   Lodhimajra   are   rapidly   growing   industrial   zones   in   Solan   district.   A   survey   was  

undertaken  to  understand  the  quantity  and  quality  of  effluent  generated  by  the  industries  located  in  the  area  to  help  design  the  proposed  CETP.  Pharmaceutical  and  Textile  industries  were  found  to  be  the  major  contributors  in  terms  of  their  effluent  quality.    

In   Lodhimajra   there   are   11   major   industries   (including   pharmaceutical,   textile   and   electrical  

industries)   producing   360  m3/d   of   effluent   flow.   In   additional   there   are   around   100   small-­‐scale  industries,  which  are  assumed  to  be  producing  another  200  m3/d  of  effluent.  

Nalagarh   hosts   around   73   major   industries   contributing   4,500  m3/d   (including   textiles,  pharmaceuticals,   food  processing,   auto,   electrical   and  electronics,   cement,   breweries,   steel   rolling  

mill,  power,  chemicals).  Another  100  industries  are  assumed  to  be  producing  300  m3/d  of  effluent.  The  nine   textiles  units   generate  61%  of   total   effluent.  While   there   are  more  Pharmaceutical   units  (21),  they  generate  a  relatively  small  amount  of  effluent  –  6%  of  the  total  effluent.  

Effluent  samples  were  collected  from  42  different  industries  located  in  Nalagarh  and  Lodhimajra.  

Survey  data  show  that  the  quantity  of  sewage  flow  is  about  500  m3/d  mixed  with  industrial  effluent  

and  another  500  m3/d  sewage  form  small  scale  industry.  Based  on  a  sample  of  10  major  industries  in  Lodhimajra  area,  COD  is  in  the  range  of  50-­‐5,000mg/l  and  BOD  range  is  10-­‐4,000mg/l.  

Based  on  a  sample  of  36  major   industries   in  Nalagarh  area,  COD   is   in   the  range  of  10-­‐10,000  mg/l  and  BOD  range  is  10-­‐2,800  mg/l.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  58   December  2013  (Draft  23/12/13)  

Studies  show  that  COD  can  be  reduced  to  144  mg/l  and  BOD  to  6.0  mg/l  after  24hours  of  biological  treatment   followed   by   tertiary   treatment   of   Nalagarh   and   Lodhimajra’s   composite   effluent.   Solid  

waste  within  the  effluent  was  found  to  be  bio-­‐degradable  in  nature  so  separate  Primary  treatment  for   the   TSS   removal   is   not   considered   to   be   necessary.   Total   flow   for   the   proposed   CETP   is  6,360  m3/d.38  

Transfer Storage and Disposal Facility (TSDF) There   is   one   TSDF   in   HP   located   in   Nalagarh   that   caters   for   the   entire   state   and   has   been   in  operation  since   late  2008.  The  TSDF  was  established  on  land  provided  by  the  Industry  Department  

following   Supreme   Court   Guidelines   that   every   state   should   establish   a   TSDF.   The   TSDF   is   a   joint  venture  between  the  BBNIA  and  UPL  Environmental  Engineers  Limited.  Around  1,060  industries  are  equity  holders  in  the  company,  and  around  1,020  industries  are  TSDF  members.  

The  total  capacity  of  the  TSDF  is  1  million  metric  tons,  with  approximately  20  cells  of  50,000  metric  

ton  capacity.  When  the  TSDF  was  designed,  slag  from  the  ferrochrome  industry  was  considered  to  be  hazardous  waste  and  was  expected  to  be  treated  at  the  TSDF.  Subsequently,  slag  was  reclassified  as  non-­‐hazardous  by  the  MOEF  and  CPCB  and  as  a  result  the  quantity  of  hazardous  waste  reaching  

the  TSDF  was  drastically  reduced.  The  break-­‐even  point  for  the  TSDF   is  2,200  metric  tons  of  waste  per  month  but  currently  the  TSDF  only  receives  1,300  metric  tons.  To  remain  financially  viable,  the  company  has  started  additional  activities  such  as  cleaning  used  drums,  collecting  lead  acid  batteries,  

collecting  used  waste  oil,  crushing  used  fluorescent  lamps,  facilitating  e-­‐waste  transfers  to  recyclers  and  pre-­‐processing  high  calorific  waste  to  cement  plants.  In  the  future,  the  company  is  planning  to  engage  in  laboratory  services  and  in  EIA  consulting  services.    

About   60%   of   the   hazardous   waste   treated   at   the   plant   is   from   textile   units,   followed   by   food  

processing   and   soaps  &   surfactants.   The   pharmaceutical   sector   accounts   for   less   than   10%  of   the  hazardous  waste   reaching   the   TSDF.   All   hazardous  waste   is   thought   to   reach   the   TSDF.   However,  Shivalik   Solid  Waste  Management   Limited,   which   operates   the   TSDF,   has   repeatedly   requested   a  

process   audit   to   be  mandated   of   all   industries   generating   hazardous  waste   so   that   the   quantities  generated   can   be   tallied   with   the   quantities   reaching   the   landfill.   Incentivizing   the   conduct   of  process  audit  appears  a  possibility.  

Municipal Solid Waste Management Plan for BBN Currently  there  is  no  waste  processing  or  treatment  facility  for  the  Baddi-­‐Barotiwala  area.  Waste  is  disposed   of   in   the   valley,   low-­‐lying   areas   and   along   the   riverbanks,   triggering   regular   public  

protests39.  

Key  sources  of  waste  are  residential,  commercial,  institutional,  markets,  public  utilities  and  industrial  units   in  Baddi  MC  Area  and  Barotiwala   industrial  clusters.  Waste   is  generally  comprised  of  organic  bio-­‐degradable   waste   such   as   food   waste   from   households,   hotels,   restaurants,   park   and   garden  

waste,  dry  recyclable  waste  such  as  paper,  plastic,  cardboards  from  commercial  and  industrial  units,  

                                                                                                                         38  UPL  Environmental  Engineers   Ltd.  2013.  Treatability   Study   for  Nalagarh  and  Lodhimajra   Industrial  Areas.  Prepared   for  the   Department   of   Industries   Single  Window   Clearance   Agency   –   Industrial   Area   Development   Agency   –   Baddi,   District  Solan  H.P.  39  Use  of  Plastics  has  been  banned  in  the  Baddi  MC  area  under  strict  instructions  from  the  state  government  for  a  “plastic  free”  state.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  59   December  2013  (Draft  23/12/13)  

inert   waste  material   such   as   glass,   ceramic,   and  metal   waste.   Road   sweeping   and   drain   cleaning  generate  dust  and  silt  which  are  inert  materials  with  some  biodegradable  component.    

To  address  the  solid  waste  management  (SWM)  problems,  BBNDA  intends  to  facilitate  an  integrated  

solid   waste   management   service   (waste   segregation,   collection,   transportation,   processing   and  disposal)   in   Kainduwal   village,   Baddi.   The   total   capital   cost   of   the   proposed   project   is   Rs  970.89  lakhs,   with   operating   costs   estimated   at   Rs  89.67   lakhs   a   year.   The   future   development   cost   is  

Rs  412.63   lakhs,  which   is   for   the  construction  of  a  new   landfill   cell  after  7.5  years   in  2019-­‐20.  The  total  revenue  from  the  MSW  project   is  expected  to  be  Rs  82.17   lakhs  per  annum  (from  the  sale  of  compost  and  recycling).  

It  is  intended  that  the  project  will  be  implemented  through  a  Public  Private  Partnership  (PPP)  under  

a  DBOT   (Design  Build  Operate  Transfer)  mechanism.   Private   sector   involvement   in  municipal   solid  waste   management   is   growing   rapidly   in   the   country   and   the   Ministry   of   Urban   Development  (MoUD),  Government  of  India  recognizes  PPPs  as  an  important  element  in  improving  service  delivery  

in  Municipal  Solid  Waste  Management  (MSWM),  in  addition  to  attracting  the  external  investment.    

Quantification   of   waste   generated   by   source   was   carried   out   by   SENES   covering   residential,  commercial,  institutional,  street  sweeping  and  drain  cleaning,  markets,  function  halls,  cinema  halls,  etc.  The  waste  generation  rates  are  based  on  field  surveys,  waste  sampling  and  discussion  with  the  

different   waste   generators   and   the   officials   in   Baddi   MC,   Nalagarh   MC   and   BBNDA.   Domestic  household   waste   forms   the   major   component   of   total   MSW   generated   in   BBNDA,   estimated   at  8.7MT.   There   are   about   3,100   commercial   establishments   operating   in   Baddi   MC,   Nalagarh   MC,  

majority  of  them  are  general  shops,  petty  shops,  electrical  and  electronics,  whole  sale  &  retail  stores  etc.   The   major   waste   generating   sources   are   bakeries,   juice   shops,   pan   shops,   cold   drink   shops,  

vegetable   stalls,   coconut   vendors,   etc.   Based   on   the   survey   it   was   concluded   that   commercial  establishments   in   Baddi   and   Nalagarh  MC   generate   2.5  MT   of   solid   waste   every   day   with   a   unit  generation  rate  of  0.805  kg/d.40  

   

                                                                                                                         40  Source:   SENES  Consultants   India  Pvt.   Ltd,   2012.  Detailed  Project  Report.  Municipal   Solid  Waste  Management  Plan   for  Baddi,  Barotiwala  &  Nalagarh  Area,  Himachal  Pradesh.  Submitted   to:  Baddi  Barotiwala  Nalagarh  Development  Authority  (BBNDA).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  60   December  2013  (Draft  23/12/13)  

 

   

Box  7.1:  Baddi  Barotiwala  Nalagarh  –  PPP  for  a  CETP  for  Pharmaceuticals  and  Allied  Industries  Cluster  [to  be  updated]  

The  Baddi  Barotiwala  Nalagarh  Development  Authority  (BBNDA)  was  created  in  2006.  It  is  located  in  Baddi.  Its  functions  include  the  preparation  and  execution  of  a  master  plan  for  the  entire  area,  the  promotion  of  Public  Private  Partnership  (PPP)  in  infrastructure  development  and  delivery.  The  BBNDA  State  Level  Executive  Committee  includes  representation  from  the  HP  SPCB.  The  BBNDA  master  plan  indicates  that  industries  with  polluting  effluents,  situated  in  industrial  zones,  are  to  provide  purification  plants  as  “may  be  prescribed  by  the  Competent  Authority  or  the  HPPCB.”  

There  is  also  a  BBN  Industry  Association  (BBNIA)  to  “promote,  develop  and  encourage  commerce  trade  and  industry  in  this  area”.  In  2010  the  BBNIA  proposed  the  installation  of  a  CEPT  in  the  BBN  Pharmaceutical  Cluster,  under  the  Industrial  Infrastructure  Upgradation  Scheme  (IIUS).  The  cost  of  CEPT  project,  which  also  includes  two  smaller  projects  for  road  upgrade  and  skill  development,  is  to  be  shared  between  the  industries  (20%),  and  the  Central  and  State  governments  (80%).  The  installation  contract  for  the  23  MLD  CEPT  was  awarded  in  September  2011,  and  the  work  was  expected  to  take  18  months.  Hence,  if  it  received  timely  Environmental  Clearance  from  the  MOEF,  it  may  be  up  and  running  now.  

The  Common  Effluent  Treatment  plant  (CETP)  at  Baddi.  The  CETP  is  scheduled  for  completion  in  June  2014  and  will  serve  700   industries   in   Baddi.   Connection   to   the   CETP   will   be   mandatory,   but   there   is   some   reluctance   as   it   will   require  companies  to  pre-­‐treat  their  effluent  and  pay  a  user  charge.  An  economic  instrument  could  be  focused  on  supporting  the  Pharmaceutical   Industry   (formulation   units)   to   connect   to   the   CETP.   This   could   be   used   as   an   example   for   the   future  analysis   of   the   other   types   of   industries   that   will   be   connected   to   the   CETP.   Incentives   could   include   funding   of   pre-­‐treatment  equipment  (capital  cost),  Operation  and  Maintenance  costs,  or  reductions  in  charges  for  compliance.  There  has  already  been  significant  investment  in  the  CETP,  and  therefore  incentive  mechanisms  to  ensure  that  the  system  functions  effectively  could  be  considered  a  priority.  There  is  an  effective  Industrial  Association  in  Baddi,  who  should  be  consulted  in  the  design  of  the  economic  instrument.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  61   December  2013  (Draft  23/12/13)  

§8   Case  Study  1  –  Pharmaceuticals  

Introduction The   pharmaceutical   sector   is   a   rapidly   growing   industry   in   India,   and   is   identified   as   a   “Thrust  Industry”   in   HP.   The   Indian   pharmaceutical   industry   has   been   growing   at   a   compounded   annual  

growth   rate   of   more   than   15   per   cent   over   the   last   five   years   and   has   significant   growth  opportunities.  According  to  industry  estimates,  the  Indian  pharmaceutical  sector  is  expected  to  grow  five-­‐fold  to  reach  Rs  5  lakh  crore  (US$91.45  billion)  by  2020.   India  commands  a  significant  share  of  

global  exports   in   this   industry,   and   the  production  of   so-­‐called   “Active  Pharmaceutical   Ingredients  (APIs)”   will   continue   to   grow   in   response   to   ongoing   incentives. 41  From   an   environmental  management  perspective,  the  chemical  composition  of  such  APIs  makes  their  impacts  uncertain,  and  

often   dependent   upon   the   receiving  medium   and   other   chemical   and   biological   characteristics   of  those  media.  Recent  issues  in  China,  for  example,  prompted  regulators  in  2010  to  increase  standards  and  oversight  of  pharmaceutical  discharges;   the  management   response  has  also  been   to   focus  on  

isolating  the  industries  in  industrial  estates  using  common  treatment  facilities.  Such  an  approach  is  also   appropriate   for   HP,   although   its   implementation   will   also   require   the   design   of   financially  sustainable  treatment  facilities  that  are  capable  of  addressing  the  specific  scales  and  compositions  

of   pollutants.   The   adoption   of   user   charges   within   the   context   of   regulated   spatially   sensitive  industrial  estates  is  a  policy  model  that  is  appropriate  to  such  a  situation  (e.g.,  see  Box  3.1).  

According  to  the  HP  Drug  Manufacturers  Association42,  there  are  approximately  700  Pharmaceutical  units  in  HP:  375  in  BBN,  150  in  Poanta  Sahib,  Nahan  &  Kala  Amb;  100  in  Parwanoo  and  Solan;  and,  

100  in  Kangra  –  Una  &  Tahliwala.  All  companies  are  engaged  in  formulations  only,  with  the  exception  of  one  company  engaged  in  bulk  drugs  and  formulations.  According  to  the  SPCB  there  are  254  online  pharmaceuticals  units  in  Baddi  –  188  Small,  39  Medium  and  27  Large.  The  reason  for  the  discrepancy  

in  the  data  sources  may  be  partly  due  to  different  classification;  the  PCB  database  is  currently  being  streamlined  in  order  to  improve  its  accuracy  {is  this  them  or  “us”?  If  “us”  we  should  remove).  

The   pharmaceutical   companies   do   not   use   much   water,   and   hence   do   not   generate   significant  wastewater.   They   use   solvents,   which   are   recovered   and   reused   and   therefore   not   released   as  

effluents.   Overall,   the   pharmaceutical   sector   contributes   2  kilo   liters   per   day   (KLPD)   out   of   the  25  KLPD  that  the  CETP  in  Baddi  is  being  designed  to  treat.  As  such,  they  are  not  major  contributors  to  the  effluent  problem  in  the  BBN  area  both  in  terms  of  quality  and  quantity.  

The  HP  Drug  Pharmaceutical  Association  estimates  that  80%  of  pharmaceutical  units  meet  pollution  

norms.  Large  and  medium  units  will  not  take  the  risk  of  having  their  power  cut  off  by  the  SPCB  for  non-­‐compliance,  and  they  have  in-­‐built  testing  and  laboratory  facilities.  However,  among  the  small  industries,   only   those   who   can   afford   to   strive   to   achieve   the   pollution   standards.   The   CETP   will  

therefore  provide  a  needed  service  for  the  small   industries,  but  it  will  also  cost  them  something  to  connect  to  the  CETP,  and  incentives  could  promote  uptake  where  such  costs  are  considered  to  be  a  

burden.  

                                                                                                                         41  Global   regulation   is   also  becoming  of   increased   significance.   In   India,   access   to   European  markets   after   July  2013  will  require  valid  certifications  of  facilities   in  compliance  with  global  regulatory  requirements.   In  early  2013,  India  designated  the   Central   Drugs   Standard   Control   Organisation   (CDSCO)   to   be   the   competent   authority   to   certify   exports   of   Active  Pharmaceutical  Ingredients  (APIs)  to  European  Union.  42  This  Association  is  responsible  for  the  whole  of  HP  and  covers  pharmaceutical  units  in  the  BBN  area,  Solan,  Kangra  and  Simaur.  HP  DMA  is  attached  to  the  India  DMA.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  62   December  2013  (Draft  23/12/13)  

Interviews As   part   of   the   SEA   six   pharmaceutical   industries   were   interviewed   in   Baddi   in   August   2013.   The  objective   of   the   interviews   was   to   generate   an   understanding   of   current   pollution   control  management  practices  and  industry  level  data  on  pollution  controls  costs  to  inform  the  CEA.  All  the  

companies   interviewed  are  members  of   the  BBNIA.   They  are  all   large-­‐medium   in   size  and  as   such  generally  have  good  environmental  management  practices.   Small  manufacturers   face   the  greatest  challenges,  and  may  choose  not  to  operate  their  ETP  as  a  way  of  reducing  costs.  

The  majority  of   firms   interviewed  chose  to   locate   in  Baddi  because  of   the  economic  packages  and  

tax   benefits   (4).  Other   reasons   for   locating   in   Baddi   include   space,   readily   available   and   relatively  cheap  power  and  better  road  connectivity.  Investment  for  the  large  firms  ranges  from  2,500  lakhs  to  23,669  lakhs,  and  for  the  medium  companies  1,629  –  8,201  lakhs.  Employment  ranges  from  350–800  

for  the  large  companies  (excluding  contractors)  and  185–313  for  the  medium  size  companies.  

All   companies   report   that   they   have   never   exceeded   compliance   levels.   Visits   by   the   SPCB   (from  Baddi   and   sometimes   Shimla)   range   from   one   to   six   times   a   year.   Inspectors   take   samples   of  effluent.  A  team  of  inspectors  from  Shimla  is  typically  sent  if  complaints  are  raised  by  the  community  

and   unannounced   (night)   visits   do   occur.   A   number   of   companies   felt   that   the   frequency   of  monitoring  visits  had  declined  over  the  years,  as  confidence  level  increased.43  

A  number  of  companies  felt  that  they  faced  no  particular  issues  or  challenges  in  terms  of  pollution  control  (4).  Others  raised  issues  in  terms  of  high  operating  costs  of  pollution  control  equipment  and  

the  strict  requirements  of  environment  and  health  standards  on  multinationals.  

Monitoring and reporting process Firms   regularly  monitor  pre-­‐treated  and   treated  water  and  air  quality   (Table  8.1).  Some   firms  also  

take  soil  samples,  measuring  the  following  parameters:  pH,  color,  moisture  content,  organic  matter,  phosphorus,   sulphates,   calcium,   magnesium,   potassium,   sodium,   Total   Kjehldal   Nitrogen,   Iron,  texture  (sand,  clay  and  silts),  as  per  IS:  2720  (Part  26,  2,  22,  27)  and  laboratory’s  Standard  Operating  

Procedures.  Other  monitoring  activities  by   some  companies   include  –  VOC,   solvents   consumption,  lighting  (Lux  level)  &  ventilation,  medical  check-­‐ups,  fire  extinguisher  &  safety  showers.  

Table  8.1:  Overview  of  reported  monitoring  activity    

    Frequency  Air  quality     Boiler     6  month  (external  agency)  

DG  Stack  emissions   6  months  (external  agency)  Ambient  air  quality   6  months  (external  agency)  Incinerator  stack     3  months    

Water     Effluent  quality   Daily  -­‐  Weekly  (internally)    Monthly  –  6  months  (external  agency)    

Ambient     Annually  in  3  separate  locations.  Noise       Quarterly  /  bi-­‐annually  /  annually  Soil       Annually    

For  one  firm  (ID  “PC-­‐1”)  the  parameters  are  as  follows:  SPM/PM10  in  Baddi  is  around  140  g/m3  (May  2013)   in   the   stack   and   the   RPM   it   is   about   80  μg/m3.   RPM   (82.25  μg/m3),   SO2   (9.85  μg/m

3),  NO  (20.43  μg/m3)  and  CO  (1.26  mg/m3)  –  May  2013.  NOX,  SOX  are  regularly  checked,  and  within  the  

compliance  limits.  

                                                                                                                         43  A  designation  of  “Orange  Large”  as  a  polluter  category  would  require  at  least  one  visit  every  six  months.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  63   December  2013  (Draft  23/12/13)  

Annex  F   presents   BOD   &   COD  monitoring   data   provided   by   the   companies   and   data   recorded   in  SPCB  online  database.  The  SPCB  data  suggest  a  number  of  compliance  breaches.  

All  companies  have  ETPs  and  scrubbers  to  control  air  pollution  as  summarized  in.  Process  waste  goes  

to  the  Shivalik  TSDP  at  Rs  23  per  kg.  The  waste  is  highly  organic  and  has  a  high  calorific  value  and  is  sent  to  cement  plants  after  pre-­‐processing.  

Not  all  companies  reported  the  capital  and  operating  costs  of  pollution  control  equipment.  From  the  available   information  a   large  company  spends  up   to  Rs  20  million  on  pollution  control  equipment,  

ETP   capital   costs   range   from   Rs  450,000   –   Rs  2,500,000,   and   a   scrubber   can   cost   Rs  1,200,000.  Operating  costs  range  from  Rs  480,000  –  Rs  1,800,000  per  year.  While  company  specific  information  on   labor   costs  was   not   available,  most   companies   claim   to   pay  more   than   the  minimum  wage   of  

Rs  4,500   per   month.   Administrative   costs   relating   to   pollution   control   are   not   kept   by   the  companies.  

A   number   of   companies   are   already   members   of   the   CETP   in   Baddi   (4)   and   are   happy   with   the  proposed  arrangement.  Once  the  CETP  is  established,  companies  plan  to  continue  with  their  primary  

pre-­‐treatment   of   effluent   (pH   setting   and   equalization)   but   stop   secondary   treatment   (distillation  process)  as  that  will  be  done  by  the  CETP.    

Concerns   related   to   the  CETP   include:   (i)  the   tripartite   agreement   appears   biased   in   favor   of  UPL;  (ii)  the  monitoring  process  and  penalties  for  non-­‐compliance  have  not  been  specified;  (iii)  the  CETP  

will  deprive  companies  of  recycled  water  (treated  effluent  is  currently  used  to  serve  the  raw  water  needs  of  the  industry);  (iv)  the  cost,  governance  and  risk  associated  with  being  wholly  dependent  on  the  CETP;  and,  (iv)  transportation  of  the  effluent  through  the  pipeline,  as  it  is  still  not  clear  how  the  

scattered  industries  will  be  connected  and  laying  the  pipeline  will  be  a  challenge.    

Views on economic instruments Three   companies   are   currently   benefiting   from   a   Government   subsidy   (a   10   year   excise   duty  

exemption).  One  company  reported  that  although  this  exemption  is  valid  up  to  2016  it  is  a  very  small  amount  and  of  little  advantage.  In  addition  two  companies  previously  enjoyed  benefits  (e.g.  central  subsidy   of   Rs  30  million   and   5-­‐year   income   tax   holiday   and   excise   holiday,   and   100%   income   tax  

exemption).    

Most  companies   (4)  would  partake   in  a  soft  or  subsidized   loan  scheme  for   implementing  pollution  controls   if   offered.  Others   felt   that   such   schemes  were  unnecessary  as   they  already  had  pollution  

equipment  in  place  or  the  company  was  committed  to  meeting  the  costs  for  implementing  pollution  control  itself.  

Companies  were  broadly  supportive  of  incentives  schemes  for  other  equipment  or  operational  costs  (not   necessarily   pollution   control),   especially   given   the   fact   that   pollution   control   equipment   is  

already   in   place.   Soft   loans   or   subsidies   for   harnessing   of   solar   energy   were   cited   as   an   area   of  interest.    

Voluntary certification Two   companies   have   both   ISO  14001   and   OHSAS  18001   certification,   and   one   company   has  

ISO  14001  in  place.  Some  companies  are  considering  these  certifications  while  others  feel  that  their  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  64   December  2013  (Draft  23/12/13)  

own  management  systems,  existing  US  Food  and  Drug  Administration  approval,  or  drug  certification  is  enough  to  manage  most  environmental  issues.    

Investments in energy efficiency Energy   efficiency   is   a   focus   for   a   number   of   companies   (5),   often   driven   by   economics   (reducing  operating  costs),  and  in  some  cases  feeding  into  corporate  initiative  on  CO2  reduction.  A  number  of  

companies   claim   to   be   regularly   monitoring   and   improving   efficiency.   While   specific   accounts   of  expenditure   on   energy   efficiency   investments   and   savings   were   not   available,   one   company  estimates   an   investment   of   about   Rs  8  million   per   year.   Existing   initiatives   include:   (i)  the  

introduction  of  variable  drive  motors  to  reduce  energy  use  and  save  money;  (ii)  a  move  to  Compact  Fluorescent  Lamps  (CFLs);  (iii)  sensor-­‐based  lighting;  (iv)  boiler  auto-­‐system  for  condensate  recovery;  (v)  heat  exchangers;  (vi)  efforts  not  to  run  the  plant  during  peak  hours;  (vii)  turning  off  lights  during  

breaks;  and,  (viii)  purchase  of  energy  efficient  equipment.  

All   companies   have   taken   out   a   variety   of   insurance   covers.   These   include:   (i)  Public   Liability  Insurance   to   address   any   compensation   to   the   community   if   there   is   an   accident   –   this   is   a  mandatory  requirement  of  the  SPCB;  (ii)  Asset  insurance;  and,  (iii)  Buildings  insurance.    

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  65   December  2013  (Draft  23/12/13)  

§9   Case  Study  2  –  Stone  Crushing  

Una  District  

Una  is  a  small  foothill  district  located  at  the  South  Western  border  of  HP.  It  is  bounded  in  the  North  by   Kangra   District,   in   North-­‐East   by   Hamirpur   District,   in   South-­‐East   by   Bilaspur   District   and   by  Punjab  in  West  and  South.  The  population  is  521,057  (2011  census,  provisional).  

Industrial   areas   in   Una   district   include   Mahetpur   (South-­‐Central),   Tahliwal   and   Bathri   (South–

Central),   Gagret   (North-­‐West)   and   Amb   (North-­‐Central).   The   River   Soan   (pronounced   as   “Swan”)  flows   through   the   district   from   the   North-­‐west   and   provides   industries   with   their   water  requirements,   as   well   as   acting   as   a   repository   for   industrial   waste   water   (both   treated   and   un-­‐

treated).  The  district  is  significantly  less  industrialized  than  the  Baddi-­‐Barotiwala-­‐Nalagarh  area.  The  local  PCB  office  is  in  the  town  of  Una,  the  capital  of  Una  district.  

Environmental  management  priorities  according  to  the  HP  PCB  are:    

Ø There  are  clusters  of  small  industries  in  Una  district  that  require  a  common  effluent  treatment  plant  

(CETP),   as   it   is   not   financially   viable   for   these   industries   to   individually   treat   their   effluent.   CETPs,  smaller   in   size   to   the   one   under   construction   in   Baddi-­‐Barotiwala,   should   be   explored   in   Bathri  

(covering   about   9   units),   Tahliwal   (covering   about   12   units),   Mehatpur   (covering   12   units)   and  Dhamndri  (covering  6  units).  

Ø Intervention   is   required   to   improve   the   environmental   performance   of   brick   kilns,   through   the  

Figure  9.1:  District  Map  of  Una  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  66   December  2013  (Draft  23/12/13)  

promotion  of  cleaner  production  technologies  and  practices.   In  Mehatpur,  there  is  a  cluster  of  brick  kilns  and  air  pollution  levels  are  high  during  the  season.    

Ø Zoning  criteria  for  industries  needs  to  be  developed.  Red  industries  typically  cause  problems  if  located  near  housing  and  urban  areas,  and  should  therefore  be  located  outside  of  these  areas.  

Ø As  a  part  of  the  SEA  study,  stone  crushing  and  food  processing  were  units  visited  near  Gagret  (North-­‐West)  and  in  Tahliwall  and  Bathri  (South-­‐Central)  in  Una  district.    

Background  

There   are   an   estimated   12,000   stone   crushers   in   India   with   an   annual   turnover   of   around  US$1  billion.  The  sector  employs  over  500,000  people,  mostly  from  rural  areas  where  employment  

opportunities   are   limited   and   is   therefore   important   in   terms   of   local   livelihoods   and   social  development.  The   stone  crushing   sector   is  anticipated   to  grow  given   the  current  plans   to  develop  roads,  canals  and  buildings  (CPCB,  2009)44.  

Stone   crushers   give   rise   to   fine   fugitive   dust   emissions,   which   can   lead   to   respiratory   diseases   in  

workers  as  well  as   in  surrounding  populations.  The  dust  also  adversely  affects  visibility,  vegetation  and  aesthetics  of  the  area.  To  prevent/control  these  emissions,  CPCB  developed  Emission  Standards  and  guidelines   in   1989,  which  were  notified  under   the  Environment   (Protection)  Act,   1986  by   the  

Ministry   of   Environment  &   Forests   [vide  Notification  No.  G.S.R.   742(E)   dated   30th  August   1990  &  S.O.   8(E)   dated   December   31,   1990].   The   quantitative   standard   for   Suspended   Particulate  Matter  (SPM)  at  a  distance  of  3-­‐10  meters  from  a  controlled  unit   (isolated  or   in  a  cluster)   is   less  than  600  

μg/m3.   The   standards   state   the   implementation   of   the   following   pollution   control   measures   are  required:   (i)  Dust   containment   cum   suppression   system   for   equipment;   (ii)  Construction   of   wind  breaking   walls;   (iii)  Construction   of   metaled   roads   within   the   premises;   (iv)  Regular   cleaning   and  

wetting  of  the  ground  within  the  premises;  and,  (v)  Growing  of  a  green  belt  along  the  periphery.    

The  CPCB  (2009)  carried  out  measurements  of  ambient  air  quality  at  6  units  predominantly  having  Jaw   Crushers   (Table  9.1,   the   highlighted   units   are   small   in   size).   The   data   reveals   that   the  contribution  in  SPM  by  the  stone  crusher  units  with  varying  degree  of  dust  control  measures  varies  

widely   from   2,342   to   36,406  μg/m3   with   an   average   SPM   contribution   of   16,888  μg/m3,   which   is  about  28  times  higher  than  the  existing  standard  of  600  μg/m3.  Noise  levels  were  also  found  to  be  beyond  the  acceptable  limit  of  75  dB(A)  in  many  crushers.    

Table  9.1:  Fugitive  emission  Monitoring  Data  for  Selected  Stone  Crushing  Units  (Source:  SPCB,  2009)  

Unit     Downwind  (μg/m3)   Upwind  (μg/m3)   Contribution  by  the  unit  (μg/m3)  

UNIT  1     25,224   1,313   23,911  

UNIT  2     36,826   420   36,406  

UNIT  3     3,222   880   2,342  

UNIT  4     10,118   705   9,413  

UNIT  5     10,975   858   10,117  

UNIT  6     21,157   2,015   19,142  

Average     17,920   1,032   6,888  

                                                                                                                         44  Central  Pollution  Control  Board,  2009.  Comprehensive  Industry  Document  Stone  Crushers.  Series  COINDS/87/2007-­‐08  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  67   December  2013  (Draft  23/12/13)  

Field  Studies  were  also  carried  out  in  the  Raisina  Crusher  Zone,  Sohna,  Gurgaon  District  of  Haryana  State.   The   Cluster   has   36   Stone   Crushers,   each   occupying   an   area   of   1  acre.  Most   crushers   have  

roller   type   tertiary   crushers   so   as   to   produce   more   fine   dust   (<4  mm),   which   is   saleable   in   the  National  Capital  Region.  All  the  crushers  have  partial  enclosures  and  dust  suppression  arrangements  such  as  nozzles  and  sprinklers.  However,   it  was  observed  that  few  crusher  units  operate  the  water  

sprays,  due  to  concerns  over  water  consumption  and  the  formation  of  a  dust   layer  on  the  crushed  stone   gravels   which   affects   its   quality.   The   SPM   was   found   to   be   55,926  μg/m3   with   respirable  content  of  8,215  μg/m3.  This  high  concentration  calls  for  stricter  measures  to  be  enforced  on  stone  

crushers   in  such  zones.   If  wet  suppression  systems  are  not  acceptable,  dry  type  control  systems  as  adopted  widely  in  crushers  in  developed  countries  and  practically  feasible  should  be  enforced  (CPCB,  2009).]  

Stone  Crushing  in  HP    

There   are   271   stone   crushing   units   /   companies   in   HP   recorded   in   the   SPCB   database,   with   the  largest  number  occurring  in  Jassur  district  (Baddi  –  32,  Bilapur  –  35,  Chamba  –  6,  Jassur  –  72,  Kullu  –  26,  Paonta  –  13,  Parwanoo  –  20,  Rampur  –  5,  Shimla  –  18  and  Una-­‐  44).  In  Una,  there  are  about  22  

stone  crushing  units  

There   is   a   common   feeling   amongst   the   general   public   that   mining   activity   in   riverbeds   creates  environmental  pollution  and  damage.   In  HP  a  number  of  petitions  have  been   filed  concerning   the  impact  of  indiscriminate  mining  in  the  riverbeds  on  the  ecology  and  environment  (including  change  

the  course  of  rivers)  and  the  safety  of  bridges  (Survey  Document  of  District  of  Una,  2011)45.  

Closure  of   stone  crushing   sites   is   common   in   the  neighboring  Haryana  State  due   to  concerns  over  illegal  activity.  For  example,  in  2012  the  Haryana  Government  suspended  the  granting  of  licences  to  

stone-­‐crushers  in  the  districts  of  Faridabad,  Gurgaon  and  Mewat,  due  to  complaints  of  illegal  mining  and  transportation  of  minerals.  Crushers  in  Panchkula,  Hisar  and  Yamunanagar  were  also  closed  due  to  a  court  case.    

The   almost   total   ban   on   sand   and   gravel   mining   in   neighboring   Punjab   State   has   boosted   the  

industry   in   Himachal   Pradesh.   The   price   of   crushed   stone   for   crushers   located   near   the   border  increased  from  Rs  11  or  Rs  12  per  cubic  foot  to  Rs  17  or  Rs  18  per  cubic  foot,  compared  to  around  Rs  14   per   cubic   foot   for   stone   crushers   located   further   away   (Tribune   News   Service,   November  

2012).   The   high   prices   have   reportedly   encouraged   illegal   practices,   including   the   use   of   JCBs,   to  meet  demand,  and  (in  2012)  a  ban  was  imposed  on  sand  mining  from  the  River  Soan  (Swan)  in  Una  District.  

Mining  Policy    

In  2011,  the  HP  Mining  Department  earned  almost  30%  of  its  revenue  through  the  mining  of  minor  minerals.  In  2004  The  High  Court  of  Himachal  Pradesh  directed  the  State  Government  to  formulate  Policy   and   Guidelines   for   the   regulation   and   control   of   mining   operation   in   rivers,   streams   and  

khallas.    

Key  principles  of  the  policy  are:  the  river  /  natural  resources  must  be  utilized  for  the  benefit  of  the  present  and  future  generation;  it  is  the  responsibility  of  all  sectors  to  maintain  the  river  resources  of  

                                                                                                                         45  Feasibility  Report  District  Una  H.P,  2011.  Survey  documents  of  District  Una  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  68   December  2013  (Draft  23/12/13)  

the  State  and  to  ensure  that  it  is  prudently  managed  and  developed;  and,  awareness  is  essential  to  ensure  the  protection  of  natural  river  resources  and  their  proper  utilization  and  conservation.  

The  objectives  of  the  policy  are  to  ensure:  scientific  and  systematic  mining;  conservation  of  minerals;  

protection  of   environment   and   ecology;   proper   replenishment   of   river   beds;   proper   protection  of  river  banks;   protection  of   soil   erosion;   protection  of   bridges   and  other   structures  of   public   utility;  and,  checks  on  illegal  mining.  

The  policy  guidelines  provided   for   the  preparation  of  District   level   river/stream  bed  mining  action  

plans.   These   action   plans  were   to   be   based   on   a   survey,   by   the   Geological  Wing,   Department   of  Industries,  Himachal  Pradesh,  of  the  existing  river/stream  bed  mining  in  each  district,  an  assessment  of  the  direct  and  indirect  benefits  of  mining  and  an  identification  of  the  potential  threats.  The  action  

plans   divide   the   State’s   rivers/streams   (or   sections   of   rivers/stream)   into   two   categories:   (i)  those  selected   for   the   extraction   of   minor   minerals;   (ii)  those   where   extraction   of   minor   minerals   is  prohibited.   Based   on   the   action   plan,   mining   leases/   contracts   are   granted   in   accordance   to   the  

Himachal   Pradesh   Minor   Mineral   (Concession)   Revised   Rules,   1971   and   observing   the   Policy  Guidelines.   A   field   survey   report   of   the   riverbeds   in   Una   district   was   based   on   existing   survey  information  and  new  surveys  undertaken   in  November  2010.  The  Survey  Document   (2011)  details  

the  morphological  features  and  mineral  potential  of  river  catchments  in  the  district.  

As  per  state  regulations  (Act,  1992),  all  crushing  units  require  a  mining  (minor  minerals)  licence  for  riverbed  mining   and/   or   hill-­‐slope  mining.  Mining   operations   are   governed   by   the   Department   of  Mines  and  Geology,  who  grant  the   licenses  [check  that  this   is  not  Geological  Wing,  Department  of  

Industries];   they  are  not  under   the   jurisdiction  of   the  PCB,  who  give  CTE  and  CTO  by   issuing  a  no-­‐objection  certificate,  once  the  license  is  granted.    

In  2006  the  Ministry  of  Environment  and  Forests  made  it  mandatory  for  stone  crushers  operating  in  

an  area  of  over  5  hectares  to  obtain  Environmental  Impact  Assessment  (EIA)  clearance  before  they  were  granted  permission  to  operate.  This  requirement  has  only  recently  been  fully  implemented.    

Background  to  Stone  crushing  in  Una  In  Una  District  sand,  stone  and  bajri/grit  are  available.  In  the  past  local  residents  used  to  take  gravel  

from  riverbeds   to  meet   their   requirements.  Now,   in  accordance  with   the  Himachal  Pradesh  Minor  Mineral   Concession   (Revised)   Rules   1971,   mineral   concessions   are   granted   through   a   lease   or  through  auction.  In  2011,  51  mining  leases  had  been  granted,  on  Government  (20%)  and  Private  land  

(80%).  

In  an  auction  of  minor  mineral  quarries   in  the  District  of  Hamirpur   in  2009,  for  13  stream  beds  for  the  extraction  of   sand,   stone  and  bajri,   bid  prices   ranged   from  Rs  47,000-­‐3,005,000  per   year.  Bids  were  significantly  higher  than  previous  bids  (up  to  8  times).  The  contracts  are  typically  for  3  years.  

The   increase   demand   for  minor  minerals   (sandstone   and   barji)   can   be   gauged   by   the   increase   in  

royalty  receipt  from  minerals  from  1.13  lakhs  (1990-­‐1991)  to  221.45  lakhs  (2010-­‐2011).  The  royalty  received  from  sandstone  and  barji,  and  white  quartite  boulders  is  presented  in  Table  9.2.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  69   December  2013  (Draft  23/12/13)  

Table  9.2:  Royalty  and  production  of  Minor  Minerals  1993-­‐2011    

Year   Royalty  in  lakhs   Production  of  mineral  in  m  metric  tonnes  

1993-­‐1994   5.67   83,908  

1994-­‐1995   5.06   73,309  

1995-­‐1996   9.77   137,542  

1996-­‐1997   4.27   104,701  

1997-­‐1998   9.39   137,445  

1998-­‐1999   13.25   196,903  

1999-­‐2000   24.88   379,156  

2000-­‐2001   23.90   345,196  

2001-­‐2002   30,58   512,496  

2002-­‐2003   33,30   662,338  

2003-­‐2004   50.53   385,375  

2004-­‐2005   41.90   560,955  

2005-­‐2006   50.83   741,405  

2006-­‐2007   61.11   732,660  

2007-­‐2008   69.11   769,877  

2008-­‐2009   93,19   441,538  

2009-­‐2010   167.76   720,335  

2010-­‐2011   221.45   1,042,976    

Source:  Survey  Document  of  District  of  Una,  2011  

Interviews  with  companies  As  part  of  the  SEA  five  stone  crushing  companies  were  interviewed  in  Gagret,  Tahliwall  and  Bathri.  

All  stone  crushing  units  are  small  scale  and  categorized  as  ‘Red’  industries,  according  to  the  SPCB46.  Air   pollution   and   noise   pollution   are   the   two   key   environmental   issues   associated   with   stone  

crushing.   These   are   due   to   both   direct   (crushing   operations)   and   indirect   (transporting  materials)  activities.    

Although  the  stone  crushing  units  are  reportedly  located  away  from  residential  areas,  from  time  to  time  the  community  raises  environmental  concerns  related  to  noise   levels  and  air  pollution.  There  

have  also  been  complaints   regarding   illegal  mining  activities.  Some  of   the  companies   feel   that   the  media  tends  to  be  anti-­‐crushers  and  there  is  constant  threat  of  closure.    

No   incentives   are   provided   to   the   stone   crushers   and   furthermore   they   are   not   recognized   as   an  industry.   All   the   companies   interviewed   would   support   stone   crushing   being   designated   as   an  

industry  as  this  would  lead  to  better  management  and  access  to  labor.  All  companies  are  members  of  Una  Stone  Crushers  Association.  

The  main   reason   the   companies   located   in  Una   is   the   proximity   to   the   River   Soan   (Swan)   and   its  tributaries,  which  have  a  natural  accumulation  of  stone,  and  along  which  river  stretches  are  leased  

                                                                                                                         46  All  industries  are  categorized  as  Red,  Orange  or  Green.  The  level  of  due  diligence  and  monitoring  is  highest  for   the  Red  category  of   industries  and   lowest   for  Green.  Red   industries  may  be  visited  around  twice  a  year,  while  no  onsite  monitoring  is  undertaken  typically  undertaken  for  Green  industries.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  70   December  2013  (Draft  23/12/13)  

for  stone  mining  by  the  Mining  Department.  Some  companies  also  have  a  hill  mining   license.  Only  stone  is  withdrawn  from  the  hill,  whereas  both  stone  and  sand  is  mined  from  the  riverbed.  Himachal  

Pradesh   was   also   cited   as   having   transparent   and   well   set   out   processes   for   mining   and   stone  crushing,  which  is  attractive  to  industries.    

Companies  are  producing  sand,  10  mm  stone,  20  mm  stone  and  40  mm  stone.  Licenses  may  cover  4-­‐5  ha  of  riverbed  and  1  ha   in  the  hills.  Production  ranges  from  70-­‐120  tons  /  day.  Production  at  the  

upper  end  of  this  range  requires  40-­‐50  truck  transports.  Turnover  ranges  from  Rs  90-­‐120  million  per  annum.  The  companies  employ  8-­‐20  staff  per  unit  on  a  permanent  basis.  Temporary  /  transport  staff  are  also  needed.  

Prior   to   commencing   mining   operations,   an   Environmental   Management   Plan   for   mining   (not  

crushing)  is  required,  which  is  approved  by  the  Indian  Bureau  of  Mines  or,  for  minor  minerals,  by  the  State’s  Department  of  Geology.    

Environmental  management  The   SPCB   requires   that   the   companies   have   certain   pollution   control   equipment   in   place   before  

issuing  Consent  to  Operate  (CTO).  The  CTO  includes  conditions  such  as  frequency  of  monitoring  and  the  parameters   to  be  monitored,  which  need   to  be   strictly   adhered   to.  All   companies  have  water  sprinklers  and  covering  /enclosures  around  the  crushers  to  contain  dust.  Water  is  being  recycled  for  

use  on  the  plantations  and  for  irrigation.    

Economics  of  stone  crushing  Companies  have  spent  between  Rs  75,000  and  Rs  1,500,000  on  capital  equipment  such  as  sprinkler  systems   and   water   tanks.   The   administrative   costs   related   to   pollution   control   are   not   available.  

Permanent  workers  are  reportedly  paid  above  the  minimum  wage  of  Rs  4,500  per  month.  

SPCB  (2009  –  Section  2.5)  provides  overview  of  economics  of  a  stone  crusher.  Based  on  information  provided  by   stone   crushers  nationally,   Tables  9.3–9.7  present   typical  details  on   capital   investment  

and  annual  operating  costs  of  a  small  size  stone  crusher’s  unit  with  a  production  capacity  of  20  tons  per  hour.  

Monitoring  Most  of  the  companies  do  not  monitor  air  quality  or  noise   levels,  so  this   is   left   to  the  SPCB.  Some  

monitoring  was  undertaken  by  some  companies  as  part  of  the  EIA,  and  one  company  has  contacted  a  supplier  to  monitor  air  and  noise.  All  companies  claim  that  they  have  never  exceeded  compliance  levels.   The   SPCB   is   said   to   visit   between  2-­‐6   times   a   year,   sometime  unannounced   (one   company  

stated  that  visits  can  be  1-­‐2  a  month  during  the  season)47.    

Not   all   companies   have   completed   an   EIA.   For   one   company   it   will   be  mandatory   at   the   time   of  consent   renewal.   For   another   company,   within   10  km   of   the   state   border,   an   EIA  was   done   (Eco  Laboratories,  Chandigarh)  and  approved  by  the  MOEF  in  April  2013  and  cost  the  company  about  Rs  1  

million.  In  line  with  the  requirements  of  the  CTO,  an  Environmental  statement  is  submitted  annually  and  includes  operational   information.  The  companies  raised  no  issues  in  terms  of  pollution  control  

                                                                                                                         47  Note:   This   does   not  match   up  with   the   data   provided   in   SPCB   database   on   date   of   last   inspection.   According   to   the  database   10   companies   in   Una   have   not   be   visited   since   2011.   If   SPCB   is   monitoring   air   pollution   where   is   this   data  recorded?  It  is  not  provided  in  database  and  SEA  Team  was  advised  that  it  is  not  available.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  71   December  2013  (Draft  23/12/13)  

(challenges,   constraints).  Note   that   clearances  have   to  be  obtained   from  13  Departments  prior   to  establishing  the  unit:  this  includes  Revenue,  Mining  and  Tourism.  

Table  9.3:  Investment  in  Plant  and  Machinery  

S.No     ITEM     Cost    (lakh  Rs)    

Sub-­‐Total  (lakh  Rs)    

%  Share  

A     Crushers  &  Screen  

Jaw  crusher  (20*12)  

Jaw  crusher  (16*9)  

Vibratory  screen    

 

Handling  Material  Equipment:  

Belt  Conveyors  (tyre)    

Motors    

Structural    

Miscellaneous  electrical,  starters    

Miscellaneous  Structural,  chutes  etc    

Lab  &  office  equipment  

 

2.50  

2.00  

1.20  

 

 

0.25  

0.30  

1.50  

1.00  

2.00  

1.25  

12.00   34.25%  

B     Transportation  vehicles  (Minimum)    

2  Tractors    

2  Dumpers    

 

 

4.00  

9.00  

13.00   37.15%  

C     DG  set  62  KVA  (Captive  Power  Generation)     3.00   3.00   8.6%  

D     Civil  work    

Ramp,  stone  well  etc    

Office  sheds    

3.00  

3.00  

6.00   17.6%  

Total  Capital  Investment  (A+B+C+D)     34.00   34.00   100%  

E     Cost  of  dust  control  System  (enclosures,  tank,  pump,  pipes,  nozzles  etc)    

1.00   1.00   2.9  %  

Table  9.4:  Electricity  Consumption  Costs  

Belt  conveyor     15  hp  

Crushers     45  hp  

Screen     10  hp  

Miscellaneous,  Lightings     5  hp  

Total     75  hp  (56  kWh)    

Operating  Cost  @  Rs  4.50  =  Rs  252/-­‐  per  hr    

Cost/Ton  =  2.8  kWh/ton  or  Rs  12/ton    

 

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  72   December  2013  (Draft  23/12/13)  

Table  9.5:  Typical  Manpower/Employee  Salary  Costs  

Type  of  Employment  /    

Purpose    

Average  No  of  Employees    

Average  Salary    

(Rs)    

Total  expenditure/  month    

Direct  -­‐  Plant  operation     8     Rs  50/-­‐    

(per  day)    

Rs  12,000  

Direct  -­‐  Office  staff  (1  electrician,  1  Supervisor,1  manager,  1  office  boy)    

4     Rs  4,375/-­‐    

(per  month)    

Rs  17,500  

Direct  -­‐  Transport,(2  Tractor  Driver  2  Truck.  Driver,2  Casual  Labor    

6     Rs  2,500/-­‐    

(per  month)    

Rs  15,000  

Indirect  -­‐  Mining     40     Rs  70/-­‐    

(per  day)    

Rs  84,000  

Total  employment     Rs  128,500  

Total  production  per  month     6000  T/month  (20  TPH  x  10hrs  x  30)  

Man  power  cost  per  ton  of  production     Rs  128,500/6,000  Tons  (Rs  21/ton)    

Royalty  costs  =  Rs  5/ton  of  stone  crushed    

Transportation  cost  (diesel  cost)  =  Rs  2/ton    

Miscellaneous  cost  (spares,  maintenance  &  others)  =  Rs  5  lakhs  per  year    

=  Rs  10/Ton  (average)    

Table  9.6:  Overall  Annual  operating  costs/ton  

Type  of  operating  cost     Rs/Ton     Cost/year    

i.  Electricity     Rs  12/ton     Rs  7  lakh    

ii.  Man  power     Rs  21/ton     Rs  12  lakh    

iii.  Royalty     Rs  5/ton     Rs  2  lkh    

iv.  Transportation  (Diesel)     Rs  2/ton     Rs  1  lakh    

v.  Miscellaneous  Costs     Rs  10/ton     Rs  5  lakh    

Total     Rs  50/ton     Rs  32  lakh    

Table  9.7:  Profit  to  Expenditure  Ratio  of  a  Stone  Crusher  

S.No   Various  costs   Rs.  In  Lakhs    

1     Capital  investment  in  plant  &  machinery,  building,  transp.  Vehicles,  etc  

35.00  

2     Annual  operating  cost   32.00  

3     Depreciation  (15%)  on  35  lakhs   5.25  

4     Repayment  of  interest  @18%  on  35  lakh   6.30  

Sub  -­‐total   43.55  

5     Annual  sales  (160  ton/d  x  225  days/yr    

@  Rs  160/ton  (at  site)  

57.60  

6     Profit  after  interest  and  depreciation   14.05  

Note:  Costs  of  stocking  raw  material  &  product,  cost  of  land  for  plant  site  and  mine  site  etc  are  not  

considered.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  73   December  2013  (Draft  23/12/13)  

Views  on  economic  instruments  The   companies   do   not   currently   benefit   from   any   government   incentive   schemes.   However,   the  

majority  would  be  interested  in  a  soft/subsidized  loan  scheme  for  implementing  pollution  controls,  or  for  other  equipment  or  operational  costs  if  offered.  

None  of  the  companies  has  sought  any  voluntary  certification  such  as  ISO14000,  ISO9000.  Some  felt  that   this   had   no   business   value   and   was   not   relevant   as   stone   crushers   are   not   treated   as   an  

industry.  

A   few  companies  have   invested   in  energy  efficiency   initiatives   in   the  past  10   years.   These   include  the:   (i)  installation   of   energy-­‐efficient   motors;   and,   (ii)  introduction   of   power   factor   control   using  capacitors   to   reduce   electricity   consumption   (the   estimated   cost   of   capacitor   equipment   is  

Rs  140,000).  

For  most  companies  calculation  of  the  quantity  mined/  crushed  (and  hence  royalty  paid)  is  linked  to  the   electricity   consumption.   Crushing   one   ton   of   stone   requires   7   units   of   power   and   washing  requires  4  units  of  power   (using  energy-­‐efficient  operations).   There   is   a   royalty  of  Rs  5  per   ton  of  

stone  crushed.  

The  companies  hold  the  following  types  of   insurance:  accident/labor  insurance  (one  company  pays  Rs  40-­‐50,000  per  year);  asset  insurance;  motor  vehicle  insurance  (one  company/unit  pays  Rs  325,000  to   cover   for   plant   &   machinery,   vehicles).   Public   liability   insurance   is   not   required   as   it   is   not  

classified  as  an  industry.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  74   December  2013  (Draft  23/12/13)  

§10   Case  Study  3  –  Food  Processing  

Background  

Agricultural  development  in  HP  has  numerous  challenges,  with  access  to  markets  due  to  poor  road  infrastructure  among  the  most  frequently  cited.  State  policy,  however,  expects  that  the  sector  will  eventually  expand  and  provide  greater  opportunities  for  value-­‐added  processing  for  both  domestic  

and   export  markets.   In   contrast   to   other  manufacturing   industries,   agro-­‐industries   have   relatively  straightforward   environmental   impacts,   usually   associated  with   high  water   demands   or   high   BOD  loads  into  common  water  bodies.  Breweries,  slaughterhouses,  canneries,  food  processing,  and  juice  

packaging   installations   are   all   examples   of   industrial   establishments   that   can   take   on   significant  scales  and  have  high  BOD  loads.  These  types  of  enterprises  are  also  amenable  to  common  effluent  treatment   plants,   handling   both   industrial   and   domestic   waste.   Their   location,  management,   and  

regulatory  treatment  thus  have  additional  challenges.  Moreover,  due  to  the  proactive  policies  of  HP,  such   industries  will   be   a  more   common   part   of   the   landscape   in   decades   to   come   than   they   are  today.   (The  GoHP   is   currently   developing   a   vision   document   and   strategy   for   the   food   processing  

industry.)   From   a   policy   perspective,   uplifting   the   agriculture   sector   has   additional   social   benefits  because   it   creates  value-­‐added   in  areas   that   can  benefit  more  directly   those   in   rural  areas.  Again,  adoption  of  spatial  planning  models  coupled  with  common  waste  treatment  plants  supported  by  an  

equitably  distributed  user   charge   is   a   common  model   for   addressing   such   circumstances.  Because  the  sector  remains  in  nascent  stages,  HP  can  apply  such  principles  to  all  new  industries  in  a  way  that  anticipates  its  future  economic  importance.48  

Findings  

At  present,  only  6  food  processing  units  are  functioning  in  Una  district,  all  of  which  were  interviewed  for   SEA.   Companies   located   in   Una   due   to   the   good   working   environment   in   HP   and   family  connections   with   the   area.   However,   the   main   reason   most   companies   moved   to   Una   was   the  

availability  of  tax  concessions.  These  concessions   include  tax  holidays,  VAT  exemptions,  and  excise  benefits.   Following   the   end   to   the   GOI   special   incentive   package   in   2011,   a   number   of   food  processing   units   in   Tahliwal,   particularly   the   small   industries,   became   unprofitable   and   closed  

down49,50.  

The  food  processing  companies  in  Una  are  diverse  in  terms  of  size  (2  small,  2  large  and  2  medium),  and  in  terms  of  their  products.  Products  being  produced  across  the  companies  include  -­‐  juices,  jams,  

pickles,   sauces,   noodles   and   biscuits.   For   some   products,   such   as   juices,   production   is   seasonal  peaking   during   summer.   Some   companies   undertake   work   for   larger   firms   such   as   Unilever,  Walmart,   cash-­‐and-­‐carry,   Reliance,   Vishal,   V-­‐Mart,   ITC   and   Dabur.   One   company   is   supplying  

Cadbury,   Wrigley   and   Nestle   products   such   as   starch   (multiple   uses),   liquid   glucose   (biscuit),  dextrose  monohydrate,  and  malt  (baby  powders).  

                                                                                                                         48  Opportunity   to   incorporate   state-­‐of-­‐the-­‐art  pollution  abatement   technologies   in   food  processing  exists   in   the   recently  announced  “Food  Parks”  planned  for  Una,  Solan  and  Kangra  districts.  49  In  Tahliwal  area  entrepreneurs  reportedly  ventured  into  the  sector  because  of  the  concessions  /  incentives  and  did  not  have  the  experience  to  sustain  their  businesses  beyond  the  concession  /  incentive  period.  50  Interviewees   demonstrated   a   mixed   understanding   of   the   phaseout   of   various   subsidies;   there   was   a   progressive  withdrawal  of  subsidies,  e.g.  sales  tax  in  2009  and  income  tax  in  2013.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  75   December  2013  (Draft  23/12/13)  

The  companies  belong   to  a   range  of   Industrial  Associations   including:   the  All   India  Food  Processor  Association;   Tahliwal   Industrial   Association;   BBNIA;   the   local   BBT   Industrial   Association;   and   the  

Bathri  Industry  Association.  

Availability  of  power,  labor  and  infrastructure  are  problems  in  the  area  for  the  industries.  In  terms  of  the   environment,   wastewater   generation   and   treatment   is   the   key   issue   for   the   food   processing  sector.  All  the  units  have  an  ETP,  and  are  treating  their  effluents.  The  units  also  have  boilers  that  run  

on  diesel.   In   the  small-­‐scale  units,   [baby]  boilers  operate  on  wood.  Stack  emissions  are  measured,  monitored   and  managed   in   the   large   and  medium-­‐scale   units.   Also,   the   large-­‐   and  medium-­‐scale  units   tend   to   generate   biogas   from   their   food   waste,   which   is   used   to   supplement   fuel   in   their  

boilers  (see  Annex  F).  Water  is  sourced  through  a  130  ft  bore  well.  The  quality  of  water  is  hard  and  therefore   needs   to   be   treated   before   use.   Though  water   is   available   at   20-­‐30  ft,   potable  water   is  available  only  at  a  greater  depth.  

The  installed  capital  costs  of  the  ETPs  ranges  from  Rs  40  million  to  Rs  175,000.  Operating  costs  of  the  

ETP   ranges   from   Rs  1,000   –   Rs  30,000   per   month.   No   specific   labor   costs   are   available,   but  companies   pay   at   least   the   minimum   wage   of   Rs  4,500  per   month.   Pollution   control   related  administrative  costs  are  not  separately  maintained  by  any  of  the  companies.    

The   level   of   pollution  monitoring   undertaken   by   the   companies   is   correlated  with   their   size,  with  

large  companies  having  on   line  monitoring  systems  and  /  or   in  house   laboratories  where  tests  are  undertaken   daily,   and   the   small   companies   relying   on   the   PCB   and   not   undertaking   independent  measurements.   Pollutants  monitored   vary   across   companies   but   include:   BOD,   COD,   TSS,   pH,   flue  

content,   PM10,   NOx   and   SOx,   water   color,   odor   and   noise.   Both   pre-­‐treated   and   treated   water  quality  are   typically  measured.  Social  Audit  Monitoring   (SEDEX)  audits,   required  by  multinationals,  

are  undertaken  by  one  of  the  large  companies.  

The  majority   of   companies   have   never   exceeded   compliance   levels.   However,   one   company   was  non-­‐compliant  in  2010,  related  to  a  problem  with  gas  recovery,  and  the  plant  was  closed  for  10  days.  Another  company  is  currently  (mid-­‐2013)  non-­‐compliant  due  to  an  out  of  service  ETP,  which  is  in  the  

process  of  being  replaced.  

According   to   the   companies   they   are   visited   by   the   SPCB   between   2-­‐6   times   a   year,   sometimes  unannounced.   The   SPCB   monitors   effluent   quality.   For   the   larger   plants,   stack   emissions   and  ambient   air   quality  may  be  monitored,   perhaps  using   the   company’s   own  equipment.   If   a   sample  

fails,  another  sample  is  taken  in  45  days.    

Pollution  control  challenges  faced  by  some  of  the  companies  include:  (i)  Total  Dissolved  Solids  (TDS)  because   the   requirement   for   TDS   is   100  mg/l,   however   the   region   has   hard   water   and   raw  (groundwater)  water  in  the  area  is  above  200  mg/l,  and  reducing  this  is  practically  difficult;  (ii)  solid  

waste  management,  as  no  sewage  system  is  in  place;  and,  (iii)  plastic  disposal,  with  plastic  currently  being  burnt  in  the  boilers.    

The   large  companies  felt  that  within  their  geographical  area  there  was  no  need  for  a  CETP  as  they  were   the   only   industry   or   a   state-­‐of-­‐the-­‐art   ETP   was   already   in   place.   The   medium   and   small  

companies   were   all   in   favor   of   a   CETP,   which   would   enable   effluent   to   be   treated   in   a   holistic  manner,  and   reduce  costs   (for  a   small   company  an  ETP  can  be  a   third  of   the   total   investment).   In  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  76   December  2013  (Draft  23/12/13)  

May   2013   a   proposal   for   a   CETP   similar   to   Baddi-­‐Barotiwala’s   was   submitted   to   the   Industry  Minister.  

Views  on  economic  instruments  

Most   of   the   companies   are   currently   benefitting   from   Government   schemes   such   as   area-­‐based  excise  duty  exemption  (valid  for  10  years  and  applicable  to  2018  in  one  case),  VAT  exemption  and  a  0.5%  sales   tax  subsidy.  One  company  has  applied   for   tax  concessions  and   transport   subsidy.  All  of  

the   companies   would   partake   of   a   soft   or   subsidized   loan   scheme   for   implementing   pollution  controls,  or  to  cover  the  purchase  of  other  types  of  equipment  or  operational  costs,  if  offered.  It  was  suggested  that  facilities  could  be  upgraded  if  the  Government  made  concessionary  funds  available.  

Voluntary  certifications  in  place  include:  ISO  22000  obtained  by  2  companies  (a  general  derivative  of  

the  ISO  9000  system  particular  to  the  food  safety  industry);  and,  ISO  14001  (1).  A  few  companies  are  considering  seeking  ISO  900,   ISO  14001  and  OHSAS  18001  certification51.  Others  hold  the  view  that  these  certifications  are  unnecessary  given  the  strict  food  safety  standards.  

Many   companies   are   focused   on   energy   efficiency.   Investments   in   the   past   10   years   to   improve  

energy   efficiency   include:   (i)  conducting   energy   audits   to   identify   energy   saving   practices;  (ii)  monitoring  of  energy  consumption/efficiency  (electric,  water,  fuel  consumption);  (iii)  investments  to   reduce   steam   and   heat   loss;   (iv)  use   of   CFL   bulbs   to   minimize   electricity   consumption;  

(v)  motivating   staff   to  move   to   an   energy   conservation   culture,   such   as   switching-­‐off   lights   during  lunch   hours;   (vi)  setting   energy   consumption   targets   based   on   efficient   energy   use;   and,  (vii)  installation  of  capacitors  to  improve  power  factor  control.  

One   company   spent   about  Rs  500-­‐600,000  on  energy  efficiency  measures.   The  problem  of   energy  

supply  is  in  the  distribution.  The  electricity  supply  fails  about  15-­‐20  times  a  day.  

Most  of   the  companies  maintain  personal  accident   insurance,  boiler   insurance,  medical   insurance,  workmen  compensation,  as  well  as  insurances  for  fire,  earthquake,  assets,  and  stock-­‐in-­‐transit.  One  

(small)   company   has   no   insurance   coverage.  One   company’s   insurance   premium   is   Rs  1.80  million  per  year.  [PLI  not  applicable  as  it  is  below  the  levels  required].  

Recommendations  to  support  industries  in  Una,  provided  by  the  companies  are:  

• Development  of  infrastructure  in  Tahliwal  Industrial  Area,  which  is  lacking.  

• Workshops,  seminars,  and  updates  of  the  latest  information  (e.g.  on  carbon  trading)    

• Promotion   of   pine   needles,   e.g.   through   a   subsidy   for   bundling   plants   and   transport,   as   a  

source   of   fuel   for   industrial   boilers.   Pine   needles   have   a   good   calorific   value   and   their  collection  and  use  as  a  fuel  would  have  the  added  benefit  of  reducing  the  risk  of  forest  fires.    

• Development  of  centralized  waste  disposal  facilities  –  for  effluent  and  solid  waste  

   

                                                                                                                         51  Note:   ISO  45001   is  an   international  standard  being  developed   intended  to  replace  the  British  Occupational  and  Health  Standard  OHSAS  18001.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  77   December  2013  (Draft  23/12/13)  

§11   Cost  Effectiveness  

Role of Cost Effectiveness Analysis Cost-­‐effectiveness   analysis   (CEA)   is   a   technique   used   to   try   to   achieve   the   least-­‐cost   means   of  achieving   a   certain   target.   The   target   is   set   independently   and   is   regarded   as   exogenous   –   or  

external   to   –   the   actual   optimization   decision.   In   environmental   management   or   pollution  abatement  decisions,  CEA  can  be  used  by  a   firm,   for  example,   to  determine  which  of  a  number  of  options  is  cheapest  to  achieve  a  given  level  of  regulatory  standard.  But  CEA  also  embodies  a  larger  

domain   of   analysis   including   social   cost-­‐effectiveness   analysis   (CEA   from   a   social   perspective),  constrained  cost-­‐benefit  analysis   (which  seeks  partially   to  optimize  also   the   target  pollution   level),  and  comparative  cost  analyses  across  different  pollutants.  We  here  look  at  how  each  of  these  might  

be   incorporated   into  the  HP  SEA  through  considering  how  methodological   issues  can  constrain  the  types  of  analyses  that  are  possible.  

CEA at the Firm Level CEA  for  a  firm  is  normally  represented  as  a  pollution  abatement  function.  “Pollution  abatement”  is  seen  as  the  output,  and  the  marginal  cost  of  abatement   is  associated  with   incremental  changes   in  pollution   abatement.   Zero   abatement   has   zero   cost,   and  100%  abatement  will   generally   have   the  

highest   total   cost;   the  marginal  abatement  cost   is   the   slope  of   the   total   cost   function   that   can  be  presented  in  terms  of  cost  per  %  of  pollution  reduction.  For  a  single  pollutant  generated  by  a  single  firm  facing  a  regulated  maximum  pollution  level,  the  firm  will  select  the  technology  that  generates  

the  least  cost  to  achieve  that  level.  Abating  less  is  not  an  option;  abating  more  imposes  unnecessary  costs.   CEA   in   this   case   requires   information   about   the   firm’s   level   of   output,   the   processes  generating  pollutants,  and   the   technologies   (and   their  costs)  available   for   reducing  pollution.  Such  

costs  are  generally  industry  specific  and  depend  on  things  like  location  and  vintage  of  the  industry:  retrofitting   existing   operations   is   generally   more   expensive   than   incorporating   best   available  technology  into  new  operations.  

If   there   is  more  than  one  firm   in   the   industry,  and  each   firm  produces  different  marketable  goods  

but  the  same  pollutant,  then  each  firm  would  (to  extend  the  above  scenario)  still  optimize   its  own  pollution   levels   to   meet   the   regulated   standards.   This   is   the   classical   situation   of   command   and  control.  The  cost  of  abatement  is  the  sum  of  the  costs  from  the  two  firms.  

CEA at the Social Level At   a   social   level,   however,   different   factors   come   into   play.   First,   if   a   planner   is   interested   in  minimizing  the  overall  cost  burden  to  firms,  then  she  should  be  indifferent  as  to  who  undertakes  the  

abatement.   If  two  firms  are  in  different   industries  (or  are  of  different  vintage  or  scale)  then  it  may  make  sense  to  let  one  firm  pollute  more  (if  that  firm  has  very  high  costs  of  abatement)  and  count  on  the   low   abatement   cost   firm   to   do   most   of   the   abatement:   market   based   mechanisms   can  

potentially   achieve   such   an   outcome.   A   level   pollution   tax,   for   example,   would   cause   the   high  abatement  cost  firm  to  keep  polluting  (as  it   is  cheaper  to  pay  the  tax)  and  the  low  abatement  cost  firm  to  reduce  pollution  loads  significantly  (as  it  is  cheaper  to  put  in  place  the  technology  than  pay  

the  tax).  Similarly,  a  “market  creation”  solution  essentially  tells  polluters  they  are  allowed  to  pollute  collectively   to  a   certain   level:   the   individual   firms  will   then  negotiate  an  optimal   level  of  pollution  reduction.   In   targeting   single   pollutants   among   firms   with   different   cost   structures,   market  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  78   December  2013  (Draft  23/12/13)  

mechanisms  can  be  effective:  the  use  of  taxes  or  permits  in  controlling  GHG  emissions  falls  into  this  category  and  has  seen  some  significant  success  globally.  

It   is   noted   that   if   all   firms  have   similar   cost   structures,   then   the  use  of   taxes  or  markets  may  not  

achieve   a   different   outcome   than   a   strict   regulatory   stance:   in   that   case   the   only   difference   is   in  transactions  and  regulatory  costs.  The  industry   level  CEA  at  that  stage  must  then  also  consider  the  different  levels  of  monitoring  costs,  collection  compliance,  or  other  costs  borne  by  the  firms  or  the  

regulators.   The   costs   of   the   compliance   system   can   differ   significantly   among   regulators   and  regulatory   instruments;  some  control  mechanisms  are  relatively   inexpensive  compared  to  complex  tax  and  charge  schemes.  

Another   social   concern   is   setting   the   pollution   target   in   the   first   place.   From   a   regulatory  

perspective,  ambient  conditions  (in  water  or  air)  present  the  desired  quality  of  a  receiving  medium  or   environment.   People   need   breathable   air;   people   need   drinkable   water;   industries   and   farms  need  water   free  of   some  but  not  all   contaminants.  But   if   the   receiving  medium  takes   loads   (often  

expressed   as   discharge   rates)   from   different   polluters,   then   the   regulator  must   work   out   how   to  apportion  abatement  across  a  wide  range  of  users.  Also,  she  is  aware  that  –  because  some  level  of  pollution   is   either   tolerable  or   can  be   assimilated  by   the  environment  –   the   “target”   itself   can  be  

moved  up  or  down  depending  on  tolerance  or  assimilative  capacity.52  Setting  of  this  target  generally  depends  on  the  potential  benefits  associated  with  pollution  abatement:   if  there  are  many  benefits  from  having  a  clean  environment,  then  it  may  be  warranted  to  set  targets  higher  and  impose  higher  

costs  on  the  users.  But  the  setting  of  the  target  level  technically  depends  concurrently  on  knowledge  of   the   cost   functions   and   knowledge   of   all   of   the   benefits.   In   this   scenario,   the   planner   needs   to  know   all   of   the   industrial   costs   associated  with   abatement,   and   also   the   benefits   associated  with  

different  levels  of  pollution  targets.  For  this  reason,  we  have  paid  attention  elsewhere  in  this  study  (Chapter  4)  to  questions  of  human  and  ecosystem  health:  benefits  of  improved  health  can  be  cast  in  

monetary  terms.  In  this  context,  CEA  needs  minimally  to  be  able  to  reflect  different  compliance  costs  at   different   emission   or   effluent   targets;   ideally,   however,   it   also   (from   the   social   perspective)  reflects  favorably  some  of  the  environmental  benefits  associated  with  improved  social  productivity  

or  reduced  health  care  costs.  In  simple  terms,  benefit  adjustments  reduce  costs  in  the  social  CEA.  

The  complexity  does  not  stop  there   from  a  planner’s  perspective.  To   this  stage,  we  have  assumed  that   there   could   be   multiple   firms   in   multiple   industries,   but   we   have   concentrated   on   a   single  pollutant.   If   there  are  different   types  of  pollution,   from  different   firms,   and   those  pollutants  have                                                                                                                            52  In  addition,  the  existence  of  assimilative  capacity  in  the  environment,  or  some  minimum  level  of  tolerance  among  those  affected,   can   lead   to   serious   inequities   in   any   type  of   regulation   (CAC  or  MBI).   It   is   not   uncommon   for   it   to   take   some  critical  mass  of  polluters  to  comply  to  a  standard  before  some  effect   is  noticed.  This   implies  that  the  marginal  benefit  of  the   first   reductions   in   pollution   is   small   or   even   zero:   if   this   were   the   only   criterion,   it   implies   that   the   social   costs   of  compliance  far  exceed  the  benefits.  It  is  only  when  the  cumulative  abatement  reaches  a  certain  level  that  benefits  start  to  become   realized:   the   “lumpiness”   of   marginal   abatement   cost   and  marginal   benefit   curves   complicates   the   arithmetic  considerably,  and  may  in  fact  make  pollution  control  in  some  situations  unnecessary  where  there  are  just  a  few  polluters.  In   his   studies  of   the  Ganga  basin,   for   example,  Markandya   (2011)  moreover   shows   that   individual   preferences   can   also  introduce  non-­‐linearities  into  the  overall  optimization  process;  the  very  timing  of  a  project  in  relation  to  other  activities  in  the  basin  can  affect  its  economic  desirability,  even  with  no  changes  in  its  technical  specifications  or  costs.  The  nature  of  the  benefits   showed   that   the   first   adopters   of   pollution   reduction   faced   a   rather   flat   benefit   function   (because   it   had   little  impact   on   overall   water   quality   that   was   of   interest   to   users   and   non-­‐users)   and   that,   similarly,   the   last   adopters   of  pollution  reduction  contributed  little  to  the  marginal  benefits  of  users  and  non-­‐users  (because  water  quality  was  by  then  more  than  adequate  for  all  derived  benefits).  Those  adopters  that  are  in  the  “middle”  –  through  making  noticeable  gains  in  water  quality  that  approach  or  cross  selected  preference  thresholds  –  generally  have  the  greatest  impact  on  benefits.  The  net  benefit  of  a  single  sub-­‐project  is  thus  dependent  on  the  timing  and  scale  of  other  available  projects  in  the  basin.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  79   December  2013  (Draft  23/12/13)  

different   impacts   on   a   receiving  medium,   then   some  method  of   standardizing   across   pollutants   is  necessary  if  one  were  to  conduct  a  CEA  from  a  social  perspective.  But  this  is  where  we  run  into  the  

methodological   limits   of   CEA.  Although  we   can   compare   the   cost-­‐effectiveness  of   BOD   reductions  from   domestic   and   industrial   loads,   it   is   not   possible   to   compare   (say)   air   pollution   with   water  pollution,  or   industrial  BOD  loads  with  sediment  or  chemical   loads.  Some  pollutants,  such  as  those  

associated   with   APIs   in   the   pharmaceutical   industry,   have   no   universally   agreed   method   of  comparison   to   other   pollutants   as   their   impact   may   be   determined   by   the   starting   chemical  characteristics  of  the  receiving  medium.  Standardizing  across  pollutants  is,  therefore,  not  generally  a  

helpful   exercise   using   numerical  methods.  What   is   possible,   however,   is   the   use   of   simple   index-­‐based   approaches   to   reflect   the   different   impacts.   Such   approaches   can   be   as   simple   as   rankings  that  designate  detrimental   impacts  of  pollution  as  “low,  moderate,  high  or  critical”:   the  CPBC  and  

the   SPCBs   already   use   such   rankings   in   determining   whether   ambient   air   quality   is   acceptable   in  urban   settings.   In   addition,  more   complex   indices   can   be   constructed,   but   these   are   usually   built  around   final   impact   or   ambient   conditions.   Annex  F,   for   example,   shows   how   the   Comprehensive  

Environmental  Pollution   Index   (CEPI)  can  be  used  for  Himachal  Pradesh  through  combining   impact  scores   for   air,  water   and   land.   In   all   cases,   it   is   clear,   however,   that   the  approaches   are   relatively  information   rich:   if   there   is   a   lack   of   reliable   underlying   information,   the   indices   themselves   are  

equally  unreliable.  

CEA of HP Industries Whether  one  is  conducting  analyses  of  private  or  social  costs  of  pollution  abatement,  and  whether  

one   is   considering   standard   control   methods   or   MBIs,   all   analyses   rely   at   their   core   on   basic  information   on   the   industry,   its   cost   structures,   and   its   abatement   opportunities.   Abatement  possibilities  and   their   costs  are   relatively  well  understood,  and  are  available   through   international  

case  studies  or  through  broad  studies.  The  World  Bank  Industrial  Pollution  Projection  System  (IPPS)  is  an  example  of  a  database  that  has  been  used  to  estimate  typical  compliance  costs  for   industries  and  industrial  sub-­‐groups.  Similar  databases  also  provide  typical  pollution  coefficients  by  industry  or  

sub-­‐industry  for  major  criteria  pollutants.  

As  a  second  step,  it  is  also  clear,  however,  that  some  measure  of  the  benefits  can  inform  whether  it  makes  sense  to  impose  pollution  abatement  at  all  on  some  industries.  As  described  previously,  one  of   the   criteria   for   selecting   priority   industries   is   the   actual   cost   of   compliance:   if   the   cost   of  

compliance   is   disproportionately   large   compared   to   the   benefits,   then   one   should   potentially  reconsider  the  target  level  of  pollution  abatement  for  that  industry.  

Finally,  in  evaluating  the  use  of  different  economic  instruments,  the  additional  relevant  information  

in  any  CEA  is  the  administrative  cost  of  compliance  borne  both  by  industry  and  by  the  regulator.  In  some   instances,  such   information  can  be  based  on  current  regulatory  costs,  while   in  others   it  may  also   require   use   of   a   qualitative   index,   which   reflects   order-­‐of-­‐magnitude   relative   costs   among  

different  instruments.    

At   the   practical   implementation   stage,   such   analyses   cannot   be   done   for   every   pollutant   in   every  industry   for   every   type   of   regulatory   instrument.   Further   below,   some  of   the   specific   information  constraints   in   Himachal   are   treated   in   greater   detail.   Addressing   these   constraints   effectively  

(through  institutional  interventions)  will  also  be  a  priority  for  capacity  building  within  HP.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  80   December  2013  (Draft  23/12/13)  

Context of Public Finances Cost  effectiveness  analysis   also  depends  on   the   state  of  public   finances,   for   a  number  of   reasons.  First,   as   described   elsewhere   and   above,   any   type   of   intervention   (with   the   exception   of   purely  voluntary  actions)   to  control  pollution  usually  entails  some  government  expense.  The  expense  can  

be   relatively   passive   if   it   is   purely   administrative,   or   it   can   be   relatively   active   if   it   involves   grant  provision   or   subsidies.   Frequently,   it   also   entails   monitoring   and   enforcement   compliance.   Costs  associated  with  any  of  these  are  part  of  the  “cost”  metric  in  cost  effectiveness.  Second,  the  ability  of  

the   state   to   uphold   standards   or   technology   requirements   is   often   a   function   of   government  capacity,   which   includes   both   the   availability   of   financial   and   trained   human   resources.   In   the  absence   of   such   resources,   the   effectiveness   of   any   intervention   may   be   very   low:   this   is   the  

“effectiveness”  role  of  the  state  in  the  overall  effectiveness  formulation.  In  both  of  these  instances,  it  is  clear  that  public  finances  play  a  role  in  CEA.  Ideally,  for  a  pure  theoretical  CEA  one  would  want  to   know   the   incremental   cost   to   the   public   of   a   specific   regulatory   scheme   in   terms   of   its   direct  

outlays,   less   its  direct   receipts,  plus   its   indirect  administrative  burdens.  This   level  of   information   is  usually,  however,  elusive.  Moreover,   if  budgets  are  highly  constrained  then   it   is  often  best  to  seek  (minimally)   budgetary   neutral   interventions   that   have   no   net   cost   to   the   state.   The   hybrid  Green  

incentive  Scheme  detailed  in  Chapter  6  is  of  this  nature:  its  design  permits  a  modest  environmental  charge   component   applied   to   all   polluters   to   be   used   to   finance   a   subsidy   scheme   targeted   to   a  particularly  intractable  set  of  polluters  (SMEs).  

SPCB  Revenues  and  Expenditure  

The  SPCB  has  two  general  sources  of  funds:  own  resources  and  external  assistance.  The  sources  of  its  “own”  resources  include  the  cess  reimbursement  from  the  GOI;  consent  fees  (to  establish  and  to  operate)   collected   from   industries;   interest   on   investments;   and   minor   revenue   sources   such   as  

consultancy,  sample  testing  fees,  appellate  fees,  and  receipts  from  fines,  forfeitures,  forms,  etc.  

External   financing  sources   include   funds   from  the  GOI,  and  funds   from  the  state  and  the  CPCB  for  specific   projects   such   as   GEMS,   National   Air   Quality   Monitoring   (NAAQM),   Monitoring   of   Indian  National  Aquatic  Resources  (MINARS),  and  clean  technology.  Grants  might  also  be  provided  by  the  

State.  

Information  on  the  sources  of  revenue  for  the  HP  PCB  was  obtained  from  its  Annual  Report  2011-­‐12.  This  document  provides  aggregated  data  on  receipts  and  expenditures  shown  in  Table  11.1:  

Table  11.1:  HP  PCB  Receipts  and  Expenditure  Summary  (Source:  HP  PCB  Annual  Report  2011-­‐12)  

Year  2010-­‐2011   Rs  lakhs   Rs  lakhs  

Receipts  PCB   1,663.34    

Receipts  (Projects)   112.4    

Total  Resources     1,775.74  

Expenditure  Board   624.29    

Expenditure  Projects   109.15    

Total  Expenditure     733.44  

Surplus     1,042.30  

Information  on  PCB  activities  provides  data  on  cess  and  consent  fees  collection.  Cess  remittance  to  

the   Consolidated   Fund   of   India,   and   cess   reimbursement   from   the   central   government   (about   15  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  81   December  2013  (Draft  23/12/13)  

percent  of  HP’s  remittance),  are  shown  below  (Table  11.2).  Consent  fees  collected  by  HP  PCB  totaled  RS  134,581,252.  

Table  11.2:  HP  PCB  Cess  Summary  (Source:  HP  PCB  Annual  Report  2011-­‐12)  

Cess  Assessment  (Rs)  

Cess  Realization  (Rs)  

Cess  Remitted  to  GOI  (Rs)  

Cess  Reimbursement  (Rs)  

9,792,224   7,489,892   8,567,619   1,207,556  

The   data   on   cess   and   consent   fee   receipts   permit   a   slight   disaggregation   of   the   HP  PCB   receipts.  Table  11.3   shows  a  breakdown  of  HPPCB’s   total   resources   into   cess   reimbursement,   consent   fees,  

project   receipts,   and   “other”.   Project   receipts   are   external   assistance   for   targeted   activity,   and   as  such   remain   unchanged   from   Table  11.1.   The   “other“   category   is   a   residual   calculation,   which   is  necessary  due  to  a  lack  of  data.    

Table  11.3:  HP  PCB  Summary  of  Receipts  by  Source  (Source:  HP  PCB  Annual  Report  2011-­‐12)  

  Rs  lakhs   US$   Percentage  of  Total  Resources  

Cess  Reimbursement   12.08   20,126   0.7  %  

Consent  Fees   1345.81   2,243,021   75.8  %  

Projects   112.40   187,333   6.3  %  

Other  sources   305.45   509,087   17.2  %  

Total   1,775.74   2,959,567   100  %  

For   some   states,   the   collection   of   the   cess,   as   provided   by   the  Water   (Prevention   and   Control   of  Pollution)  Cess  Act,  1977,  is  a  significant  source  of  revenue  for  the  SPCB.  Those  are  states  that  have  a  

large   number   of   water   intensive   industries.   HP   is   not   such   a   state.   For   the   year   2010-­‐11,   the  contribution  of  the  cess  to  HP  PBC  total  resources  was  less  than  1%  (Table  11.3).    

By   far,   the   HP  PCB   derives  most   of   its   resources   from   the   collection   of   consent   fees:   in   2010-­‐11,  consent   fees  accounted   for  75%  of   its   total   receipts.   States   set   their  own  consent   fee   structure   in  

terms  of  the  amount  charged  and  the  classification  of  industries  subject  to  the  charge.  The  range  of  consent   fees   for   HP   PCB   starts   at   a   minimum   fee   of   Rs  1500   (US$25)   for   industries   with   capital  investment   under   Rs  10  lakh   and   rises   steadily   to   Rs  1  million   (US$16,000)   for   firms   with   capital  

investment  above  Rs  10,000  crores.  The  Consent  to  Establish/Operate  is  charged  once  and  valid  for  one  year.  Afterward,  renewal  fees  are  40  percent  of  the  original  CTE/CTO  fee.  

Lack   of   data   prevents   any   further   disaggregation   of   the   revenue   sources.   The   “project”   receipts,  funded   externally,   will   have   targeted   activities   of   general   concern   to   the   CPCB   or   the   state.   The  

residual   “other”   category   will   contain   a   mix   of   revenues   from,   as   mentioned   above,   lab   testing,  consultancy,  fines,  etc.  It  would  also  contain  interest  on  investment.  

The  HP  PCB   has   a   relatively   healthy   amount   of   reserves   in   available   for   investment.   In   2010-­‐11   it  finished  with  a  surplus  of  over  Rs  1,042  lakh  (US$1.7  million).  This  amount  brought  HP  PCB’s  closing  

balance  (the  accumulated  surpluses)  to  Rs  8,548  lakh  (US$14.3  million).  Even  a  low  interest  rate  on  such  a  balance  would  provide  a  significant  portion  of  the  residual  or  “other”  income.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  82   December  2013  (Draft  23/12/13)  

Information Constraints in HP Industries The  diagnostic  exercise  of  data  collection,  interviews,  case  studies,  and  MSME  economic  instrument  design  provided   substantial   insights   into   the   state  of   information  available   for   conducting  CEAs  of  the  sort  described  in  this  chapter.  In  brief,  the  state  of  the  current  information  is  highly  constrained  

and   is   inadequate   for  undertaking  detailed  comprehensive  analyses.  At  best,   information  exists   to  provide   indicative   examples   of   cost-­‐effectiveness   to   communicate   the   concepts   inherent   in   such  tools.   The   tool   we   favor   in   this   context   reverts   back   to   simple   cost-­‐curve   analysis   that   might   be  

undertaken  at   the   firm,   industry,  or  economy-­‐wide   level.  Such  templates  are  provided   in  Annex  G,  and  indicative  results  are  provided  further  below.  At  this  juncture,  however,  we  enumerate  some  of  the  more  significant  constraints  as  follows:  

Ø Industry  classification.   India’s  classification  system  for   industries   is   in   itself  not  commensurable  with  

Standard   Industrial   Classifications   used   in   standard   international   inventories. 53  This   means   that  international   pollution   coefficients   are   unreliable   if   used   in   India,   and   places   a   greater   onus   on  

analysts  to  use  reliable  pollution  coefficients  for  the  specific  industries  in  India.  This  is  what  motivated  the  collection,  assessment  and  correction  of  SPCB  pollution  data  contained  in  Annex  F.  

Ø Pollution  coefficient  information  in  Himachal  Pradesh.  The  collection  of  pollution  loads  from  various  

polluters   is  being  done  with   some  care  and   regularity   for   criteria  pollutants.  These   loads,  however,  need  to  be  more  accurately  attributed  to  a  firm’s  scale  of  operations  (preferably  in  terms  of  output).  

At   present,   the   only   scale   indicator   is   a   simple   index   (small,   medium,   large)   usually   based   on  investment  rather  than  output;  employment  and  water  usage  are  also  potential  proxies,  but  they  are  

poor   substitutes   for   firm   revenues  or   output.   In   brief,   this   information   is   usually   collected   in   other  jurisdictions  through   industrial  surveys  that  get  a  better  handle  on  a  firm’s  production  function  and  

technology.   The   HP  SEA   survey   of   18   firms   (out   of   more   than   300)   through   the   case   studies   is  informative   to   a   degree   but   a   broader   effort   is   warranted   for   any   proper   optimization   and   design  effort.  

Ø Data  quality.  Even  though  information  is  being  collected  by  the  state,  it  is  not  necessarily  reliable  for  analytical  work  of  the  sort  required  by  CEA  until  it  has  been  assessed  for  quality  and  corrected  where  

necessary.  Incorrect  classification  of  firms,  incomplete  records,  and  questionable  entries  do  not  lend  confidence   to   any   results   based   on   such   information   bases.   It   is   acknowledged   that   the   current  

information  collection  may  be  adequate  and  “fit  for  purpose”  if  the  purpose  is  monitoring  individual  firms   and   reporting   the   statistics   of   general   activities;   it   is   not,   however   adequate   for   optimization  assessments  involving  cost  minimization.  

Ø Government   costs.   Government   budgeting   information   is   inadequate   to   attribute   costs   to   specific  activities  associated  with  pollution  control.  

Ø Confidentiality   of   information.   The   information   being   requested   from   firms   needs   to   be   done   in   a  

context  where   the  confidentiality  of   that   information  can  be  guaranteed.  This   is  best  accomplished  within  a  formal  statistical  survey  rather  than  interviews.  

A  major  implication  of  the  above  for  future  use  of  CEA  in  economic  instrument  design  is  that  some  considerable   institutional   strengthening   and   capacity   building   is   warranted.   This   is   best   done  

through  a   three-­‐pronged  approach  consisting  of:   (i)  creation  of   statistical   infrastructure   relating   to  pollution  loads,  industry  production  activities,  and  industry  operating  practices;  (ii)  capacity  building  of   human   resources   to   implement   and   interpret   the   information   gathered   through   this  

infrastructure;  (iii)  provision  of  financial  resources  either  through  standard  budgetary  allocations  or  

                                                                                                                         53  The  World  Bank  Industrial  Pollution  Projection  System  (IPPS)  database,  for  example,  contains  such  pollution  loading  from  different  industrial  technologies  (pollution  intensity  coefficients).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  83   December  2013  (Draft  23/12/13)  

through   instruments   that  are  themselves  designed  to  raise  revenues  to   that  purpose   (examples  of  this  included  the  Environmental  Fee  described  in  Chapter  6  but  another  approach  is  to  use  the  Cess  

to  a  greater  degree  as  it  is  in  other  states).  

Approach, Assumptions & Results As   noted   above,   the   approach   undertaken   for   a   CEA   is   largely   constrained   by   various   data   and  

structural  limitations.  The  HP  SEA  thus  provides  an  indicative  assessment  of  firms  and  industries  on  best  available  information.  The  relevant  assumptions  and  results  follow.  Annex  G  provides  additional  information  relating  to  the  simplified  cost  effectiveness  templates  used  in  support  of  these  analyses.  

[block  of  results  to  be  completed  and  included  here  in  form  of  summary  table.]  

Summary There  are  a  number  of  key  outcomes  of  this  diagnostic  of  cost-­‐effectiveness  issues.  

First,  we  need  to  place  a  number  of  the  costs  within  the  context  of  overall  benefits  associated  with  the   interventions.  As  described   in  Chapter  4,   annual   health  benefits   of   eliminating  pollution   in  HP  

are  of  the  order  of  Rs  490  million  (US$8  million);  this  is  relatively  low  by  Indian  standards  because  of  the  low  level  of  urbanization  in  the  State,  and  the  relatively  low  population  overall.  The  cost  of  any  series   of   aggressive   pollution   reduction   interventions   may   quickly   outstrip   these   benefits   to   the  

point  that  the  state  is  regulating  beyond  the  optimal  amount.  It  is  incumbent  on  regulators  therefore  to  focus  on  low-­‐cost,  high  effectiveness  interventions.  Many  of  these  are  already  obvious  –  and  were  easily   identified   by   stakeholders   during   consultations   –   without   necessarily   reverting   to   detailed  

studies.  These  include  reliance  on  voluntarily  methods,  on  strengthening  disclosure  methods,  and  on  using   facilities   (such  as  CETPs)   that  are  capable  of  accommodating  a  diversity  of  waste  streams   to  obtain  greater  efficiencies.  They  also  rely  on  targeting  in  high  priority  zones  such  as  those  identified  

in  this  HP  SEA.  

Second,   if   economic   instruments   are   to   become   a   mainstream   “next   policy”   initiative   within   the  state,   investment   in   additional   information   infrastructure   is   warranted   to   guide   future   planning.  Industrial   surveys,   human   capacity   building,   and   provision   of   adequate   financial   resources   are   all  

part  and  parcel  of  such  a  commitment.  

[other]      

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  84   December  2013  (Draft  23/12/13)  

PART  III   WAY  FORWARD    

§12   Summary  of  Recommendations  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  85   December  2013  (Draft  23/12/13)  

§12   Summary  of  Recommendations  This  chapter  summarizes  the  main  recommendations  arising  from  this  SEA.  At  the  outset,   it  should  be  noted  that  a  key  purpose  of  this  volume  is  to  serve  as  an  ongoing  reference  for  future  planning  of  

economic   instruments   for   environmental   management   in   the   industry   sector.   As   such,   it   is   a  technical  resource  that  can  be  built  upon  through  internal  capacity  building  within  key  stakeholders  in  Himachal  Pradesh.  The  recommendations  in  this  chapter,  therefore,  should  be  taken  as  a  menu  of  

options   for   future   consideration   as   capacity   continues   to   build.  Near-­‐term  priorities   are   identified  both  in  terms  of  capacity-­‐building,  as  well  as  in  practical  matters  to  provide  pilot  activities  that  will  

help   institutions   and   decision-­‐makers   become   more   familiar   with   economic   instruments   such   as  those   relating   to   the   DPL  2   trigger.   In   addition,   the   recommendations   here   reinforce   or   augment  initiatives   already   taken   in   the   State:   notably   this   includes   the   pilot   schemes   and   associated  

institutional   changes   contemplated   in   the   PES   Notification   of   2  November   2013   (FFE-­‐B-­‐C   (15)-­‐3/2005-­‐11).  

In  principle,  the  core  recommendations  included  are:  (i)  develop  general  statistical  infrastructure  for  planning   of   economic   instruments   (industry   surveys   &   human   resource   training);   (ii)  integrate  

industry   information   into   planning   associated  with   PES  Notification;   (iii)  incentivize   zero-­‐   and   low-­‐footprint   industries;   (iv)  implement   staged   MSME   incentive   system;   (v)  design   and   implement  comprehensive   long-­‐term   incentive   system   for   all   industries.   Each   of   these   is   discussed   in   more  

detail  below,  and  summarized  in  matrix  form  in  the  Executive  Summary  Table  ES.1.  

Statistical Infrastructure The  HP  SEA  noted  the  mixed  quality  of  information  available  to  plan  optimally  an  appropriate  set  of  

economic   incentives;   some   considerable   institutional   strengthening   and   capacity   building   is  warranted.   This   is   best   done   through   a   three-­‐pronged   approach   consisting   of:   (i)  creation   of  statistical   infrastructure   relating   to   pollution   loads,   industry   production   activities,   and   industry  

operating   practices;   (ii)  capacity   building   of   human   resources   to   implement   and   interpret   the  information  gathered  through  this  infrastructure;  (iii)  provision  of  financial  resources  either  through  standard   budgetary   allocations   or   through   instruments   that   are   themselves   designed   to   raise  

revenues  to  that  purpose.  

Specific  initiatives  include  industry  surveys,  training  in  incentives,  increased  South-­‐South  dialogue  on  issues  related  to  industrial  pollution  (with  short-­‐term  focus  on  potential  visits  to  countries  polled  for  the  SMSE  systems),  and  improved  environmental  accounting  through  initiatives  such  as  the  Wealth  

Accounting  and  Valuation  of  Ecosystem  Services  (WAVES)  program.  

PES Notification & Industry Currently,   a   PES   initiative   is   being   developed   as   a   part   of   the   DPL.   A   cross-­‐department   team   of  

technical   experts   from   the   Forest   Department   has   worked   to   produce   an   assessment   of   water  regulation  and  soil  retention  services  of  forests  for  hydropower  generation.  Also,  the  GoHP  piloted  a  Payment  for  Environmental  Services  (PES)  scheme  in  Palampur  and  provided  for  PES  in  the  current  

Catchment  Area  Treatment  Plan   Implementation  Guidelines,  which   includes  a  provision   for  PES.  A  GoHP  policy  on  PES  was  notified  in  November  2013.  Among  its  objectives,  the  notification  calls  for  a  sustained   flow   of   ecosystem   services,   and   enabling   experimentation   and   pilots   that   inform   and  

refine   ecosystem   service   approaches;   incentives   are   linked   to   the   sustained   flow   of   ecosystem  services.   Immediate   priority   elements   of   the   PES   program   include   quantification   of   ecosystem  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  86   December  2013  (Draft  23/12/13)  

service   flows;   (ii)  stakeholder   identification;   (iii)  stakeholder   engagement;   (iv)  determination   of  institutional   arrangements;   (v)  determination   of   types   and   levels   of   payments;   and,  

(vi)  incorporating   the   ecosystem   approach   into   decision-­‐making.   Other   priorities   deal   with  regulatory   frameworks,   financial   arrangements,   monitoring,   capacity   building   with   other  departments,  and  safeguards  to  ensure  that  negative  impacts  are  not  just  shifted  from  one  region  to  

another   in   the   wake   of   enforcement.   Notably,   the   final   element   of   the   PES   Notification   calls   for  “concerned  departments”  to  “frame  operational  guidelines  from  time  to  time”.  For  the  Department  of   Industry,   this   latter   element  would  be  a   first   step   that  needs   to  be   taken.   It   should  be  noted  

that,   technically,   any   firm   that   is   an   “ecosystem   service   generator”   could   potentially   benefit   from  PES  and  such  schemes  thus  complement  any  programs  of  pollution  reduction.  

Low Footprint Industries Himachal   Pradesh  has   a   tradition  of   aggressively   promoting   its   Thrust   industries   through   a  mix   of  favorable   incentives.   These   incentives   were   largely   designed   to   promote   those   sectors   with   high  economic  potential,  while   also  discouraging   implicitly   those  with  negative   social   or   environmental  

externalities.   In   reviewing   these   incentives,   HP   may   also   consider   further   extensions   to   zero  pollution   or   “net   positive   impact”   industries,  which   –   because   of   their   nature   or   because   of   their  operations   –   receive   additional   incentives   for   sound   environmental   management.   Biotech   and  

nanotech   are   examples   of   positive   impact   industries   by   nature.   Commercial   buildings   reflecting  positive   impact   (through   recycling   or   treating   the   waste   or   water   of   others,   for   example),   is   an  example  of  activities  with  positive  operational  impacts.  

The   findings   further   support   the   proposal   by   the   Department   of   Industry   and   the   Industry  

Association   in   Baddi,   which   would   like   to   develop   or   have   access   to   a   database   of   green  technologies.  An  efficient  mechanism  would  be  to  develop  a  technology  bank  at  the  national  level,  responsible  for  disseminating  information  on  new  technologies.  The  proposed  Green  Cell  within  the  

Department   of   Industry,   under   DPL  1,   has   not   been   established   and   remains   an   appropriate   way  forward.  [tbv:  check  against  DPL]  

MSME Incentive System The  MSME  scheme  is  described  in  detail  in  Chapter  6.  It  is  comprised  of  the  following  elements:  

Ø environmental  fee  tied  to  operating  permits  (on  pollution  discharge  with  exemptions);  

Ø capital  grant  provisions  for  environmental  technology;  

Ø soft  loan  scheme  for  MSME  support;  

Ø accountability  instruments;  and,  

Ø economic  incentives  associated  with  supply-­‐chain  management.  

Comprehensive Long-term System This   SEA   has   reviewed   a   wide   range   of   systems.   Any   of   these   may   in   some   circumstance   be  

appropriate   for  a   specific   target  or   reason.  At   this   stage,  however,   the   following   interventions  are  regarded  as  efficient  methods  that  can  be  applied  more  universally.  

Ø Scaled  elements  of  the  MSME  Scheme.  There  is  a  distinct  advantage  to  making  the  structure  of  this  

incentive  scheme  universal  to  all  industries  independent  of  sector  or  scale,  and  it  is  readily  adaptable  to  further  nuancing  within  such  structure.  For  example,  large  firms  may  be  eligible  for  only  partial  fee  

exemptions   and,   moreover,   soft   loans   in   such   instances   may   be   unavailable   or   available   only   for  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  87   December  2013  (Draft  23/12/13)  

partial   financing.   Increasing   the   scope   of   the   program   also   provides   a   firmer   basis   for   budget  neutrality  as  fees  on  large  industries  could  be  designed  to  create  a  net  inflow  for  relevant  subsidies  to  

smaller  firms.  Note  also  that  the  fee  may  be  supplemented  by  increases  in  the  cess;  the  cess  currently  in  HP  is  among  the  lowest  in  the  country.  

Ø Complementary  elements  to  the  MSME  Scheme.  SCM  is  a  powerful  mechanism  but  in  India’s  context  

still  would  benefit  from  state  facilitation.  Large  firms  selling  into  domestic  markets,  or  firms  with  little  ability  to  monitor  compliance  within  SMEs,  may  have  few  incentives  to  engage  in  quality  control  SCM.  

The   current   incentives   (which   create   “dirty   outsourcing”)   are   largely   a   consequence   of   this.   To  support  SMEs,  Government  may  also  consider  some  token  complementary  financial  assistance  (e.g.,  in  preparing  a  management  plan  for  SCM)  targeted  to  large  domestic  firms.  

Ø Spatial   planning   through   zoning.   Himachal   Pradesh   already   has   substantial   experience   with   spatial  zoning   through   the   designation   of   industrial   supports.   While   in   strict   terms   this   is   a   pure   CAC  

approach,   this   trend   should   continue,   as   it   places   a   physical   and   regulatory   ring-­‐fence   around  pollutants   in   a   way   that   makes   them   easier   (and   cheaper)   to   monitor   while   also   providing  

opportunities   for   using   common   waste   management,   recycling   and   re-­‐use,   and   waste   treatment  facilities.  Aggressive  use  of  spatial  planning  also  provides  opportunities  to  reduce  the  significance  of  

accidental  or  permitted   releases  of  pollutants;   industrial  parks  can  be   located   in  areas   that  are   less  disruptive   on   environmental   services   and   physically   separated   from  human   settlements.   Also,   they  

provide  a  basis  –  at   the  design  stage  –  of   introducing  principles  of  Green  Design  that   reduce  at   the  outset  the  energy,  water,  and  material  demands  of  the  activities  within  the  space.  

Other A  number  of  other  options  were   identified  during   the  course  of   the  HP  SEA.  Those  with  particular  long-­‐term  promise  include  the  following:  

Ø Rating   and  Disclosure   System.   This   system   is   currently   being   developed   for   HP   under   the   Inclusive  

Green  Growth  DPL.  Initially  this  is  likely  to  be  targeted  at  the  large  industries.  Once  in  place  there  is  the  opportunity  to  link  high  ratings  with  charge  exemptions,  while  revenue  from  charges  applicable  to  

less  highly  rated  companies  could  be  used  to  support  SMEs  in  terms  of  pre-­‐treatment  costs  or  CETP  charges.  In  addition  to  incentivizing  companies  to  be  environmentally  responsible,  the  establishment  

of  the  rating  and  disclosure  system  is  expected  to  enable  HP  to  be  more  ‘data  ready’  for  the  potential  application  of  other  economic  incentives.  

Ø GHG   Charges   or   Subsidies.   The   use   of   carbon   and   GHG   taxation   or   charges   is   currently   not   a  

significant  option  for  states  such  as  HP.   It  may,  however,   remain  as  an  option  over  the   longer  term  depending  also  on  national  policies  and   initiatives   in  other   states.  Providing  support   for  monitoring  

and   information   collection   relating   to   GHGs   is,   however,   potentially   beneficial   to   HP   and   to   large  firms;  access  to  carbon  markets  for  creation  of  emission  reduction  (ER)  credits  either  through  energy  

efficiency   initiatives,   decreased   emissions   of   complex   compounds,   or   reduction   of   GHGs   through  composting  of  organic  wastes  all  provide  opening  are  all  valid  methodologies   for  effectively  gaining  access  to  subsidies  through  carbon  credit  markets.  

Phasing & Financial Implications Table  ES.1   (in   Executive   Summary)   summarizes   the   above   in   terms   of   their   focus   on   phasing   and  priority.  Near-­‐   or   short-­‐term   activities  would   commence  within   a   2   year   time   horizon   (with   some  such  as  the  DPL  2  trigger  having  almost  immediate  effect).  Medium-­‐term  activities  would  commence  

implementation   within   5   years;   long-­‐term   activities   are   those   that   are   considered   over   a   time  horizon  that  goes  beyond  5  years.  At  this  stage,  budgetary  estimates  are  provisional  and  are  treated  as  order  of  magnitude  estimates.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  88   December  2013  (Draft  23/12/13)  

[note:  all  of  the  above  to  be  summarized  in  matrix  form  for  Executive  Summary.  Consider  repeating  matrix  here.]  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  89   December  2013  (Draft  23/12/13)  

ANNEXES    

Annex  A   References  

Annex  B   Key  Meetings  &  Participants  

Annex  C   Supplementary  Data  –  Industries  &  Criteria  Pollutants  

Annex  D   Supplementary  Valuation  Sources  &  Information  

Annex  E   Economic  Instruments  Framework  

Annex  F     Supplementary  Data  –  Miscellaneous  &  Case  Studies  

Annex  G   Cost  Effectiveness  Templates  

Annex  H   Maps  

 

[insert  photo]  

 

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  90   December  2013  (Draft  23/12/13)  

Annex  A   References  Central  Pollution  Control  Board.  2003.  Charter  on  Corporate  Responsibility  for  Environmental  Protection:  

Action  Points  for  17  Categories  of  Industries.  Government  of  India.  March.  

Central  Pollution  Control  Board.  2009.  Comprehensive  Environmental  Assessment  of  Industrial  Clusters.  Ecological  Impact  Assessment  Series.  Ministry  of  Environment  and  Forests.  December.  

Central  Pollution  Control  Board.  2011.  Annual  Report:  2010-­‐11.  Ministry  of  Environment  and  Forests  (MOEF).  

Das  S,  Chopra  K.  2012.  Towards  ‘green  growth’:  Measuring  the  trade-­‐off  between  conservation  of  protected  

areas  and  hydel  power  generation  in  an  ecologically  fragile  hill  state  of  Northern  India.  Discussion  Paper.  Beijer  Institute  of  Ecological  Economics  Discussion  Paper  Series  No.  234.  

Dasgupta  P.  2004.  Valuing  health  damages  from  water  pollution  in  urban  Delhi,  India:  a  health  production  

function  approach.  Environment  and  Development  Economics  9:83-­‐106.  Cambridge  University  Press.  UK.  

Government  of  Himachal  Pradesh.  2007.  State  of  Environment  Report.  Department  of  Environment,  Science  and  Technology.  

Government  of  Himachal  Pradesh.  2012.  Industries  Department  Annual  Administration  Report.  2011/12.    

Government  of  Himachal  Pradesh.  2013.  Economic  Survey  of  Himachal  Pradesh.  2012-­‐13.  Economic  and  Statistics  Department.  

Himachal  Pradesh  State  Pollution  Control  Board.  2011.  Annual  Report  2010-­‐11.  

India  Brand  Equity  Foundation.  2013.  Himachal  Pradesh:  The  Abode  of  Gods.  March.  www.ibef.org.  

Institute  for  Health  Metrics  and  Evaluation.  2010.  Global  Burden  of  Disease  2010.  Presentation  to  Dialogue  Workshop.  Centre  for  Science  and  Environment  and  Indian  Council  of  Medical  Research.  Presentation  at  Gulmohar  Hall.  India  Habitat  Centre,  New  Delhi.  February  13.  

Kumer  S,  Managi  S.  2009.  Economics  of  Sustainable  Development:  The  Case  of  India.  Springer.  New  York.  

Ministry  of  Environment  and  Forests.  Annual  Report  2011-­‐12.  Government  of  India.  

Ministry  of  Micro,  Small  and  Medium  Enterprises  –  Development  Institute.  2012.  Annual  Report  2011-­‐12.  Solan.  

Ministry  of  Micro,  Small  and  Medium  Enterprises  –  Development  Institute.  2009.  Micro,  Small  and  Medium  Enterprises  in  India:  An  Overview.  Development  Commissioner  (MSME).  Government  of  India.  

Ministry  of  Micro,  Small  and  Medium  Enterprises  –  Development  Institute.  2009.  Quick  Results  Fourth  All  India  Census  of  Micro,  Small  and  Medium  Enterprises:  2006-­‐2007.  Development  Commissioner  (MSME).  Government  of  India.    

Mukhopadhyay  K,  Chakraorty  D.  2012.  Water  pollution  in  India:  an  Input-­‐Output  Analysis.  Draft.  Paper  submitted  for  the  20th  IIOA  conference  in  Bratislava,  June  25-­‐29.  

Murty  MN,  James  AJ,  Misra  S.  1999.  Economics  of  Water  Pollution:  The  Indian  Experience.  Oxford  University  Press.  USA.  

Murty  MN,  Kumar  S.  2011.  Water  Pollution  in  India:  An  Economic  Appraisal.  India  Infrastructure  Report  2011.  http://www.idfc.com/pdf/report/2011/Chp-­‐19-­‐Water-­‐Pollution-­‐in-­‐India-­‐An-­‐Economic-­‐Appraisal.pdf  

OECD.  2008.  Environmental  Outlook  to  2030.  http://www.oecd.org/environment/indicators-­‐modelling-­‐outlooks/40200582.pdf  

Pandy  R.  2010.  Estimating  Sectoral  and  Geographical  Industrial  Pollution  Inventories  in  India:  Implications  for  Using  Effluent  Charge  Versus  Regulation.  The  Journal  of  Development  Studies:  41:1,  33-­‐61.  

World  Bank.  1995.  The  Industrial  Pollution  Projection  System  (IPPS).  Policy  Research  Working  Paper  WPS  1431.  Policy  Research  Department.  Environment,  Infrastructure,  and  Agriculture  Division.  March.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  91   December  2013  (Draft  23/12/13)  

World  Bank.  2001.  Environmental  Health  in  India.  Priorities  in  Andhra  Pradesh.  Environment  and  Social  Development  Unit.  South  Asia  Region.  October.  

World  Bank.  2005.  For  a  Breath  of  Fresh  Air:  Ten  Years  of  Progress  and  Challenges  in  Urban  Air  Quality  Management  in  India  1993-­‐2002.  Environment  and  Social  Development  Unit.  South  East  Asia.  

World  Bank.  2007.  Himachal  Pradesh:  Accelerating  Development  and  Sustaining  Success  in  a  Hill  State.  Poverty  Reduction  and  Economic  Management  Unit.  South  Asia  Region.  

World  Bank.  2009.  Himachal  Pradesh  Institutional  Assessment  Environmental  Sector  Part  A:  Issues  –  Priorities  and  their  Management;  and  Part  B:  Organizational  Assessment.  May.  

World  Bank.  2011.  Energy  Intensive  Sectors  of  the  Indian  Economy:  Path  to  Low  Carbon  Growth.  Sustainable  Development  Department.  South  Asia  Region.  

World  Bank.  2012.  DPL  to  Promote  Inclusive  Green  Growth  and  Sustainable  Development  in  Himachal  Pradesh.  August  6.  

The   following   documents   were   considered   and   accessed   in   describing   the   lessons   from   other  countries  relating  to  MSMEs.  

General  Bernstein  JD.  1997.  “Chapter  6  –  Economic  Instruments”,  in  Helmer  H,  Hespanhol  I  (eds).  Water  Pollution  

Control  –  A  Guide  to  the  Use  of  Water  Quality  Management  Principles.  WHO/UNEP.  

Blackman  A.  2009.  Alternative  Pollution  Control  Policies  in  Developing  Countries:  Informal,  Informational  and  Voluntary.  Resources  for  the  Future  Discussion  paper  

Bluffstone  RA.  2000.  Environmental  Taxes  in  Developing  and  Transition  Economies.  Department  of  Economics,  University  of  Redlands  (also  see:  Journal  of  Public  Finance  and  Management).  

Murty  MN,  Kumar  S.  2011.  Water  Pollution  in  India:  An  Economic  Appraisal.  India  Infrastructure  Report  2011.  http://www.idfc.com/pdf/report/2011/Chp-­‐19-­‐Water-­‐Pollution-­‐in-­‐India-­‐An-­‐Economic-­‐Appraisal.pdf  

Serôa  da  Motta  R,  Huber  RM,  Ruitenbeek  HJ.  1999.  Market  based  instruments  for  environmental  policymaking  

in  Latin  America  and  the  Caribbean:  lessons  from  eleven  countries.  Environmental  Development  Economics  4:  177-­‐201.  

United  Nations,  2006.  SMEs  in  the  Environmental  Goods  and  Services  Market:  Identifying  areas  of  opportunity,  policies  and  instruments.  Case  studies:  Argentina,  Chile,  Columbia  and  Mexico.  

Venkatesh  J,  Lavavya  Kumarie  R.  2012.  Enhancing  SMEs  Access  to  Green  Finance.  International  Journal  of  Marketing,  Financial  Services  and  Management  Research.  

World  Bank/IFC.  2012.  Doing  Business  2013:  Smarter  Regulations  for  Small  and  Medium-­‐Size  Enterprises.  Doing  Business  Series  10.  (Current  as  at  June  2012:  updates  http://www.doingbusiness.org)  

Bangladesh  World  Bank.  2013.  The  Bangladesh  Responsible  Sourcing  Initiative:  A  New  Model  for  Green  Growth?  DRAFT.  

South  Asia  Environment  and  Water  Resources  Unit  of  the  World  Bank.  

Brazil  Feres  J,  Reynaud  A,  Tomas  A,  Serôa  da  Motta  R.  2008.  Competitiveness  and  Effectiveness  Concerns  in  Water  

Charge  Implementation:  a  Case  Study  of  the  Paraiba  do  Sul  River  Basin  Brazil.  Water  Policy.  

Serôa  da  Motta  R.  2006.  Analyzing  the  Environmental  Performance  of  the  Brazilian  Industrial  Sector.  Ecological  Economics.  

China  Cleaner  Production  Promotion  Law.  2002.  Approved  by  the  Standing  Committee  of  the  National  People’s  

Congress  (NPC)  of  the  People’s  Republic  of  China.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  92   December  2013  (Draft  23/12/13)  

Ministry  of  Environmental  Protection  The  People’s  Republic  of  China.  1999.  Decree  of  the  State  Environmental  Protection  Administration  No  7.  Measures  on  Administrative  Penalty  for  Environmental  Protection.    

Stevens  R,  Moustapha  M,  Evelyn  P,  Stevenson  R.  2013.  Analysis  of  the  Emerging  China  Green  Era  and  its  

Influence  on  Small  and  Medium-­‐Sized  Enterprises  Development:  Review  and  Perspectives.  Journal  of  Sustainable  Development.  

Indonesia  USAID.  2008.  Environmental  Compliance  and  Enforcement  in  Indonesia  Rapid  Assessment.  

Malaysia  Small  and  Medium  Industries  Development  Corporation  (SMIDEC).  2007.  Policies,  Incentives,  Programmes  and  

Financial  Assistance  for  SMEs.  Ministry  of  International  Trade  and  Industry.  Government  of  Malaysia.  January.  

SMIDEC/SME  Corp.  2009-­‐2012.  Policies,  Incentives,  Programmes  and  Financial  Assistance  for  SMEs.  Malaysia.  

Mexico  Blackman  A,  Lahiri  B,  Pizer  W,  Rivera  Planter  M,  Muñoz  Piña  C.  2007.  Voluntary  Environmental  Regulation  in  

Developing  Countries:  Mexico’s  Clean  Industry  Program.  Discussion  Paper  DP  07-­‐36.  Resources  for  the  Future.  Washington  DC.  July.  

Blackman  A.  2007.  Can  Voluntary  Environmental  Regulation  Work  in  Developing  Countries?:  Lessons  from  Case  Studies.  Discussion  Paper  DP  07-­‐10.  Resources  for  the  Future.  Washington,  DC.  October.  

Philippines  Board  of  Investments.  2012.  Primer  on  Doing  Business  in  the  Philippines.  BOI,  Manila.  

Catelo  MA,  Sajise  AJ,  Darvin  BA,  Ramirez  PA.  2006.  Impact  Evaluation  of  the  Environmental  User  Fee  System:  A  Stakeholder  Perspective.  EEPSEA,  Singapore.  (Also  EEPSEA  Policy  Brief  2006-­‐PB10).  

Luken  RA.  1999.  Industrial  Policy  and  the  Environment  in  the  Philippines,  UNIDO.  

South  Korea  Lee  S-­‐Y.  2008.  Drivers  for  the  participation  of  small  and  medium-­‐sized  suppliers  in  green  supply  chain  

initiatives.  Supply  Chain  Management:  An  International  Journal.  13:3  185-­‐198.  

Water  Environmental  Partnership  in  Asia  (WEPA).  Republic  of  Korea.  Various  Entries.  

Thailand  Araya  Nuntapotidech.  2012.  Asia  Regional  Dialogue  on  Green  Economy  Approaches:  Thailand  Case.  (Deputy  

Director  General)  Pollution  Control  Department,  Bangkok.  

Jonsson  F.  2007.  Product  Related  Environmental  Work  in  Small  and  Medium  Sized  Enterprises  in  Thailand,  

Developing  and  Manufacturing  Electrical  and  Electronic  Products.  Masters  Thesis.  Linköping  University.  

Prasert  Tapaneeyangkul.  nd.  SME  Industrial  Review.  Hazardous  Substance  Control  Bureau,  Ministry  of  Industry,  Bangkok.  

Staudte  M,  Karcher  M.  2001.  Economic  Instruments  for  Air  Pollution  Management:  Options  for  Thailand.  Fichtner/GTZ.  

Thoedsak  Chomtohsuwan.  2011.  Effect  of  Pollution  Tax  Policies  on  Change  of  Household  Demand,  Economic  

Structure  and  Environmental  Load:  A  Case  Study  of  Thai  Economy.  Faculty  of  Economics,  Saitama  University,  Japan.  

“Thailand  Finance  Ministry  Readies  Pollution  Tax”.  3  July  2013.  Wordpress.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  93   December  2013  (Draft  23/12/13)  

Vietnam  Mahanty  S,  Dang  TD,  Hai  PG.  2012.  Crafting  sustainability:  managing  water  pollution  in  Viet  Nam’s  craft  

villages.  Discussion  Paper  20.  Development  Policy  Centre.  Australian  National  University.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  94   December  2013  (Draft  23/12/13)  

Annex  B   Key  Meetings  &  Participants  

Industries  Department  

Mr.  P.C.  Dhiman,  Secretary  (In-­‐Charge),  Department  of  Industries  

Mr.  Mohan  Chauhan,  Director,  Department  of  Industries  

Dr.  Rajinder  Chauhan,  Sr.  Industrial  Advisor,  Department  of  Industries  

Department  of  Environment,  Science  and  Technology  (DEST)  Dr.  S.  S.  Negi,  Director,  Environment  

Mr.  Suresh  Attri.  

Mr.  Sanjay  Verma.    

Department  of  Economics  &  Statistics  Mr.  Pradeep  Chauhan,  Director  

Health  Department  

Mr.  Ali  R.  Rizvi,  Principal  Secretary,  Health  &  Family  Welfare.  

State  Pollution  Control  Board  Mr.  Sandeep  Sood,  Member-­‐Secretary,  Pollution  Control  Board.  

Team  of  engineers  from  the  HP  Pollution  Control  Board  

Mr  Chetan  Joshi  (Baddi)  

The  BBN  Industrial  Association  Mr  Rajender  Guleria  –  Chair  

25  representatives  of  the  BBNIA  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  95   December  2013  (Draft  23/12/13)  

Annex  C   Supplementary  Data  –  Industries  &  Criteria  Pollutants    Table  C.1:  Characteristics  of  Industrial  “hotspots”  in  Himachal  Pradesh  

  Environmental  Reporting   Main  Industries  (examples)  Solan  District      Parwanoo      

Air:  Critically  High  PM10  Water  quality:  poor  –  industrial  pollution  in  river  Sukhana    

Fruit  processing  –  agro  industries  (cattle  feed  and  pesticides)  –  chemicals  –  rubber  –  light  engineering  Large  ESI  hospital  Many  SSI  due  to  proximity  and  connectivity  to  Chandigarh  and  Panchkula  

Baddi   Air:  Critically  High  PM10  Water  quality:  mixed  –  pollution  in  river  Sirsa    

Pharmaceuticals  (~  800  companies)  –  textiles  (tread  mills)  –  aluminum,  brass  and  steel  product  manufacturing  –  IT  Haphazard  development  –  lack  of  infrastructure;  poor  interstate  connectivity  

Barotiwala   Water  quality:  mixed  –  pollution  in  river  Sirsa  

Multi-­‐Industry  –  Pharmaceuticals  –  textiles  (thread  mills)    

Nalagarh   Air:  High  PM10  Water:  mixed  –  pollution  in  river  Sirsa  

Pharmaceuticals  –  textiles  (thread  mills,  leather)  –  food  (confectionary,  beverages,  grocery  items)  –  breweries  –  steel  –  mining  –  caustic  soda  

Solan  City   Water  quality:  poor   Pharmaceuticals  –  breweries  –  bimetals  –  manufacturing  (lead  acid  batteries,  bimetals,  HDPE  pipe)  –  chemicals  (gum  rosin  and  terpenes)  –  machinery  (motors)  

Sirmour  District      Kala  Amb    

Air:  High  PM10  Water  quality:  poor  

Engineering/automotive  –  paper  –  chemicals  (raw  materials  for  food,  beverages,  pharma)  –  metals  (welding  electrodes)  –  textiles  (thread  mills)  –  air  conditioners  

Paonto  Sahib   Air:  Critically  High  PM10  Water  quality:  poor  

Pharmaceuticals  –  cement  –  textiles  –  chemicals  (hair,  health,  beauty)  –  textiles  (thread  mills)  –  machinery  –  food  (fruit  processing,  mushrooms)  –  batteries  

Kangra  District      Damtal   Air:  Moderate  to  High  PM10   Mining  –  cement  –  aluminum  products    

     

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  96   December  2013  (Draft  23/12/13)  

Table  C.2:  Current  occurrence  and  scale  of  industrial  activities  by  District  in  Himachal  Pradesh  

    Solan   Sirmour   Kangra   Una   Shimla   Bilaspur   Kullu   Mandi     Polluting  Industry  (as  per  CPCB)                  

1   Aluminium  Smelting                  2   Pharmaceutical  Manufacturing   ***   **       *        

3   Chlor  Alkali/Caustic  Soda   **                

4   Cement   ***   *   **       *      

5   Copper  Smelting                  

6   Dyes  and  Dye  Intermediate   *   *              

7   Fermentation  (Distillery)   **                

8   Fertilizer           **        

9   Integrated  Iron  and  Steel   ***   **     *          

10   Leather  Processing  incl  Tanneries   **                

11   Oil  Refinery                  

12   Pesticides  formulation/manufacture     **       **        

13   Pulp  and  paper   ***   **     *   *        

14   Petrochemical                  

15   Sugar     **   *            

16   Thermal  power  plants                  17   Zinc  smelting                  Based  on  Director  of  Industries.  2003.  Group-­‐wise  details  of  units  in  large  and  medium  scale  sector,  March.  Various  reports  with  information  on  industrial  development  in  HP.  Miscellaneous  web  data  sources  including  industry  websites.  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  97   December  2013  (Draft  23/12/13)  

 Table  C.3:  Studies  of  Ranking  Relative  Importance  of  Polluting  Industries  in  India  

Study  Approach   Pollution  Importance  Ranking  

Air   Water   Metal  Air  Pollution  Pollution  Inventories,  by  Sector,  for  India.  Uses:  IPPS1  pollution  intensities    Industrial  output  data  from  API  Pollution  loads  obtained  for  the  16  of  the  17  categories  of  polluting  industries.  2  From  Pandey  (2010)  

1.  Cement  2.  Iron  &  steel  3.  Oil  refinery  4.  Sugar  5.  Pulp  &  paper  6.  Aluminium  7.  Petrochemicals  8.  Distillery  9.  Pesticide  

1.  Iron  &  steel  2.  Pulp  and  paper  3.  Aluminium  4.  Sugar  5.  Copper  6.  Zinc  7.  Oil  refinery  8.  Pesticides  9.  Leather  

1.  Iron  &  steel  2.  Sugar  3.  Oil  refinery  4.  Leather  5.  Pulp  &  paper  6.  Zinc  7.  Aluminium  8.  Caustic  soda  9.  Dyes  

Water  pollution  by  sector,  direct  and  indirect.  Uses:  India  I/O  tables  for  2006/07,  aggregated  to  38  sectors  Industry-­‐specific  pollution  data  from  CPCB  and  BIS  Focus  on  sectors  other  than  known  large  water  polluters  such  as  thermal  electricity  plants.    Mukhopadhyay  &  Chakraborty  (2012)  

  BOD  –  tons/lakh  of  Rs3    1.  Textiles  -­‐  jute,  hemp,  mesta  2.  Livestock  3.  Organic  heavy  chemicals  4.  Sugar  5.  Tea  &  beverages  6.  Pesticides  COD3  1.  Textiles  -­‐  jute,  hemp,  mesta  2.  Livestock  3.  Pesticides  4.  Leather  &  its  products  5.  Beverages  (incl  distilleries)  6.  Textiles  –  wool,  silk  

 

Water  pollution  by  industry  group  in  Andrah  Pradesh  Emission  factors  applied  to  generic  industry  processes  World  Bank  (2001)  

  BOD5  1.  Pulp  &  paper  2.  Food  industries  3.  Chemical  industries  4.  Textile  industries  

 

CPCB     Suspended  Solids  Electricity  sector  95%  

 

1  IPPS:  Industrial  Pollution  Projection  System  is  a  database  developed  by  the  World  Bank.  2  Thermal  power  plants  were  not  included  for  lack  of  IPPS  intensity  estimate.  BIS:  Bureau  of  Indian  Standards  3  Ranking  based  on  tons/lakh  of  Rs  value  of  the  final  output  of  product.  Does  not  include  indirect  pollution  loading  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  98   December  2013  (Draft  23/12/13)  

Table  C.4:  Selected  Himachal  Pradesh  Industry  Incentives  

 

New

 Unit  

Existing  Unit  w

ith  

Large  Expa

nsion  

  Catego

ry  A  

Catego

ry  B  

Catego

ry  C  

Village  Indu

stry  

Expo

rt  Orien

ted  

Special  Category  

Thrust  In

dustry  

List  

Includ

es  

Negative  List  

Subsidies                           50%  reimbursement  of  feasibility  study   ✔                         SSI:  90%  reimbursement  of  feasibility  study   ✔                 ✔         SSI:  100%  subsidy  for  installation  cost  of  P&E   ✔               ✔       Exemption  from  excise  duty  for  7  years  (SSI)   ✔               ✔       Interest  subsidy  at  5%  (SSIs  &  some  on  Thrust  List)   ✔               ✔ ✔    Power  Concession      

+                  

  Reduced  rate  for  5  years   ✔       ✔   ✔       ✔   ✔   ✔1     Priority  of  connection   ✔             ✔           Exemption  from  power  load  cuts   ✔             ✔           Exemption  from  power  duty  for  10  years   ✔                 ✔    Tax  Concessions                         Exemption  from  CST/GST  for  10  years   ✔           ✔   ✔         ✔     100%  GST  exemption  for  8  years   ✔         ✔                 100%  GST  exemption  for  5  years   ✔       ✔                   Deferment  of  75%  of  GST  for  8  years     ✔       ✔                 Deferment  of  75%  of  GST  for  5  years     ✔     ✔                   1%  GST  on  raw  material,  processing  &  packaging  (excludes  timber,  shale,  limestone)  

✔   ✔                    

  1%  CST  on  goods  manufactured  (excludes  breweries,  distilleries,  non-­‐fruit-­‐based  wineries,  bottling  plants)  

✔   ✔                    

Grants                           Pollution  control  equipment  –  20%  of  installation  cost   ✔   ✔       ✔   ✔               Equipment  for  establishing  testing  centres;  R&D  costs  of  patent   ✔   ✔                    1.  Load  must  exceed  100kW  CST:  Central  Sales  Tax;  GST:  General  Sales  Tax  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  99   December  2013  (Draft  23/12/13)  

Table  C.5:  Himachal  Pradesh  –  Thrust  Industries54  

1.   Enterprises  based  directly  on  horticulture  produce  including  hops  and  tea.  2.   Mineral  water  bottling.  3.   Automobile  manufacturing  Enterprises  including  assembly  Enterprises  that  have  a  minimum  of  

5  ancillary  Enterprises  substantially  dependent  on  it.  4.   Cold  storage  Enterprises  /chain.  5.   Fruit/vegetable/herbs/  honey/spices  based  wineries.  6.   Production  of  ciders/ale/  liqueurs.  7.   Sericulture/Handlooms/Khadi  industry  related  manufacturing  industrial  activities.  8.   Electronic  Enterprises  including  computer  software  and  information  technology  except  

assembling  Enterprises  where  value  addition  is  less  than  15%.  9.   Floriculture  10.   Medicinal  herbs  and  aromatic  herbs  etc.  processing.  11.   Horticulture,  Maize  based  industries,  herbal-­‐based  industries  and  Agro  Based  Industries  

excluding  those  included  in  the  negative  list.  12.   Food  Processing  Industry  excluding  those  included  in  the  negative  list.  13.   Sugar  and  its  by-­‐products.  14.   Silk  and  silk  products.  15.   Wool  and  wool  products  16.   Woven  fabrics  (Excisable  garments)  17.   Sports  goods  and  articles  and  equipment  for  general  physical  exercise  and  equipment  for  

adventure  sports/activities,  tourism.  18.   Paper  &  paper  products  excluding  those  in  negative  list  (as  per  excise  classification)  19.   Pharma  products.  20.   Information  &  Communication  Technology  Industry,  Computer  hardware,  Call  Centres,  I.T.  

Software  and  services.  21.   Eco-­‐tourism-­‐  Hotels,  resorts  in  locations  other  than  those  located  in  the  Municipal  limits/NAC  

/Nagar  Panchayats/Special  Area  Development  Authority  limits,  as  the  case  may  be  of  Shimla,  Dalhousie,  Macleodganj  and  Manali  

22.   Spa,  entertainment/amusement  parks  ropeways  etc.  23.   Industrial  gases  (based  on  atmospheric  fraction).  24.   Handicrafts  25.   Non-­‐timber  forest  product  based  industries.  26.   Precision  Industries  27.   Enterprises  to  manufacture  industrial  products  by  any  biotechnology  process  and  Processing  

Laboratories  or  R&D  activity  related  to  processing,  scale-­‐up,  other  innovations  and  products  in  the  field  of  Biotechnology,  as  approved  by  State  Level  Single  Window  Clearance  and  Monitoring  Authority  on  the  recommendation  of  the  Department  of  Environment,  Science  and  Technology  of  the  State  Government.  

   

                                                                                                                         54  Note:  Products  listed  from  Serial  No  9  to  No  24  are  as  reflected  in  GOI  Ministry  of  Industry  and  Commerce  O.M.  dated  7/01/03  and  as  defined  by  Government  of  India  from  time  to  time.  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  100   December  2013  (Draft  23/12/13)  

Table  C.6:  Himachal  Pradesh  –  Negative  Industries55  

1.   Tobacco  and  tobacco  products  including  cigarettes  and  pan  masala  2.   Thermal  Power  Plant  (coal/oil  based)  3.   Coal  washeries/dry  coal  processing  4.   Inorganic  Chemicals  excluding  medicinal  grade  oxygen  (2804.11),  medicinal  grade  hydrogen  

peroxide  (2847.11),  compressed  air  (2851.30)  5.   Organic  Chemicals  excluding  Provitamins/vitamins,  Hormones  (29.36),  Glycosides  (29.39),  

Sugars  (29.40)(reproduction  by  synthesis  not  allowed  as  also  down  stream  industries)  6.   Tanning  and  dyeing  extracts,  tannins  and  their  derivatives,  dyes,  colours,  paints  and  varnishes,  

putty,  fillers  and  other  mastics,  inks  7.   Marble  and  mineral  substances  not  classified  elsewhere.  8.   Flour  Mill/Rice  Mill  (including  Roller  flour  mills)  9.   Foundries  using  coal.  10.   Minerals  fuels,  mineral  oils  and  products  of  their  distillation;  Bituminous  substances,  mineral  

waxes.  11.   Synthetic  rubber  products  12.   Cement  Clinker  and  Asbestos  raw  including  fibre.  13.   Explosive  (including  industrial  explosives,  detonators  &  fuses,  fireworks,  matches,  propellant  

powders  etc.)  14.   Mineral  or  chemical  fertilizers  15.   Insecticides,  fungicides,  herbicides  &  pesticides  (basic  manufacture  and  formulation)  16.   Fibre  glass  &  articles  thereof  17.   Manufacture  of  wood  pulp,  mechanical  or  chemical  (including  dissolving  pulp)  18.   Branded  aerated  water/soft  dinks  (non-­‐fruit  based  )  19.   Paper  Writing  or  printing  paper,  Paper  or  paperboard,  Maplitho  paper,  Newsprint,  in  rolls  or  

sheets,  Craft  paper,  Sanitary  towels,  Cigarette  paper,  Grease-­‐proof  paper,  toilet  or  facial  tissue,  Paper  &  paper  board,  laminated  internally  with  bitumen,  tar  or  asphalt,  Carbon  or  similar  copying  paper,  products  consisting  of  sheets  of  paper  or  paperboard,  impregnated,  coated  or  covered  with  plastics,  Paper  and  paperboard,  coated  impregnated  or  covered  with  wax  etc.  

20.   Plastics  and  articles  thereof.  21.   Production  of  firewood  and  charcoal.  22.   Mini  Steel  plants  induction/  Arc/Submerged  furnaces,  and/  or  rolling  mills.      

                                                                                                                         55  Note:  Products  listed  from  Serial  No  1  to  No  20  are  as  reflected  in  Government  of  India,  Ministry  of  Industry  and  Commerce  O.M.  dated  7/01/04  and  as  defined  by  Government  of  India  from  time  to  time.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  101   December  2013  (Draft  23/12/13)  

Annex  D   Supplementary  Valuation  Sources  &  Information  Environmental   valuation   is   largely   based  on   the   assumption   that   individuals   are  willing   to   pay   for  improvements   in   environmental   quality   and,   conversely,   are   willing   to   accept   compensation   for  

some  environmental  losses.  The  individual  demonstrates  preferences,  which,  in  turn,  place  values  on  environmental   resources.   Although   this   valuation   through   preference   is   known,   quantifying   this  value  (e.g.,  expressing  it  in  money  equivalents)  requires  many  different  approaches.56  These  include  

market-­‐based,   surrogate   market-­‐based,   and   non-­‐market-­‐based   approaches.   Figure  D.1   shows   a  simple   diagram   of   the   valuation   approaches   available.   Table  D.1   shows   some   of   the   studies   that  

have  used   such  approaches,  which   are  of   relevance   to   any   valuation  of   resources  or  health  being  conducted  for  the  HP  SEA.  

Market-­‐based   approaches   rely   on   direct,   observable  market  interactions  to  place  monetary  values  on  goods  

and   services.  Markets   enable   economists   to  measure  an   individual’s   willingness   to   pay   to   acquire   or  preserve   environmental   services.   In   turn,   individuals  

reveal   their   preferences   through   the   choices   they  make   in  allocating  scarce  resources  among  competing  alternatives.  A  major  strength  of   this  approach   is   that  

it   is   based   on   observed   behavior,   while   a   major  weakness   is   the   requirement   for   a   clearly   defined  existing   market   for   the   environmental   resource   in  

question.

In  the  absence  of  a  clearly  defined  market,  the  value  of  an   environmental   resource   can   be   derived   from  information   acquired   through   surrogate   markets.   In  

other   words,   in   situations   where   the   environmental  resource   is   not   directly   exchanged   in   an   existing  market,   there   are   other  markets   indirectly   associated  

with   the   use   of   the   resource   in   question.   This  information   serves   as   a   proxy   to   infer   environmental   values.  A  major   strength  of   this   approach   is  that  it  is  based  on  observed  behavior,  while  a  major  weakness  is  the  technical  difficulties  that  can  be  

encountered   in   being   able   to   link  meaningfully   appropriate  market   indicators  with   environmental  quality.  

The   non-­‐market   based   approach   elicits   information   concerning   environmental   preferences   from  individuals  through  the  use  of  surveys,  questionnaires,  or  interviews.  Individuals  are  presented  with  

constructed   scenarios   or   hypothetical   markets   involving   a   change   in   environmental   quality.   This  approach   is  necessary   to  elicit  non-­‐use  values   (e.g.,  existence  value)  associated  with  a   resource.  A  major   strength   of   this   approach   is   in   its   ability   to   estimate   the   value   of   goods   and   services   not  

transacted  in  the  market.  A  major  weakness  is  the  possibility  of  a  number  of  different  types  of  bias  introducing  significant  error  into  the  results  due  to  the  difficulties  associated  with  obtaining  reliable  and  valid  results  when  hypothetical  or  constructed  markets  are  used.  

                                                                                                                         56  Valuation   is  usually  done   in  money  equivalents   to  a   standard  base  year   so   that  a   like  comparison   to  other  goods  and  services  in  the  economy  can  be  made.  

Figure  D.1  –  Characterizing  valuation  methods  to  inform  individual  or  social  preference.  

   

Factor of ProductionProducer SurplusConsumer SurplusDefensive Expenditures

Market-Based

Hedonic PricingTravel Cost

Surrogate Markets

Revealed Preferences

Contingent ValuationChoice Experiments

Non-Market Based

Stated Preferences

Preferences

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  102   December  2013  (Draft  23/12/13)  

One   of   the   approaches   available   is   the   “benefit   transfer”   methodology,   which   in   effect   involves  transferring  values  from  a  site  where  detailed  existing  studies  had  been  conducted  (the  “study  site”)  

to  a  new  site  with  similar  attributes  but  where  no  primary  valuation  research  has  been  conducted.57  This  new  site  or  target  site  is  typically  called  the  “policy  site”,  reflecting  the  idea  that  a  new  policy  or  plan  is  being  considered  for  application  to  this  new  site.  The  procedure  is  of  interest  to  analysts  and  

policy-­‐makers   because   the   process   is   less   costly   and   faster   than   conducting   primary   research.  Typically   valuation   is   done  as   a   two-­‐stage  process:   (i)  the   values   are   transferred  based  on   specific  targets  (such  as  areas  of  ecosystems,  numbers  of  species,  or  the  number  of  dependent  people);  (ii)  

the   values   are   then   further   adjusted   for   various   parameters   relating   to   resource   quality,   income,  timing  or  other   characteristics   that  are   considered   to  be   significant   in   the  determination  of   value.  The  first  step  –  that  of   transferring  the  unadjusted  values  –  still   requires  similarity   in  project  sites,  

environmental  services,  and  local  populations.  Adjustments  undertaken  in  the  second  step  may  be  able   to   accommodate   some   site   differences.   It   is   generally   acknowledged   that   the   most   reliable  benefit  transfers  occur  when  the  entire  demand  function  can  be  shifted  from  the  study  site  to  the  

policy  site  (ENVALUE,  Smith  et  al.  2006).  

The  policy  interest  in  benefit  transfer  work  has  turned  what  was  originally  a  simple  ad  hoc  procedure  with   low   levels   of   confidence,   into   a   more   sophisticated   science   that   now   respects   standard  statistical   tests   for   significance   and   has   higher   levels   of   confidence.   A   recent   stock-­‐taking   of   the  

science   was   undertaken   in   a   special   issue   of   Ecological   Economics,   edited   by  Wilson   and   Hoehn  (December   2006)   in   which   32   international   experts   and   practitioners   addressed   some   of   the  opportunities   and   remaining   limitations   to   the   benefit   transfer   techniques.   The   findings   of   this  

exercise  can  be  summarized  as  follows:  

• Site   similarity   is   normally   a   prerequisite.   This   similarity   requires   comparability   of   the  

ecosystem   commodity,   market   context   and   formulated   welfare   measure   (Loomis   and  Rosenberger   2006).   In   practical   terms   this  means   paying   attention   to   the  welfare  weights  and   distribution   of   benefits   among   individuals.   Consistency   checks   are   difficult   to   verify,  

however,   because   the   original   published   studies   often   do   not   contain   that   detail   due   to  space  or  publication  restrictions.  

• Meta-­‐analysis   of   multiple   studies   can   produce   a   valid   basis   for   transferred   values,   but  

consistency  requirements  still  hold  (Bergstrom  and  Taylor  2006).  Estimates  will  be  improved  through  making  adjustments  for  core  demographic  and  related  variables.    

• Study  values   transferred  between  geographically   removed   sites   (across   continents)   can  be  

reliable  if  components  of  the  demand  function  at  both  sites  are  known.  (Ready  and  Navrud  2006;  Morrison  and  Bergland  2006)  

• Values  may  need  to  be  adjusted  for  geographic  proximity  of   the  respondents  to  the  policy  

site.   There   exists   a   distinct   value   “drop-­‐off”   for   both   use   values   and   non-­‐use   values   as  respondents  are   further  away   from  a   site;   individuals’   valuations  are  more   stable   for  non-­‐

use   values,   but   both   values   decline   because   of   non-­‐responses   or   lexical   preferences.  (Bateman  et  al.   2006)  Using  mean   value   transfers   under   such   circumstances  will   generally  generate  higher  values  than  those  that  are  spatially  sensitive.  

                                                                                                                         57  The   term   “benefit   transfer”   was   first   used   by   Desvousges,   Naughton   and   Parsons   (1992)   to   describe   the   transfer   of  monetary  valuations  determined  by  research  applicable  to  the  site  studied,  to  a  different  site.    

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  103   December  2013  (Draft  23/12/13)  

• Landscape  mapping   in  geo-­‐referenced  GIS   systems  at   the   study   site  and  policy   site  permit  

significant   improvements   in  valuation  through  linking  the  valuations  to  sub-­‐areas,  habitats,  and  ecosystem  services.  (Troy  and  Wilson  2006)  

• Analysis  of  institutional  use  of  valuation  suggests  that  there  are  inherent  built-­‐in  regulatory  

constraints   to   implementing   original   valuation  work.   This   creates   a   strategic   bias   towards  benefit  transfer  methods.  The  lack  of  original  studies  in  areas  of  new  strategy  formulation  or  

new   policy   formulation   significantly   hinders   the   use   of   benefit   transfer   methods   to   such  agencies.  (Iovanna  and  Griffiths  2006)    

The   final  observation,  of  course,   is   that  benefit   transfer   techniques  remain  a  complement   to  good  primary   research.   If   there   are   no   study   sites   available   using   primary  methods,   then   the   BT-­‐based  

policy  studies  cannot  be  undertaken.  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  104   December  2013  (Draft  23/12/13)  

Table  D.1:  Valuation  Literature  of  Potential  Relevance  to  Himachal  Pradesh  

 

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  105   December  2013  (Draft  23/12/13)  

Annex  E   Economic  Instruments  Framework  This  Annex  provides  a  general   framework  for   investigating  the  use  of  economic  policy   instruments  and   incentives.   Policy   instruments   are   defined   and   a   classification   of   different   approaches   is  

provided.58  

Continuum of Economic Instruments There   are   a   number   of   general   economic   principles   that   form   the   background   philosophy   for   an  

economically  and  environmentally  sustainable  strategy  for  natural   resource  management.  The  two  most  often  enunciated  include  the  polluter-­‐pays  and  precautionary  principles.  The  polluter-­‐pays  (or  user-­‐pays)   principle   assigns   rights   that   allow   internalization   of   costs   that   would   not   normally   be  

incurred  by   the  polluter  or  user   (externalities).   The  precautionary  principle  provides   a  mechanism  for  dealing  with  the  uncertainty  of  impacts  (Perrings  1991;  O’Riordan  and  Cameron  1995).  

A   number   of   mechanisms   have   been   developed   and   used   to   promote   these   principles.   At   one  extreme   they   include   fines   or   sanctions   that   are   linked   to   traditional   command-­‐and-­‐control   (CAC)  

regulations.   At   the   other   extreme   they   include   laissez-­‐faire   approaches   that   require   consumer  advocacy   or   private   litigation   to   act   as   incentives   for   improving   environmental   management.   In  

between  are  the  more  familiar  tax-­‐and-­‐subsidy  approaches  as  well  as  the  less  familiar  mechanisms  relying  on  traded  property  rights.  All  of  these  approaches  attempt  to  internalize  environmental  costs  of  natural  resource  use.  

There  is  no  single  standardized  definition  of  an  incentive-­‐based  or  “market”-­‐based  instrument  (MBI),  

but   the   commonly   held   understanding   and   the   definition   employed   here   is   that   an   MBI   must,  foremost,  attempt  to  align  private  costs  with  social  costs  to  reduce  externalities  (Panayotou  1995).  Within  this  definition,  the  particular  strength  of  an  MBI  then  depends  on  the  degree  of  flexibility  that  

a   polluter   or   resource   user   has   in   achieving   a   given   environmental   target.   A   very   “weak”   MBI  essentially  dictates  through  regulation  the  type  of  technologies  that  firms  must  use,  or  the  targets  they  must  meet.  This  is  the  inflexible  Command  and  Control  (CAC)  approach  –  which  also  entails  an  

economic   incentive   to   the   extent   that   failure   to   comply   can   result   in  monetary   sanctions.   A   very  “strong”  MBI  allows  market  signals  rather  than  explicit  directives  determine  the  best  way  to  meet  a  given  standard  or  goal.  

Flexibility  is  operationalized  by  equating  it  to  the  level  of  decentralization  that  occurs  in  transferring  

social   (or   state)   decisions   to   the   private   (individual)   level.   A   strong   MBI   decentralizes   decision-­‐making  to  a  degree  that  the  polluter  or  resource  user  has  a  maximum  amount  of  flexibility  to  select  the  production  or  consumption  option  that  minimizes  the  social  cost  of  achieving  a  particular   level  

of  environmental  quality;  profit-­‐  or  utility-­‐maximizing  behavior  in  this  case  also  generates  a  “lowest  social  cost”  outcome  for  the  achievement  of  a  given  policy  objective.  

The  framework  presented  here  focuses  on  the  cost-­‐effectiveness  of  reducing  externalities  in  defining  an   MBI.   This   interpretation   provides   scope   both   for   internalizing   the   costs   or   benefits   of   any  

externality   while   allowing   the   freedom   of   choice   that   will   permit   users   to   select   an   appropriate  technology  for  optimizing  environmental  quality.  

Table  E.1  illustrates  the  broad  spectrum  of  instruments  that  might  be  available,  all  of  which  implicitly  or   explicitly   have   some   incentive   effect.   They   fall   across   a   continuum   ranging   from   very   strict  

                                                                                                                         58  The  framework  draws  on  Huber,  Ruitenbeek,  da  Motta.  (1998).  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  106   December  2013  (Draft  23/12/13)  

command  approaches  to  decentralized  approaches  that  rely  more  on  market  or   legal  mechanisms.  Even  traditional  CAC  regulations,  with  heavy  fines,  create  a  presumed  incentive  effect  because  the  

resource  user  would  be  compelled  to  comply  with  the  regulations  to  avoid  the  sanctions.  

Table  E.1:  Classification  of  Economic  Instruments  Based  on  Flexibility  in  Individual  Decision-­‐making  

Minimum  Flexibility   Moderate  Flexibility   Maximum  Flexibility  

Control  Oriented   Market  Oriented   Litigation  Oriented  Government  Involvement  Decreasing  –––––––––––>   Private  Initiative  Increasing  ––––––––––––––>  

Regulations  and  Sanctions  

Charges,  Taxes,  and  Fees  

Market  Creation  Final  Demand  Intervention  

Liability  Legislation  

General  Examples  

Standards  Government  restricts  nature  and  amount  of  pollution  or  resource  use  for  individual  polluters  or  resource  users.  Compliance  is  monitored  and  sanctions  imposed  (fines,  closure,  jail  terms)  for  noncompliance.    

Effluent  or  User  Charges:  Government  charges  fees  to  individual  polluters  or  resource  users  based  on  amount  of  pollution  or  resource  use  and  nature  of  receiving  medium.  Fee  is  high  enough  to  create  incentive  to  reduce  impacts.  Subsidies:  Government  provides  subsidized  inputs  to  encourage  their  adoption.  

Tradable  Permits:  Government  establishes  a  system  of  tradable  permits  for  pollution  or  resource  use,  auctions  or  distributes  permits,  and  monitors  compliance.  Polluters  or  resource  users  trade  permits  at  unregulated  market  prices.  

Performance  Rating:  Government  supports  labeling/performance  rating  program  that  requires  disclosure  of  environmental  information  on  the  final  end-­‐use  product.  Performance  based  on  adoption  of  ISO  14000  voluntary  guidelines:  zero  pollution  discharge,  mitigation  plans  submitted;  pollution  prevention  technology  adopted,  reuse  policies  and  waste  recycling.  

Strict  Liability  Legislation:  The  polluter  or  resource  user  is  required  by  law  to  pay  any  damages  to  those  affected.  Damaged  parties  collect  settlements  through  litigation  and  the  court  system.  

Specific Examples Pollution  standards.  Licensing  of  economic  activities.  Land  use  restrictions.  Zoning  and  setback  requirements.  Water  use  quotas.  Construction  impact  regulations  for  roads,  pipelines,  ports,  or  communications  grids.  Fines  for  spills  from  port  or  land-­‐based  storage  facilities.  Bans  applied  to  materials  deemed  unacceptable  for  solid  waste  collection  services.  

Noncompliance  pollution  charges.  Source-­‐based  effluent  charges  to  reduce  downstream  water  treatment  requirements.  Royalties  and  financial  compensation  for  natural  resources  exploitation.  Performance  bonds  to  ensure  construction  standards.  Subsidies  to  construct  CETPs.  Tipping  fees  on  solid  wastes.  User  charges  for  water.  

PES  to  forest  owners  to  ensure  water  protection  ecosystem  services.  Designation  of  property  rights  to  farmers  to  improve  irrigation  water  and  drainage  management.  Deposit-­‐refund  systems  for  solid  and  hazardous  wastes.  Tradable  permits  for  water  abstraction  rights,  and  water  and  air  pollution  emissions.  

Consumer  product  labeling  (eco-­‐labels)  relating  to  production  practices,  energy  efficiency,  etc.  Supply  chain  intervention  where  intermediate  buyers  insist  on  installation  of  ETPs  for  upstream  product  production  processes.  Education  regarding  recycling  and  reuse.  Disclosure  legislation  requiring  manufacturers  to  publish  solid,  liquid,  and  toxic  waste  generation.  Blacklist  of  polluters.  

Damages  compensation  to  plaintive.  Liability  placed  on  guilty  firm’s  managers  and  environmental  authorities.  Long-­‐term  performance  bonds  posted  for  potential  or  uncertain  hazards  from  infrastructure  construction.  “Zero  net  impact”  requirements  for  infrastructure  projects.  

Goals of Incentive-Based Instruments In   principle,   there   is   a   wide   range   of   methods   available   for   attempting   to   regulate   or   manage  environmental  quality.  Each  of  these  intends  to  address  a  variety  of  goals.  One  goal  associated  with  decentralized   decision-­‐making   relates   to   cost-­‐effectiveness.   The   asymmetry   of   information,   for  

example,   often   implies   that   individual   agents,   private   firms,   or   community   associations   are  more  likely   than   governments   to   identify   the   most   cost-­‐effective   means   for   achieving   a   given  environmental   goal,   such  as   less  water  withdrawal,   less  water  pollution,  or  more   forest   coverage.  

This  forms  the  basis  for  the  common  theoretical  result  that  –  if  one  focuses  entirely  on  private  costs  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  107   December  2013  (Draft  23/12/13)  

–   strong   forms   of   MBIs   are   more   cost   effective   than   their   weaker   counterparts   or   than   CAC  approaches  (Tietenberg  1992).  

Another   fundamental   goal   of  most   environmental   regulatory   systems   is   to  decrease   externalities.  

Externalities  exist  where  the  agent  making  the  production  or  consumption  decision  does  not  bear  all  of   the   costs   or   benefits   of   this   decision.   Externalities   abound   in   environmental   issues.  Disposal   of  industrial  effluent  into  a  waterway  may  be  a  low-­‐cost  solution  to  waste  disposal  for  the  polluter,  but  

firms  and   individuals  downstream  may  suffer  consequences   through  higher  costs   from   lost   fishery  production,  higher  water   treatment   costs,   lower  amenity   values   (for   recreation),  or   loss  of   critical  drinking  water   supplies.  Most  economic   incentive  structures  attempt   to   transfer   some  of   this  cost  

back   to   the   individual   responsible   for   the   decision.   A   similar   situation   could   exist   with  environmentally  beneficial  decisions:   a   firm   that   cleans  polluted   intake  water  and   then  discharges  clean  water  after  using  it  in  its  internal  process  would,  in  fact,  be  creating  a  positive  externality,  and  

in   such   cases   it   could   be   argued   that   it   is   optimal   to   provide   subsidies   to   such   a   firm   in   direct  proportion  to  the  value  of  this  external  benefit.  

A  third  goal  that  many  policymakers  have  when  designing  an  appropriate  economic  incentive  system  is   revenue   generation.   There   are,   however,   practical   tradeoffs   to   consider   between   revenue  

generation  and   incentive  effects.  For  example,   it  would  be  possible  to   levy  a  very  high  charge  that  effectively  discourages  all  polluting  activity.  Abatement  levels  would  be  very  high  in  such  a  case,  but  no   revenue   would   be   generated.   Similarly,   very   low   charges   would   generate   little   revenue   and  

generate   little   abatement   because   there   is   no   incentive   for   firms   to   reduce   pollution.   Typically,  revenue   is  maximized   at   some   intermediate   level   of   abatement.   A   policy   decision  must   be  made  relating  to  how  much  additional  revenue  (beyond  the  maximum)  a  government  is  willing  to  give  up  

to  generate  higher  levels  of  abatement.  The  answer  to  this  policy  question  should  be  related  to  the  marginal  benefits  of  pollution  abatement,  but   in   fact   it   typically   is  more  a   function  of  government  

budgetary   realities   that   regard   such   taxes   as   a   convenient  means   for   underwriting   environmental  management  efforts.  

Types of Incentive-Based Instruments Regulations,   Fines,   and   Penalties.   Centralized   control-­‐oriented   approaches   relying   extensively   on  

regulatory   guidelines,   permits,   or   licenses   have   traditionally   been   the   preferred   mechanisms   for  controlling   environmental   impacts   in   urban   areas.   Although   it   is   technically   simple   to   impose  

regulations  with  specific  fines  for  noncompliance,  the  problems  associated  with  implementing  them  and  achieving  compliance  are  for  many  developing  countries  insurmountable.  

First,  “regulatory  drag”  can  occur  when  the  regulatory  approval  system,  because  it  is  overburdened,  unnecessarily  holds  up  critically  important  investments,  and  in  so  doing  acts  as  a  drag  on  economic  

development  prospects.  Second,  the  capacity  to   implement  regulations   is  often   limited  because  of  inadequate   human   resources,   or   inadequate   supportive   infrastructure   such   as   environmental  information   or  monitoring   networks.   Third,   local   financing   constraints   arise   because   authority   for  

environmental  regulations  is  often  delegated  to  lower  (local)  levels  of  government  without  adequate  sources  of  financing  for  implementing  and  monitoring  the  regulations.  Fourth,  conflicting  standards  often   prevail   where   individual   ministries   or   departments   have   been   responsible   for   setting  

environmental   regulations   within   their   own   departments;   lack   of   coordination   often   leads   to  conflicting   or   overlapping   regulations.   This   is   often   most   pronounced   for   water-­‐related   issues  because   of   the   numerous   stakeholders   involved   in   water   use.   Finally,   conflict   of   interest   within  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  108   December  2013  (Draft  23/12/13)  

government   programs   exists   where   government   agencies   are   themselves   the   implementing   or  investing  authority;  self-­‐regulation  becomes  problematic  under  such  circumstances  and  seldom  are  

there   built-­‐in   incentives   to   ensure   compliance.   This   is   especially   a   problem   with   common  infrastructure  facilities  that  typically  are  a  government  mandate.  

User   Charges   and   Taxes   (or   Subsidies).   Some   of   the   greatest   opportunities   for   improved  environmental   management   include   those   arising   from   appropriate  market-­‐oriented   instruments.  

The  application  of  these  mechanisms  typically  has  a  number  of  goals.  First,   incentive  effects  which  provide  economic  reasons  for  polluters  or  resource  users  to  lower  their  impacts  are  reflected  in  user  charges  for  typical  infrastructure  services  such  as  sanitation  and  water  provision.  Incentives  can  also  

be   used   to   affect   intermodal   choices:   environmental   taxes   on   fuels   can   discourage   private  automobile  use,  and  concomitantly  reduce  demand  for  complementary  public  goods  such  as  roads.  Second,   market-­‐oriented   approaches   can   be   used   as   a   recurrent   revenue   base;   this   is   especially  

important  where   local   institutions   are   expected   to   be   financially   autonomous,   or   are   required   to  fund  selected  regulatory  functions.  An  important  variant  of  the  user  charge  is  a  “presumptive  tax.”  The  basis  of  the  tax  is  an  effluent  charge  that  is  sensitive  to  a  presumed  level  of  pollution.  A  firm  is  

compelled  to  pay  the  tax,  and  no  specific  monitoring   is  conducted.   If   the  firm  wishes  to  reduce   its  tax  burden,   it  must  conduct  monitoring  at   its  own  expense  (but  still  subject  to  regulatory  audit)  to  demonstrate  that  its  actual  pollution  loads  are  less  than  the  presumed  loads.  Subsidies  can  also  be  

used   as   an   economic   incentive   for   environmental   management.   Subsidies   on   environmentally  appropriate   behavior   are   analytically   identical   to   taxes   on   inappropriate   behavior.   Such   subsidies  have   been   especially   common   in   developing   countries   for   the   importation   of   pollution   control  

technologies  or  for  credit  subsidies  where  the  credit  is  used  for  environmental  investments.  

Market   Creation   (Permits   and   Deposit-­‐Refund).   At   a   more   complex   level,   market-­‐oriented  approaches  can  include  some  form  of  market  creation.  The  most  complex  system  involves  tradable  

permits   where   user/polluter   rights   are   assigned,   according   to   a   desirable   total   level   of   use   or  pollution,  and  compliance  is  achieved  by  trade.  One  potential  advantage  of  such  systems  is  that  they  may   reduce   bureaucracy   and   government   participation   in   the   process.   Such   decentralization   of  

decision-­‐making   is   particularly   important   in   high   growth   economies   where   regulatory   drag  might  otherwise  be  a  problem.  Another  potentially   important  type  of  market  creation   involves  reform  of  property   rights   to   confer   some   form   of   property   right   (either   individual   or   collective)   in   areas   of  

environmental   sensitivity.   The   right   holder   then   has   the   incentive   to   manage   resource   use  sustainably,  and   the   legal   right   to  seek  compensation   from  agents   that  benefit   from  the   resource.  Deposit-­‐refund   systems   are   also   based   on   a  market   created   to   buy   back   sources   of   solid  wastes.  

These   have   been   used   extensively   to   promote   recycling.   Such   schemes   are   also   appropriate   for  difficult  problems  such  as  toxic  and  hazardous  waste  management.  

Market   Creation   (Payment   for   Ecosystem   Services   PES).   The   PES   approach   to   environmental  protection   entails   the   creation   of   arrangements   where   individuals   or   communities   are   paid   to  

undertake   actions   that   increase   the   levels   of   ecosystem   services   desired   by   those   who   stand   to  benefit   from   those   services.   The   Clean  Development  Mechanism   (CDM)   is   perhaps   the  most  well  known  such  arrangement  that  facilitates  the  payment  by  the  global  community  for  carbon  emission  

reductions,  to  those  providing  the  emission-­‐reduction  ecosystem  service.  PES  policies  are  a  growing  trend   because   they   offer   a   direct   and   possibly   poverty-­‐alleviating   method   for   achieving  environmental   objectives.   However,   transaction   costs   of   implementation,   monitoring   and  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  109   December  2013  (Draft  23/12/13)  

enforcement   can   be   high   if   there   are   a   large   number   of   agents,   such   as   when   there   are   many  individual  landowners  whose  collective  action  threatens  certain  ecosystem  services.    

Final  Demand  Intervention  (Eco-­‐labeling,  Disclosure  Requirements,  or  Environmental  Awareness).  

Eco-­‐labeling   to   promote   environmentally   sound   production   and   packaging   is   a   relatively   passive  form  of  intervention;  it  decentralizes  decision-­‐making  to  the  final  consumer.  A  more  aggressive  form  involves   promulgating   disclosure   requirements:   firms   are   required   to   publish   precisely   what   they  

pollute.  There  are  no  sanctions  attached  to  such  disclosure  but  consumers  are  then  given  the  choice  of  how  to  deal  with  the  products  of  particular  firms.  Another  example  of  education  and  awareness  building,  targeted  to  industries,  is  the  UNIDO  waste  minimization  program  that  assists  in  identifying  

appropriate   technologies   for   specific   plant   and   industry   types.   The   programs   typically   improve  energy  and  material  efficiency  for  plants,  while  at  the  same  time  reducing  waste  generation.  All  such  interventions   can   effectively   reduce   urban   infrastructure   requirements,   improve   environmental  

quality,  and  have   important  spin-­‐offs   in  other  social   sectors.  Their  major  disadvantage   is   that   they  typically  require  some  form  of  subsidy.  

Final   Demand   Intervention   (Supply-­‐chain   Management).   Related   to   eco-­‐labeling,   firms   are  increasingly  sensitive  about  the  environmental  and  social  context  in  which  their  suppliers  operate.  In  

such  cases,  firms  downstream  in  the  supply  chain  intervene  in  the  upstream  production  processes  of  their   intermediate   products   by   insisting   that   certain   environmental   protection   activities   are  undertaken   in   during   production.   These   types   of   interventions   have   resulted   in   upstream   firms  

installing  pollution  control  equipment  to  satisfy  their  buyers’  sourcing  criteria.  

Liability  Legislation.  Litigation-­‐oriented  approaches  to  environmental  management  require  only  that  legislation  be  in  place  that  confers  relatively  straightforward  rights  and  obligations  to  resource  users.  

These  approaches  form  a  legal  umbrella  for  court  cases,  which  then  consider  the  nature  and  extent  of   environmental   damages   on   a   case-­‐by-­‐case   basis.  Most   of   these   approaches   are   relatively   new,  and  have   seen  very   limited  application   in  developing   countries   (quite  often  because   legal   systems  

are   themselves   weak   in   such   countries).   Even   in   industrial   countries   they   are   hampered   by   the  analytical  difficulties  of  establishing  cause  and  effect,  or  of  ascribing  blame  or  negligence.  

One   significant   objection   to   using   litigation-­‐oriented   mechanisms   is   neither   environmental   nor  economic:   it   is   social.   Because   such   systems   assume   that   all   have   equal   access   to   the   courts,   the  

mechanisms  often  discriminate  against  the  poor  and  others  with  limited  access  to  legal  recourse.  

Lessons and Implications In  each  of  the  above  cases  there  is  usually  both  an  incentive  element  as  well  as  a  control  element.  

Simply  stated,  there  is  no  getting  around  the  classic  “carrot  and  stick.”  Experience  with  these  types  of  mechanisms  around  the  world  has  shown  that  they  have  different  advantages  and  disadvantages,  and  that  depending  on  the  goals  of  the  government,  some  mechanisms  are  better  than  others.  The  

following  general  conclusions  can  be  drawn  from  this  experience:  

• Systems  based   solely   on   control-­‐oriented   approaches   impose  high  private   costs   and  often  are  not  enforceable  given  existing  institutional  capacity.  

• Litigation-­‐oriented  approaches  require  the  development  of  a  strong  legal  system  to  which  all  

members  of  society  have  equal  access.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  110   December  2013  (Draft  23/12/13)  

• Market-­‐oriented  instruments  allow  polluters  and  resource  users  to  find  their  own  best  mix  

of  controls  or  responses,  and  therefore  result  in  lower  private  costs  than  other  approaches.  

• Local   authorities   and   strong   institutional   support   play   an   important   role   in   the   success   of  

market-­‐oriented  mechanisms.  

• Hybrid   systems   relying   partially   on   control-­‐oriented   approaches   and   partially   on   market-­‐oriented   instruments   are   frequently   a   practical   compromise,   especially   where  monitoring  

capacity  both  by  industry  and  the  state  is  weak.  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  111   December  2013  (Draft  23/12/13)  

Annex  F   Supplementary  Data  –  Miscellaneous  &  Case  Studies  

Comprehensive Environmental Pollution Index The  Comprehensive   Environmental   Pollution   Index   captures   air,   water   and   land   health,   and   has  been  applied  by  the  CPCB  in  88  selected  industrial  clusters  across  India.  The  purpose  of  the  index  is  

to   act   as   an   early   warning   tool   on   pollution   and   to   help   prioritize   areas   of   intervention   (Central  Pollution  Control  Board,  2009).  Table  F.1  presents  the  ranking  and  CEPI  scores  for  industrial  areas  /  clusters  in  HP  and  bordering  states.  The  highest  and  lowest  ranked  industrial  state  is  also  provided  

for   reference.   Areas  with   an   aggregate   score   of   70   are   considered   as   critically   polluted   industrial  clusters   /  areas.  Areas  with  a  CEPI  between  60-­‐70  are   considered  as   severely  polluted  areas.  Sub-­‐scores  are  also  provided  for  air,  water  and  land.  A  sub  score  of  more  than  60  indicates  a  critical  level  

of  pollution,  whereas  a  sub-­‐score  of  50-­‐60  indicates  a  severe  level  of  pollution.  

The   report   identifies   areas   of   improvements   in   terms   of   pollution   management   including:  consistency   in   pollution   monitoring   data   (parameters   and   frequency)   provided   by   the   pollution  control  authorities;  selection  of  sampling  locations  for  environmental  monitoring;  and,  the  collection  

of  data  on  impacts  of  industrial  pollution  on  human  health  and  geo-­‐ecological  features.    

Table  F.1:  The  CEPI  scores  for  industrial  areas  /  clusters  in  HP  and  bordering  states  

Ranking   Industrial  cluster  /  area   Air   Water   Land   CEPI  

1   Ankleshwar  (Gujaret)   72.00   72.75   75.75   88.50  

3   Ghazlabad  (Uttar  Pradesh)   68.50   75.25   71.50   87.37  

9   Singrauli  (Uttar  Pradesh)   70.50   64.00   59.50   81.73  

12   Noida  (Uttar  Pradesh)   65.75   64.00   60.00   78.90  

13   Dhanbad  (Jharkhand)   64.50   59.00   65.50   78.63  

15   Kanpur  (Uttar  Pradesh)   66.00   63.50   56.00   78.09  

18   Faridabad  (Haryana)   63.50   59.00   62.75   77.07  

19   Agra  (Uttar  Pradesh)   59.00   63.75   59.50   76.48  

25   Mandi  Gobind  Garh  (Punjab)   62.00   55.50   62.00   75.08  

29   Varansi  –  Mirzapur  (Uttar  Pradesh)   58.00   62.00   53.50   73.79  

37     Panupat  (Haryana)   55.75   56.50   59.00   71.91  

47   Baddi  (Himachal  Pradesh)   56.00   54.50   54.50   69.07  

48   Kala  Amb  (Himachal  Pradesh)   56.75   54.50   51.00   68.77  

50   Batala  (Punjab)   51.00   56.50   54.50   68.59  

61   Jamshedpur  (Jharkhand)   55.75   55.50   46.00   66.06  

64   Saraikela  (Jharkhand)   50.50   49.00   54.00   65.38  

65   Ramgarh  (Jharkhand)   44.00   53.00   54.50   65.11  

68   Jalandhar  (Punjab)   52.00   52.00   52.00   64.98  

69   Moradabad  (Uttar  Pradesh)   54.00   49.00   47.50   64.71  

70   Bada  Jamtara  (Jharkhand)   48.00   52.50   52.50   64.47  

71   Aligarh  (Uttar  Pradesh)   53.00   48.00   48.00   63.83  

72   Parwanoo  ((Himachal  Pradesh)   53.00   47.50   48.50   63.83  

75   Ferozabad  (Uttar  Pradesh)   49.00   47.00   47.75   60.51  

76   Mathura  (Uttar  Pradesh)   48.00   48.00   48.00   59.98  

77   Meerut  (Uttar  Pradesh)   50.00   47.50   39.50   59.38  

88   Digboi  (Assam)   32.00   32.75   38.00   44.55  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  112   December  2013  (Draft  23/12/13)  

Green House Gas Emissions59 The  net  GHG  emissions  for  HP  (i.e.  with  LULUCF)  for  2009  were  10,083  million  tons  of  CO2e  of  which:  CO2   was   8.97   million   tons;   CH4   was   0.116   million   tons;   N2O   was   0.0061   million   tons.   [check  consistency  with  cited  totals]  

GHG   emissions   from   Energy,   Industry   and   Agriculture   sectors   constituted   51.77%   (6,065.497   Gg).  

46.82%  (5485.223  Gg),  1.41%  (164.85  Gg)  of  the  net  CO2e  emissions  respectively.  

Table  F.2:  Summary  of  Greenhouse  Gas  Emission  Sources  

  GHGs  –  National  

(2007,  INCCA  Report)  

GHGs  Himachal  Pradesh   Percentage  of  National  

Electricity  generation  (other  than  hydro)  

719.30   0.359   0.1  

Transportation   142.04   0.667   0.47  

Residential   137.84   1.81   1.31  

Industrial,  Commercial,  Misc)  Other  Energy  

100.87   3.23   3.20  

Cement   129.92   5.17   3.98  

Iron  and  Steel   117.32   0.281   0.24  

Other  Industries   165.31   0.034   0.021  

Agriculture   334.41   0.165   0.049  

Waste   57.73   0.00001   0.00002  

Total  without  LULUCF   1,904.73   11.716   0.615  

LULUCF   (-­‐)  177.03   (-­‐)1.633   -­‐  

Total  with  LULUCF   1,727.71   10.083   0.584  

Note:  Estimates  are  excluding  emissions  /  removals  from  Hydro  Power  generation    

   

                                                                                                                         59  Source:  Department  of  Environment,  Science  &  Technology,  Government  of  Himachal  Pradesh.  February,  2012.  Where  We  Stand.  Greenhouse  Gas  Emissions  Inventory  of  Himachal  Pradesh.  A  Report  based  on  2008-­‐2009  Activity  Data.  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  113   December  2013  (Draft  23/12/13)  

Industry  94.29%  of   the   total  CO2e  emissions   from   the   Industry   sector  were   from  cement  production  under  

the  mineral  industry  category.  

Table  F.3:  GHG  emissions  (000’  tons  /  Giga  Gram)    

Industry  type   CO2e  

Mineral  

Cement  production   5170.39  

Glass  production     1.49397  

Chemical  

Carbide  production     26.488  

Methanol   5.11925  

Metal  

Ferroalloys   82.2231  

Aluminum   170.464  

Lead  (secondary  production)   28.946  

Zinc  production   0.0191  

Other  industries  

Pulp  &  paper   0.02323  

Textiles  &  leather   0.01204  

Food  processing   0.042154  

Mining  &  Quarrying   0.00221  

TOTAL   5485.223  

The   CH4   emissions   from   industrial   wastewater   is   estimated   at   0.006129   CO2e.   Based   on   data  

provided  by  the  SPCB,  major  industries  in  HP  generate  49,144.97  KLD  of  wastewater  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  114   December  2013  (Draft  23/12/13)  

Figure  F.1  Stone  Crushing  Industry  Characteristics  (Himachal  Pradesh)  

Industry  Scale   269  small,  1  medium,  1  large  

Primary  Districts   Jassur,  Una,  Bilaspur,  Baddi,  Kullu  

Focus   Small  firm  WW  discharge  across  districts  

Summary  Data  Available  

 

Firms  per  district  

Across  districts  –  for  small  firms:  

• WW  discharge  (KLD)  • Average  WW  discharge  • Median  WW  discharge  • Water  consumption  • Average  water  consumption  

 

0  

10  

20  

30  

40  

50  

60  

70  

0  

1  

2  

3  

4  

5  

6  

7  

No.  of  Firms  

Kilolitres  per  day  

Stone  Crushing  Small  Industry  w/  Jassur  outlier  removed  

MEDIAN  WW  discharge   Avg  WW  Discharge   Number  of  small  industries  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  115   December  2013  (Draft  23/12/13)  

Figure  F.2  Textile  Industry  Characteristics  (Himachal  Pradesh)  

Industry  Scale   10  large,  5  small  

Primary  Districts   Baddi,  Una,  Paonta,  Kullu  

Focus   Comparison  between  large  and  small  industries  

Summary  Data   Firms  per  district.  

Across  large  &  small  firms:  

• Total  WW  discharge  (KLD)  • Average  WW  discharge  • Median  WW  discharge  • Water  consumption  • Average  water  consumption  • BOD/l  tested  • COD/l  tested  

   

0.0  

50.0  

100.0  

150.0  

200.0  

250.0  

300.0  

350.0  

400.0  

450.0  

500.0  

0  

100  

200  

300  

400  

500  

600  

Small  Industry   Large  Industry  

mg  per  liter  tested  

Kiloliters  per  day  

Textile  Industry  

Median  WW  discharge   Average  WW  Discharge  

Avg  COD/litre  tested   Avg  BOD/litre  lested  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  116   December  2013  (Draft  23/12/13)  

Figure  F.3  Food  Processing  Industry  Characteristics  (Himachal  Pradesh)  

Industry  Scale   60  small,  1  medium,  3  large  

Primary  Districts   Una,  Baddi,  Bilaspur,  Parwano,  Jassur  

Focus   Small  industries  

Summary  Data   Industries  (small,  medium,  large)  per  district  

Across  districts  –  for  small  firms:  

• WW  discharge  (KLD)  • Average  WW  discharge  • Median  WW  discharge  • Water  consumption  • Average  water  consumption  • BOD/l  tested  • COD/l  tested  

 

 

   

0  

2  

4  

6  

8  

10  

12  

14  

16  

0  

20  

40  

60  

80  

100  

120  

140  

160  

180  

Number  of  SMALL  Food  Processing  Industries  &  WW  

Total  Discharge/Day  

WW  discharge  KL/D  

Number  of  small  industries  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  117   December  2013  (Draft  23/12/13)  

Figure  F.4  Steel  Industry  Characteristics  (Himachal  Pradesh)  

Industry  Scale   13  small,  6  medium,  1  large  

Primary  Districts   Paonta,  Baddi,  Jassur  

Focus   Comparison  between  small  and  medium  +  large  firms  

Summary  Data   Firms  (small,  medium,  large)  per  district  

For  large  &  small  firms:  

• Total  WW  discharge  (kld)  • Average  WW  discharge  • Median  WW  discharge  • Water  consumption  (kld)  • Average  water  consumption  

 

   

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

Baddi   Jassur   Paonta  

Small  

Medium  

Large  

0  

2  

4  

6  

8  

10  

12  

14  

0.0  

0.5  

1.0  

1.5  

2.0  

2.5  

Large+Med   Small  

Avg  WW  discharge  (KLD)  

Medium  WW  discharge  (KLD)  

No.  of  Sirms  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  118   December  2013  (Draft  23/12/13)  

Figure  F.5  Pharmaceutical  Industry  Characteristics  (Himachal  Pradesh)  

Industry  Scale   189  small,  28  medium,  37  large  

Primary  Districts   For  small:  Parwano,  Paonta,  Baddi  For  large  &  medium:  Baddi,  Paonta,  Parwano  

Focus   Comparison  across  districts  of  WW  discharge  Comparison  across  scales  of  WW  discharge  

Summary  Data   Firms  (small,  medium,  large)  per  district  For  large  &  small  firms:  • Total  WW  discharge  (KLD)  • Average  WW  discharge  • Median  WW  discharge  • Water  consumption  • Average  water  consumption  

 

   

0  

5  

10  

15  

20  

25  

Small   Medium   Large  

Median  WW  Discharge  across  Districts  according  to  Firm  Size  

Baddi   Paonta   Parwano   Una  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  119   December  2013  (Draft  23/12/13)  

Figure  F.6  Cement  Industry  Characteristics  (Himachal  Pradesh)  

Industry  Scale   13  large,  10  small,  4  medium  

Primary  Districts   Bilapur,  Parwano,  Baddi  for  large;  Paonta,  Jassur  for  small;  medium  Baddi,  Paonta,  Parwano  

 

   

0  1  2  3  4  5  6  7  8  

Baddi   Bilapur   Jassur   Paonta   Parwanoo   Una  

Cement  Industy  

Large   Medium   Small  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  120   December  2013  (Draft  23/12/13)  

Table  F.4:  Pharmaceuticals  in  Baddi  (source:  SPCB  and  Company  date  provided  through  interviews  August  2013)  

Company  Identifier   PC-­‐1   PC-­‐2a   PC-­‐2b   PC-­‐2c   PC-­‐3   PC-­‐4   PC-­‐5   PC-­‐6a   PC-­‐6b   PC-­‐7  

Investment  (lakhs)    1  lakhs  =  100,000  100  lakhs  =  1  crore  

 >  Rs  10  crore    

2,500   6,100   4,158   23,669   8,201.44   1,629.31   14,800   9,825.08   284  

Size   Large  Red  

Large  Orange  

Large  Orange  

Large  Orange  

Large    Orange  

Medium  Orange  

Medium  Orange  

Large  Orange  

Large  Orange  

Small  Orange  

Year  of  start  up   1998  (bulk  drugs)  2013  

(formulations)  

1997   2005   2010   2006   2010   2004   2006   2008   2006  

Number  of  employees    (company  data)  

350  (plus  contract  workers  

350  (plus  technicians)    

-­‐   -­‐   650  +300  contractors  

313   185   800   -­‐   400  (including  contract  staff)  

Value  of  output  (Rs  million  /  per  year)  (company  data)  

 2,000  (for  whole  

company)  

-­‐   -­‐   -­‐   11,000   3,500   -­‐   1,500   -­‐   500  

Monitoring  data  

Last  inspection   21/08/2013   15-­‐Jun-­‐13   15-­‐Jun-­‐13   13-­‐Jun-­‐12   09-­‐Jul-­‐13   15-­‐Feb-­‐13   15-­‐Jun-­‐13   06-­‐Mar-­‐13   06-­‐Mar-­‐13   22-­‐May-­‐13  

Water  consumption  per  year  (KL/D)  

90.5   56.5   64   28   302   125   34   323   143   1  

Waste  water  generation  per  year  (KL/D)  

24.4   25.5   26   14   152   100   31   35.2   23.5   1  

Flow  rate  (KLPD)  (company  data)    

Approximately  20  

105  for  all  three  plants  

-­‐   -­‐   Full  capacity  -­‐  216  Operating  at  130    

  [Zero  discharge  plant]      

[Zero-­‐discharge  plant]  

   

BOD  mg/l  (company  data)    10-­‐20  mg/l      <30  mg/l    

    BOD:  14-­‐20  mg/l  

  below  <  20  mg/l    

 Post-­‐treated  effluent  BOD  =>  <  20  mg/l      

   

BOD  mg/l  -­‐  SPCB   3.6  -­‐  380   1-­‐5,200   1-­‐6,000     0.8-­‐7,500   1-­‐12   0.5-­‐88   1-­‐440   2-­‐300   0.5-­‐520  

COD  mg/l  (company  data)   COD:  150-­‐200  mg/l  

COD:  <200  mg/l  (average  is  around  100  mg/l)  

-­‐   -­‐   COD:  170-­‐210  mg/l  and    

-­‐   below  100-­‐120  mg/l    

Post-­‐treated  effluent  COD  =>  150-­‐160  mg/l    

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  121   December  2013  (Draft  23/12/13)  

Company  Identifier   PC-­‐1   PC-­‐2a   PC-­‐2b   PC-­‐2c   PC-­‐3   PC-­‐4   PC-­‐5   PC-­‐6a   PC-­‐6b   PC-­‐7  

   

COD  mg/l  –  SPCB   16.0-­‐348   n.a   8-­‐64   n.a   20-­‐184   n.a   n.a   32-­‐596   4-­‐504   n.a  

TDS  mg/l    (company  data)  

260  mg/l  (Limits  of  500  mg/l)  

       1,500       1000-­‐1300  mg/l  (norm  is  2,100  mg/l)N  K  

   

Water  cess  return  per  year   -­‐   56.5   64   28   302   125   34   323   143   1  

Boiler  Stack  Air  emissions    (company  data)    

SPM  (139  ppm),  CO  (54  ppm)  NOx  (75.45  mg/Nm3)  and  SOX  (60.76  mg/Nm3)  Total  Hydrocarbon  (Not  Detectable)  (May  2013)  

Average  -­‐121  ppm    

    SPM:  300  μg/m3.  Rice  husk-­‐based  boiler.  Pollution  controlled  with  a  bag  filter.    

  less  than  150  mg/Nm3.    

 40  mg/Nm3  (PM),    11.3  mg/Nm3  (SO2),  61.4  mg/Nm3  (NOx),  <  0.2  mg/Nm3  (CO)  and  <  1.0  mg/Nm3  (Pb)    

   

Noise  (company  data)   Ambient  50-­‐55  dBA;  With  DG  set  running  -­‐  67-­‐69  dBA  (3  m  from  the  DG  set)  

        70  dBA  or  less  is  being  ensured.    

       

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  122   December  2013  (Draft  23/12/13)  

Table  F.5:  Pharmaceuticals  in  Baddi  –  Pollution  Control  Equipment  &  Costs  –  based  on  Company  Data  

Company  Identifier   PC-­‐1   PC-­‐2   PC-­‐3   PC-­‐4   PC-­‐5   PC-­‐6   PC-­‐7  

ETP     ETP  with  Multiple  Effective  Evaporator.  Effluent  is  distilled  under  vacuum.  Distillate  is  treated  biologically  through  Activated  Sludge  process,  which  is  followed  by  filtration  and  oxidation.  Residue  is  incinerated.    

Oil-­‐water  separator,  equalization,  secondary  treatment  (biological).  Treated  water  used  in  gardening.    ETP  sludge  sent  to  TSDF.    As  there  are  multiple  plants,  there  are  2  ETPs  with  separate  processes.    

ETP  combined  with  STP.  Includes  primary  treatment  (flocculation,  tube  settler,  aeration),  secondary  treatment  (settlement  of  bacteria  pond)  and  tertiary  (Sand  filter  and  Carbon  filter)  

   

ETP  &  RO:  Equalization  tank,  anaerobic  and  filter  (sand  &  carbon)  and  aeration.  This  is  fed  to  a  combined  storage  tank.  After  that,  ultra-­‐filtration  and  Reverse  Osmosis  is  done.  The  treated  water  is  reused  in  the  cooling  tower.  Capacity  100KLPD,  30  KLPD  utilized.    

 

(i)  Primary  (Flocculator,  Flash  Mixer  and  Primary  Clarifier);    (ii)  Secondary  (Aeration  &  Clarifier);  (iii)  Tertiary  (Activated  Carbon  and  Sand  Filter).    

Zero  discharge  plant.  ETP  capacity  is  being  increased  from  35  to  85  KLPD.  

ETP-­‐with-­‐STP  including  (i)  Primary  (Aeration  –  pH  adjusted),  (ii)  Secondary  (Bioreactor  &  secondary  clarifier)  and  (iii)  Tertiary  (Treated  Tank  and  Sand  filters).    

Zero  discharge  unit  

 

Primary,  Secondary  and  Tertiary  treatment  in  place.  There  is  also  a  fish  tank  post-­‐treatment  to  ensure  effluent  quality.  Raw  water  is  treated  using  Reverse  Osmosis  &  Demineralization  in  order  to  bring  the  water  quality  to  a  standard  that  can  be  used  in  the  manufacture  of  pharmaceuticals]  

Discharge  Mode  (source:  SPCB)  

Zero  discharge   Irrigation   Irrigation   Recycling   Irrigation   Irrigation   Zero  discharge  

Air  Pollution  Control  Equipment  

Wet  scrubbers  for  the  boiler  and  DG  set.  

Scrubbers  in  the  boilers.  There  are  4  boilers  (  1.5,  2,  0.85t  x  2)  2  running,  2  standby  serving  4  boilers.  Runs  on  High  Speed  Diesel  (HSD)    

Pre-­‐heater  for  boiler  &  multi-­‐cyclone  and  bag  filter.  Stack  chimney  height  -­‐  30m.  

 Boilers  have  scrubbers  &  dust  collectors,  Chimney  height  30m  –  2  boilers  running  on  HSD  

Wet  scrubbers  for  both  boilers  and  DG  set.  One  in  operation  and  other  on  stand-­‐by.  Chimney  stack  is  20m  

Boiler  and  DG  Set  use  standard  water  scrubbing  systems.  The  fuel  used  is  HSD    

Boilers  and  DG  Sets  have  all  control  systems  in  place  as  required  by  the  PCB.  

[Solid]  Waste  management    

No  treatment  or  landfill  capacity.  Being  sent  to  the  TSDF.  This  includes  ash  from  the  incinerator,  and  used  carbon  and  oil.  

  ETP  Sludge  is  about  3.3  tons  per  annum  and  costs  Rs  1,500  per  ton  to  dispose.  

Hazardous  waste  (i)  ETP  sludge  of  about  100-­‐150  kg  per  month  (ii)  2/3  tons  per  year  of  off-­‐specs  products.    Scrap  is  disposed  as  municipal  waste  

 20-­‐25  tons  per  year  of  solid  waste  (ETP  sludge)  sent  to  the  Shivalik  Solid  Waste  Management  Limited.  No  off-­‐specs  products  are  generated    

Hazardous  Waste  and  Biomedical  waste  are  sent  to  Nalagarh  (Shivalik)  and  Shimla  (Alliance  Envirocare)  respectively  

 

 

Date  or  year  installed   APC  in  1998     ETP:  1997  and  2004   2006   2010   2004   -­‐   2006  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  123   December  2013  (Draft  23/12/13)  

Company  Identifier   PC-­‐1   PC-­‐2   PC-­‐3   PC-­‐4   PC-­‐5   PC-­‐6   PC-­‐7  

  (subsequent  unit)  scrubbers:  2011/2.  

Pollution  control  equipment  capital  costs  

Rs  17  million  (ETP  and  APC)  

ETP  Capital  costs:  Rs  450,000  per  ETP  x  2  plants  Scrubbers:  Rs  1,200,000  per  scrubber  x  2    

Rs  20  million   -­‐   Rs  2,500,000  is  being  spent  on  expansion  

-­‐   ETP  Rs  2,500,000  

Pollution  control  operating  costs  per  year  

Rs  1,600,000    (APC,  Water  Pollution  Control,  Monitoring,  Health  Surveillance,  Rainwater  and  Green  Belt).  

ETP:  Rs  1,200,000  (for  2  plants)  Scrubbers:  Rs  120,000    

Rs  1,800,000     ETP  operating  costs  Rs  480,000  excluding  power)  

-­‐   -­‐   Cost  include  2  employees,  electricity  and  chemical  costs    

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  124   December  2013  (Draft  23/12/13)  

Table  F.6:  Pollutants  Load  of  Major  Pharmaceutical  Units  (based  on  projects  DPRs)  

Industry  Identifier   Flow  (Q)  KLD  

COD  (C1)  Mg/L  

BOD  (C2)  Mg/L  

COD/BOD   Kg  COD  /  day  (Q*C1)  

Kg  BOD  /  day  (Q*C2)  

TDS   Kg  TDS  /  day  

PI-­‐1   175   646  (2,117)  

230  854  

2.8   113  (370)  

40  (149)  

880  (1,450)  

154  (254)  

PI-­‐2   175   2,800  (2,128)  

500  746  

5.6   490  (372)  

88  (131)  

1,055  (1,400)  

185  (245)  

PI-­‐3   82   1560  (2,106)  

560  460  

2.8   128  (173)  

46  (33)  

3,355  (1,325)  

275  (109)  

PI-­‐4   200   520  (450)  

125  105  

4.2   104  (90)  

25  (21)  

850  (450)  

170  (90)  

PI-­‐5   50   720   300   2.4   36   15   880   44  

PI-­‐6   112   500   190   2.6   56   21   780   87  

PI-­‐7   230   440   110   4.0   101   25   400   92  

PI-­‐8   100   1,900   600   3.2   190   60   1,270   127  

PI-­‐9  /  PC-­‐4   155   1400  (1,165)  

600  (674)  

2.3   217  (180)  

93  (104)  

1,980  (10,444)  

307  (162)  

PI-­‐10  /  PC-­‐6a   115   240  (450)  

130   1.8   28  (52)  

15   350  (950)  

40  (109)  

PI-­‐11  /  PC-­‐6b   105   360  (500)  

190   1.9   38  (53)  

20   455  (850)  

48  (89)  

PI-­‐12  /  PC-­‐5   43   324  (370)  

280   2.3   14  (16)  

12   500  (1,100)  

22  (47)  

PI-­‐13   128   1000  (1671)  

200  443  

5.0   128  (214)  

26  (57)  

2,910  (1,800)  

372  (230)  

PI-­‐14   63   340   75   4.5   21   5   1,115   70  

PI-­‐15   35   22,000  (3,500)  

10,000  2,000  

2.2   770  (122)  

350  (70)  

19,635  (200)  

687  (7)  

PI-­‐16   150   30,000  (20,000)  

15,000  (120)  

2.0   4,500  (3,000)  

2,250  (18)  

3,670  (22,000)  

550  (3,300)  

PI-­‐17   47   480  (2,000)  

62  (450)  

7.7   23  (94)  

3  (21)  

535   25  

PI-­‐18   40   1,300  (1,000)  

500  (800)  

2.6   52  (400)  

20  (32)  

830   33  

PI-­‐19   87   1,460  (2,000)  

200  (720)  

7.3   127  (174)  

17  (63)  

1280  (1,700)  

111  (148)  

PI-­‐20  /  PC-­‐1   125   3,024  (25,000)  

940  (4,000)  

3.2   378   118   15,800  (5,000)  

1,975  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  125   December  2013  (Draft  23/12/13)  

Total  flow,  KLD   2,217         7,514   3,249     5,374  

Note:  Value  in  the  bracket  is  as  per  questionnaire  (reported  by  the  industry)  *Excluding  15  and  16  (Due  to  very  high  load  of  COD  and  BOD)  Total  flow  of  Table-­‐F  excluding  15  and  16  is=2032  KLD  Total  COD  load  of  Table-­‐F=2244  kg  COD/d  ~2.3  tons  of  COD/d  Total  BOD  load  of  Table-­‐F=643  kg  BOD/d  ~0.7  ton  of  BOD/d  Total  TDS  load  of  Table-­‐F=4137  kg  TDS/d  ~4.9  tons  of  TDS/d  Average  COD  of  Table-­‐F=1104  mg/L  Average  BOD  of  Table-­‐F=319  mg/L  Average  TDS  of  Table-­‐F=2371  mg/L      

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  126   December  2013  (Draft  23/12/13)  

Table  F.7:  Stone  Crushing  in  Una  (source:  SPCB  and  Company  information  August  2013)  

Company  Identifier   SCC-­‐1   SCC-­‐2   SCC-­‐3   SCC-­‐4   SCC-­‐5  

Investment  (lakhs)     Rs  25  lakhs  -­‐  Rs  5  crores   Rs  25  lakhs  -­‐  Rs  5  crores   Rs  25  lakhs  -­‐  Rs  5  crores   Rs  25  lakhs  -­‐  Rs  5  crores   Rs  25  lakhs  -­‐  Rs  5  crores  

Size   Small   Small   Small   Small   Small  

Year  of  start  up  (company  data)  

2002   2001   2011   2009   1985  –  Unit  1,  2000  –  Unit  2,  and  2004  –  Unit  3  

Number  of  employees  (company  data)  

9   9   9   8   60  across  3  units  

Temporary  /  transport  company  staff  (company  data)  

-­‐   -­‐   -­‐   25-­‐30   150  

Value  of  output  (Rs  million  /  per  year)  (company  data)  

90     -­‐   Rs  15,000  per  month       120    

Last  inspection   21/12/2012   2/11/2011   18/04/2012   2/09/2011   8/5/2012  

Water  consumption  per  year  (KL/D)  [*1]  

3.8   5.8   5   5   7  

Water  discharge  (KL/D)  [*2]   0.6   0.6   0.8   0.8   1.6  

Disposal  method   -­‐   Recycling   -­‐   Recycling   -­‐  

Air  emissions    (company  data)    

  SPM:  600  μg/m3  [standard]  

     

[*1]  Una  -­‐  range  1.5-­‐36;  Average  6;  HP:  average  6.9  (excludes  outlier  ID12524)  

[*2]  Una:  range  0.4-­‐8.8;  average  1.4;  HP:  average  1.8  (excludes  outlier  ID12524)  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  127   December  2013  (Draft  23/12/13)  

Table  F.8:  Stone  Crushing  in  Una  –  Pollution  Control  Equipment  &  Costs  –  based  on  Company  Data  

Company  Identifier   SCC-­‐1   SCC-­‐2   SCC-­‐3   SCC-­‐4   SCC-­‐5  

Air  Pollution  Control     Water  sprinkling  around  unit  Full  covering  of  stone  crushers  to  contain  dust    

Sprinklers.  Crusher  wall  to  reduce  dust  from  crushing  operation.  GI  sheets  enclosure  around  the  crusher.  Green  belt  all  around  except  the  river  side  in  order  to  reduce  the  impact  of  dust  pollution.  

Water  sprinklers,  GI  sheets  for  covering  the  crusher  /  sieves  and  vegetation.  Only  one  crusher  running  on  electricity  

 

Sprinkling  system  to  reduce  dust  pollution.    Green  plantations  surrounding  the  plant    Wind-­‐breaking  walls  at  the  crusher    Crusher  enclosed  with  GI  sheets  to  reduce  air  &  noise  pollution.    

Water  sprinkling  and  enclosure  of  the  crushers  across  all  the  three  units.  

Noise  management     Full  covering  of  stone  crushers  to  contain  noise  

       

Date  or  year  installed   2002   2001   2011   2009   When  units  established  

Pollution  control  equipment  capital  costs  

Water  tank  and  pipeline  around  Rs  75,000    

Sprinkler  system  –  Rs  1.00  million.  

Approx.  Rs  200-­‐300,000  (GI  sheets,  Water  Sprinkler,  Tanks)  

 Rs  1.50  million    Rs  450,000  for  the  water  sprinkling  system  

Pollution  control  operating  costs  per  year  

Cost  of  pumping  water  from  the  borewell.  It  is  taken  to  a  tank  and  used  for  sprinkling.  Water  is  available  at  120  ft  (drinking  quality)  /  80  ft  (for  non-­‐potable  purposes).  Water  availability  is  not  a  problem  

Electricity  –  around  Rs  1,000  per  month.  (200-­‐250  units  per  month  /  Rs  4.65  per  unit)  Tractor  sprinkler  –  Rs  10,000  per  month  

Approx.  Rs  4-­‐5,000  per  month  (pumping);  Water  tanker  sprinkler  is  not  used  in  the  rainy  season.  During  the  working  season,  it  costs  around  Rs  10,000  per  month.  

Rs  10,000  per  month  (electricity  and  repair  costs  only).    

Electricity  and  water  tanker  costs.  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  128   December  2013  (Draft  23/12/13)  

Table  F.9:  Food  Processing  in  Una  (interviews  August  2013)  [check  if  Jupiter  still  missing  from  dataset;  probably  OK  …  Jupiter  is  FP–2]  

Company  Identifier   FPC-­‐1   FPC-­‐2   FPC-­‐3   FPC-­‐4   FPC-­‐5   FPC-­‐6  

Investment  (lakhs)     Rs  25  lakhs  -­‐  Rs  5  crores  

Less  than  Rs  25  lakhs   Over  Rs  10  crores   Over  Rs  10  crores   Rs  600million  (company  data)  

Rs  25  lakhs  –  Rs  5  crores  

Size  /  SPCB  ratings   Small  /  Green  1   Micro   Large  /Green   Large  /  Green  2   Large  /  Orange   Small  /  Green  

Year  of  start  up  (company  data)  

1994   2005   2012   2005   2007   2010  

Number  of  employees  (company  data)  

230  

(no  contractors)  

12  

(28  in  the  season)  

404  

(plus  250  contractors)  

800  

(plus  400  contractors)  

200  

(plus  50  contractors)  

30  

Value  of  output  (Rs  million  /  per  year)  (company  data)  

160   12   2,700   180   1,000    

Last  inspection   05/05/2010     04/10/2013   18/09/2013   06/09/2013   06/09/2013  

Water  consumption  per  year  (KLD)  

0.5     800   210   1,500   8  

Waste  water  generation  per  year  (KLD)  

0.4     420   190   1.200   6.5  

Flow  rate  (KLPD)  (company  data)    

300,000  liters  day     Zero  discharge  plant   110  KL     Estimated  at  1,000  liters  /  day  

BOD  mg/l    (company  &/or  SPCB)    Norm:  30  mg  

25-­‐28  mg/l  (company)     6.0  (SPCB:  21/09/2013)  

22.0  (SPCB:  20/09/2013)  

15.0  (SPCB:12/09/2013)  

360  (company)  960  (SPCB:12/09/2013)  

COD  mg/l    (company  &/or  SPCB  data  )  Norm:  250  mg/l)]  

180-­‐200  (company)     72.0  (SPCB:  07/10/2013)  

108.0  (SPCB:  20/09/2013)  

64.0  (SPCB:12/09/2013)  

656  (company)  1,424  (SPCB:12/09/2013)  

Ph       7.62  (SPCB:  07/10/2013)  

8.24  (SPCB:  20/09/2013)  

7.81  (SPCB:12/09/2013)  

7.57  (SPCB:12/09/2013)  

Suspended  solids  mg/l       30  (21/09/2013)   82.0  (SPCB:  20/09/2013)  

21.0  (SPCB:12/09/2013)  

157.0  (SPCB:12/09/2013)  

Air  emissions       RSPM  648.18  g/m3        

Notes:  1/  Large  under  GoI’s  Food  Safety  Regulations  &  Small  under  the  Factories  Act.  2  /  Large-­‐medium  by  Department  of  Industry]      

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  129   December  2013  (Draft  23/12/13)  

Table  F.10:  Food  processing  in  Una  –  Pollution  Control  Equipment  &  Costs  –  based  on  Company  Data  

Company  Identifier   FPC-­‐1   FPC-­‐2   FPC-­‐3   FPC-­‐4   FPC-­‐5   FPC-­‐6  

ETP     Capacity  of  about  500  litres  per  day.  Includes  a  Primary,  Secondary  Clarifier  and  Bed  filters.  Treated  effluent  is  used  to  irrigate  a  large  tract  of  agricultural  land.  Presently  the  ETP  is  not  being  used  fully.  

1,000  litres  per  day  –  Mixer,  digester,  Filter-­‐sand  and  micro-­‐filter  for  residue  

Latest  membrane  technology  and  developed  as  a  zero  discharge  factory.  The  treated  water  is  used  for  landscaping.  It  is  a  500  KLPD  plant.  

 

Aeration  tank,  sedimentation  tank,  oil  &  grease  tanks,  mixing  tank,  laminar  –  filters  (sand,  carbon  and  dual  media).  

 

Primary  Clarifier,  Digester,  Biogas,  Aeration  and  Sand  Filter.  The  biogas  is  used  in  the  boilers  of  the  plant.  

 

ETP  is  out  of  order.  

A  new  ETP  is  planned    

Air  Pollution  Control  Equipment  

Wet  scrubbers  in  the  boilers.    

   

Boiler:  Chimney  height  as  per  requirement  for  size  of  boiler,  which  uses  wood  as  the  fuel  

Boilers  have  scrubbing  devices  and  a  prominent  high  chimney  

There  are  stack  emissions.    

No  scrubbing.    

 Treama  Cyclones  and  Bag  Filters  installed    A  new  boiler  is  being  installed.  

 

Energy  source   Biogas,  waste  wood  and  pine  needles  (widely  available  in  HP)    5-­‐ton  biogas  plant,  which  gets  the  biomass  from  the  300  cows  in  the  Gowshala  near  the  plant.  The  gas  is  used  for  boilers  and  kitchen  for  heating  purposes.  The  waste  residues  from  the  plant  are  fed  to  the  cows  and  therefore  there  is  a  cyclical  system  in  place    

500  liters  of  waste  oil  is  generated  per  year.  This  used  in  the  boiler  

Diesel  Generator  Set  with  5  KVA  capacity.  

Silent  model.    No  stack  height  requirements  stipulated.  

  Oven  uses  Light  Diesel  Oil  (LDO)  for  firing.  There  are  stack  emissions.  No  scrubbing.  Gas  for  the  oven  is  planned.    Diesel  Generator  Set  is  the  need  as  there  are  frequent  power  problems  related  to  transmission  and  distribution  

Diesel  Generator  Set:  Enclosed  and  for  back-­‐up.  No  APCs  installed  

 Small  boiler  in  place,  using  wood  as  fuel.    [No  stack  emissions  are  required  as  per  the  PCB].  

 

 Date  or  year  installed  

ETP  –  1996  

APC  for  boilers  –  2003  

Waste  heat  recovery  was  streamlined  in  

2005   2012   2005   ETP:  2007  APC:  2007  (Cyclones  installed.  Bag  Filter  was  installed  later)  

2010  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  130   December  2013  (Draft  23/12/13)  

Company  Identifier   FPC-­‐1   FPC-­‐2   FPC-­‐3   FPC-­‐4   FPC-­‐5   FPC-­‐6  

2013.    

Pollution  control  equipment  capital  costs  

ETP:  Capital  cost  about  Rs  2.50  million  (also  used  by  adjoining  sister  unit).  Biogas:  about  Rs  0.30  million  (GoI  Grant  was  used  for  this  purpose);    Scrubbing:  not  known  as  it  was  a  part  of  the  boiler:    Waste  heat  recovery:  about  Rs  0.50  million.    

ETP:  Rs  175,000    

 

ETP:  Rs  40  million    Boiler:  not  available  as  part  of  the  overall  boiler  system  

ETP:  Rs  3.4  million     ETP  about  Rs  40  million;    

 

Old  ETP  –  Rs  1.0  million.  New  ETP  will  cost  Rs  1.5  million.    

Pollution  control  operating  costs  per  year  

ETP:  about  Rs  0.15  million  per  month.    

Biogas:  None  -­‐  manually  feed  &  requires  little  maintenance.  Scrubbing:  only  power  costs  (not  separately  maintained).    Waste  heat  recovery:  Replacement  of  tubes  –  10%  of  capital  costs  –  every  3  or  4  years.    DG  Stack:  HSD-­‐fired  &  used  as  back  up.  No  emission  requirements  specified  by  SPCB    

ETP  Rs  1,000-­‐  1,500  per  month.  

ETP:  Rs  0.3  million  per  month.    

 

ETP  requires  5  people  .  Power  costs  are  about  Rs  130,000  per  month  

ETP:  Rs  25,000  per  day  Approximately  the  same  saving  is  obtained  from  the  use  of  biogas  instead  of  fuel.  

Electricity  &  chemical  costs  not  separately  maintained  but  are  roughly  Rs  30,000  per  month.  

   

 

Note:  FPC-­‐1  is  a  larger  operation  so  more  likely  to  recycle  water,  hence  having  lower  water  use.  Perversely,  therefore,  small  operations  can  show  as  having  larger  water  use.  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  131   December  2013  (Draft  23/12/13)  

Annex  G   Cost  Effectiveness  Templates  

[to   be   imported   {potentially   including   ftp   link?}   –   4   pages   including   1   description,   1   template   for  single   firm   (detailed),   1   template   for   industry   (partial   pro-­‐forma),   1   template   for   all   sources   in  economy  (full  pro-­‐forma)]  

Description  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  132   December  2013  (Draft  23/12/13)  

Template 1 – Firm  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  133   December  2013  (Draft  23/12/13)  

Template 2 – Industry/Sector  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  134   December  2013  (Draft  23/12/13)  

Template 3 – Economy  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  135   December  2013  (Draft  23/12/13)  

Annex  H   Maps  (placeholder)  [to  be  selected  and  inserted  if  needed]  

Index:  

Map  H.1:  Himachal  Pradesh  Highways,  Roads,  and  Urban  Centers  

Map  H.2:  Himachal  Pradesh  Administrative  Districts  

Map  H.3:  Sirmour  District,  Himachal  Pradesh,  India  

Map  H.4:  Shimla  District,  Himachal  Pradesh,  India  

Map  H.5:  Solan  District,  Himachal  Pradesh,  India  

Map  H.6:  Una  District,  Himachal  Pradesh,  India  

Map  H.7:  Kangra  District,  Himachal  Pradesh,  India  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  136   December  2013  (Draft  23/12/13)  

Map  H.1:  Himachal  Pradesh  Highways,  Roads,  and  Urban  Centers  

 

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  137   December  2013  (Draft  23/12/13)  

Map  H.2:  Himachal  Pradesh  Administrative  Districts  

 

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  138   December  2013  (Draft  23/12/13)  

Map  H.3:  Sirmour  District,  Himachal  Pradesh,  India  

 

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  139   December  2013  (Draft  23/12/13)  

Map  H.4:  Shimla  District,  Himachal  Pradesh,  India  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  140   December  2013  (Draft  23/12/13)  

Map  H.5:  Solan  District,  Himachal  Pradesh,  India  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  141   December  2013  (Draft  23/12/13)  

Map  H.6:  Una  District,  Himachal  Pradesh,  India  

   

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  142   December  2013  (Draft  23/12/13)  

Map  H.7:  Kangra  District,  Himachal  Pradesh,  India  

 

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  143   December  2013  (Draft  23/12/13)  

Internal  Confidential  Notes  (remove  before  publication)  

Company Survey Codes

Pharmaceutical  Company  Identifier  PC-­‐1   Morephen  PC-­‐2a   Unichem  I  PC-­‐2b   Unichem  II  PC-­‐2c   Unichem  III  PC-­‐3   Abbott  PC-­‐4   USV  II  PC-­‐5   Cadilla  PC-­‐6a   Panacea  I  PC-­‐6b   Panacea  II  PC-­‐7   MDC  

Pharmaceutical  Industry  Identifier  PI-­‐1   Nicholas-­‐1  PI-­‐2   Nicholas  -­‐2  PI-­‐3   Wockhardt  PI-­‐4   Alkem  PI-­‐5   FDC  PI-­‐6   Paras  pharma  PI-­‐7   Ranbaxy  PI-­‐8   Hetero  labs    PI-­‐9   USV  [PC-­‐4]  PI-­‐10   Panacea  Biotech  1  [PC-­‐6a]  PI-­‐11   Panacea  Biotech  2  [PC-­‐6b]  PI-­‐12   Cadilla  [PC-­‐5]  PI-­‐13   Ayuret  PI-­‐14   Alembic  PI-­‐15   Torque  

Confidential  Draft  –  Do  Not  Cite  

HP  Industry  SEA   Page  144   December  2013  (Draft  23/12/13)  

PI-­‐16   Surya  85  PI-­‐17   Indoco  PI-­‐18   Ozone  PI-­‐19   Cipla  pharma  PI-­‐20   Morephen  Lab  ltd  [PC-­‐1]  

Stone  Crushing  Company  Identifier  SCC-­‐1   Shiva  (ID  10404)  SCC-­‐2   Saraswati  (ID  10401)  [check  –  selected  as  “Sarawati  Crushers  Village  Worker”]  SCC-­‐3   Rudra  (ID  19587)  [check  –  selected  as  “Shree  Rudra  Stone  Crushing  and  Screening”]  SCC-­‐4   Bharat  (ID  14141)  SCC-­‐5   Himachal  Chemicals  &  Silicates  Group  (ID  17784)  [check  –  selected  as  “Himachal  Crushing  Company”]  

Food  Processing  Company  Identifier  FPC-­‐1   Shivambhu  International  FPC-­‐2   Jupiter  Multi  Food  Processing  FPC-­‐3   Nestle  FPC-­‐4   Mrs  Bector  Food  Specialities  Ltd  FPC-­‐5   Sukhjeet  Agro  FPC-­‐6   Nature  Agro  Foods