14
Storage materials 1

Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

Storage materials

1

Page 2: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

2

Theoretical Principles

Thermal effect achieved by a reversible physical or chemical reaction:

AB A+B

A+B AB

• A and AB are solids • B = water vapour

Reaction characterized by: • Heat reaction Q : kJ/kg of

water • Density of the solid : r Energy density = Q*mass of water transferred per kg of solid : • Density • Q • Mass of water transferred

Page 3: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

3

Theoretical Principles

Chemical reactions

SrBr2.1H2O+5H2O SrBr2.6H2O

• Transfer of water = stoichiometry • High reaction heat • Possibility of obtaining high energy densities (a few hundreds kWh / m3) • Not very stable

Reaction Ln P

-1/T

Tthreshold

SrBr2.1H2O+5H2O

SrBr2.6H2O

Page 4: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

4

Theoretical Principles

Physical reactions

Porous material + H2O Porous material filled with water

• Mass of water transferred is often low • Low Reaction Heat • Low energy densities ( 1 hundred kWh/m3) • Stable

m= mass of water per unit mass of material m1>m2>m3

desorption

Reaction Ln P

-1/T

Porous material filled with water

Porous material +H2O

m1 m2 m3

Page 5: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

Objectives of the SOTHERCO’s project

Development of composite materials (rapid use)

• Hygroscopic salt integrated in a porous matrix (stabilization) • High salt level> <Stability • Synthesis, structural characterization, energy characterization • Salts: SrBr2, MgCl2, CaCl2, MgSO4,SrCl2 • Porous matrix: Silica gel (essentially)

Development of composite materials and innovative porous materials (future candidates)

MOFs: Metal Organic Framework as porous material or as porous matrix (CaCl2, SrBr2) Energy density target: > 150 kWh/m3

5

Page 6: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

6

Results

Materials

BET SEM-EDX XRF IR TGA XRD Thermo-XRD

Bulk densit

y

Grain size

distribution

cp Efficiency test

water sorpti

on isothe

rms

stability

under cycles

Test on

mM

large scale

production

silica gel/CaCl2 40% (SG100, SG62, SGSanpont)

x x x x x x x x x x x x x x x

silica gel/CaCl2 26% (SG100) x x x x x x x SG100 /MgCl2 38.48% x x SG100 /MgCl2 33.18% x x SG100/MgCl2.2H2O 39.38% x x activated carbon/CaCl2 32% x x x x x silica gel SG62/MgSO4 33% x x silica gel SG62/MgSO4 51.6% x x silica gel SG62/MgCl2.2H2O 44.47% x x x x x x x x x x x x x x silica gel SG62/SrBr2 58% x x x x x x x x x x x x x x silica gel SG100/SrCl2 42.72% x x silica gel SG100/SrBr2 48% x x x x x x x

• Composites for rapid use :

Page 7: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

7

Résultats

• Gel de silice-CaCl2 (40%)

0,36 geau/gsolide Densité énergétique de l’ordre de 200 kWh/m3

30°C-80°C 1250 Pa

Page 8: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

8

Résultats

• Gel de silice-SrBr2 (58%) 0,22 geau/gsolide Densité énergétique de l’ordre de 200 kWh/m3

30°C-80°C 1250 Pa

Page 9: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

9

Résultats

• Composites et matériaux poreux innovants :

Matériaux

BET SEM-EDX XRF IR TGA XRD Thermo-

XRD Bulk density Grain size distribution cp Efficiency

test

water sorption

isotherms

stability under cycles Test on mM large scale

production

MIL127(Fe) x x x x x 30°C et 80°C MIL100(Fe) x x x x x 30°C et 80°C

MIL100/CaCl2 38% x x x x x 30°C et 80°C

MIL100/CaCl2 49% x x x x x 30°C et 80°C x

MIL127/CaCl2 30% x x x x x 30°C et 80°C MIL127/CaCl2 38% x x x x x 30°C et 80°C MIL127/CaCl2 48% x x x x x 30°C et 80°C

NH2-MIL125(Ti) x x x x x

NH2-UiO66(Zr) x x x x x NH2-MIL125/CaCl2 x x x x

NH2-UiO66/CaCl2 x x x x

MIL160(Al) x x x x x MIL101(Cr) x x x MIL160/CaCl2 34% x x

MIL101/CaCl2 62% x x x x x x x x

MIL101/SrBr2 60% x x x x x x x x

Page 10: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

10

Results

• MIL160

0,33 gwater/gsolid Energy density in the range of 141 kWh/m3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1000 2000 3000 4000 5000 6000 7000 8000

m (w

ater

) per

m (d

ry a

dsor

bent

) / g

.g-1

p/ Pa

adsorption desorption30 °C

40 °C 50 °C

60 °C70 °C

80 °C

30°C-80°C 1250 Pa

Page 11: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

11

• 2 composites for short term use: – Energy density under reference conditions: 200 kWh / m3 (heap materials). – Stable in time. – Innovative synthesis method and / or composite – Performance (energy density) higher than reported in the literature – Price

• Family of composites based on MOF – Composites and innovative synthesis methods (first works on this topic) – Some are promising – Problem with production of big quantities, cost

• MIL160 – First study on the use of this MOF for heat storage – New synthesis method – Better energy density never reported for a physical adsorbent – Problem with production of big quantities, cost

Results

Page 12: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

12

• Densités énergétiques calculées dans des conditions de référence (30°C-80°C – p=1250 Pa)

• Quelles sont les conditions réelles d’utilisation, impact sur la densité énergétique ? – Mise à disposition des isothermes dans un vastes domaine de conditions de T, p – Conditions de fonctionnement dépendent de l’intégration du réacteur dans le système complet

• Cinétique de réaction – densité énergétique – Puissance thermique – La sélection se fait sur base de la densité énergétique dans des conditions d’équilibre; en

réalité, le réacteur ne permet pas d’atteindre les conditions d’équilibre (perte de densité énergétique)

– La cinétique conditionne la puissance thermique – Plus la réaction approche de l’équilibre, plus elle est lente (compromis entre la puissance

thermique et la densité énergétique ou entre la taille du réacteur et la taille du stockage de solide

• Caractéristiques du réacteur et de la configuration du système (mode chauffage) – Vitesse d’air élevée (cinétique élevée, puissance thermique élevée) – Humidité de l’air importante (cinétique initiale élevée, puissance thermique élevée, densité

énergétique élevée) – Temps de contact élevé - taille importante du réacteur (densité énergétique élevée) – Circulation de solide (puissance thermique constante) – Faibles pertes de charges

• Tests en prototype de labo : – Quelques centaines de W par kg de solide

Mise en oeuvre des matériaux

Page 13: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

13

• Heat demand for a building of 3000 kWh with a maximum power of 2 kW: – 15 m3 of material storage (factor 5 / storage in

water, factor 10 / soil storage) – 7 kg of solid inside the reactor

Applications

Page 14: Storage materials - Sotherco · 3 Theoretical Principles Chemical reactions SrBr 2.1H 2 O+5H 2 O SrBr 2.6H 2 O • Transfer of water = stoichiometry • High reaction heat • Possibility

14

• Courbon E., D’Ans P., Permyakova A., Skrylnyk O., Steunou N., Degrez M., Frère M., "Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications " in Solar Energy 157, 2017, 532-541, 10,1016/j.solener.2017,08,034

• Permyakova A., Wang Sujin, Courbon Emilie, Nouar Farid, Heymans Nicolas, D'Ans Pierre, Barrier Nicolas, Billemont Pierre, De Weireld Guy, Steunou Nathalie, Frère Marc, Serre Christian, "Design of salt–metal organic framework composites for seasonal heat storage applications" in Journal of Materials Chemistry A, 10.1002/cssc.201700164 (2017)

• Permyakova A., Skrylnyk Oleksandr, Courbon Emilie, Affram M., Wang Sujin, Lee U.-H., Valekar A.H., Nouar Farid, Mouchaham G., Devic Thomas, De Weireld Guy, Chang J.-S., Steunou Nathalie, Frère Marc, Serre Christian, "Synthesis optimization, shaping and heat reallocation evaluation of the hydrophilic Metal Organic Framework MIL- 160(Al" in ChemSusChem, 10, 7, 1419–1426, 10.1002/cssc.201700164 (2017)

• Courbon Emilie, D'Ans Pierre, Permyakova A., Skrylnyk Oleksandr, Steunou Nathalie, Degrez Marc, Frère Marc, "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage and stability" in Applied Energy, 190, 1184, 1194 (2017)

• D'Ans Pierre, Hohenauer Wolfgang, Courbon Emilie, Frère Marc, Degrez Marc, Descy Gilbert, "Monitoring of thermal properties of a composite material used in thermochemical heat storage" in "Eurotherm Seminar 99 : Advances in Thermal Energy Storage" , Lleida, Spain (2014)

Publications