21
Stimulated X-ray Emission Spectroscopy with hard X-rays Thomas Kroll SLAC National Accelerator Laboratory

Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Stimulated X-ray Emission Spectroscopy with hard X-rays

Thomas Kroll

SLAC National Accelerator Laboratory

Page 2: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

2

Acknowledgement

Lawrence Berkeley National LabVittal Yachandra Junko YanoJan KernFranklin Fuller

SLACUwe BergmannClemens WeningerY. ZhangRoberto Alonso-MoriAgostino MarinelliAlberto LutmanMarc W. Guetg

CXI Instrument at LCLSSebastien BoutetAndy AquilaJake KoralekDan DePonte

Funding: DOE and NIH

Max Planck, Hamburg, Germany Nina RohringerLaurent MercadierVinay P. Majety

Page 3: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Mn(II)OMn(IV)O2

KMn(VII)O4

KMnO

4 nor

m

Relative Energy [eV] 350

Inte

nsit

y [a

.u.]

Ka1

Kb''

Kb'

Kb2,5

Kb1,3

Ka2

Valencelevels

3p

2p

1s

Kα1,2

Kβ1,3, Kβ’

Kβ2,5, Kβ’’

Level Diagram

X-Ray Emission Spectroscopy

Spin/oxidation state of transition metals

Valence orbitals: ligand type, structure, covalency, ligand protonation, etc

3

Bergmann et al, J Synchr Rad. 8, 199 (2001)

Page 4: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Stimulated X-ray Emission Spectroscopy

4

Ø Low photon flux density (only a few photons at a time in the sample)

Ø Only spontaneous emission in 4p direction

Stimulated (non-linear) emission:Spontaneous (conventional) emission

Incoming photons:(> abs. energy)

KaKb

Page 5: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Stimulated X-ray Emission Spectroscopy

5

Ø Very high flux density (~1011 ph / 10 fs / 100x150 nm2)

Ø Creation of population inversion

Ø Non-linear effects become dominant

Ø Cascade like decay

Stimulated (non-linear) emission:Amplified spontaneous emission (ASE)

Pump:(> abs. energy)

KaKb

Page 6: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Experimental Setup

6

- Highly focused 10 fs beam (100 x 150 nm2)

- Flat crystal analyzer in forward direction

Page 7: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

7

Objectives

• Can stimulated XES be applied to transition metal solutions?

• What is fundamentally new information provided by stimulated XES techniques that is not achievable with other techniques?

• Can stimulated XES be used for chemically sensitive X-ray emission lines? Is the chemical information preserved?

• Can we stimulate the weaker Kb emission?

Page 8: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Single shot spectra (Ka-ASE)

8

Single shots:

o Clean curve in single shot

o Only the Ka1 visible

o FWHM < normal Ka width

MnCl2 solution

5890 5895 5900 5905

5900 59105890

Page 9: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

9

Lasing in MnCl2 solution

5904590058965892Emission energy (eV)

Proof of Lasing:

- Exponential increase

- Linear gain regime below ~2 mJ

- Saturation reached > 2 mJ

T. Kroll et al. Phys. Rev. Letter 120, 133203 (2018)

Page 10: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Peak Position and Width

10

o Low to mid high photon numbers:

o Constant broadening and position

o High photon numbers:

o Spectral broadening

o Shift to lower energies

o Variations through beam position,

temporal shape, lasing condition

5904590058965892Emission energy (eV)

T. Kroll et al. Phys. Rev. Letter 120, 133203 (2018)

Page 11: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Peak Position and Width

11T. Kroll et al. Phys. Rev. Letter 120, 133203 (2018)

o Line broadening due to saturation effects

o Additional final states become visible

Page 12: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Peak Position and Width

12T. Kroll et al. Phys. Rev. Letter 120, 133203 (2018)

1.0

0.8

0.6

0.4

0.2

0.0-4 -2 0 2 4

Relative photon energy (eV)

1.1 eV

o Mn Ka1 life-time broadening: 1.48 eV (Krause and Oliver, 1979)

o Lowest observed S-XES peak width: < 1.0 eV

o Darwin width of Si (111): 0.77 eV

o Lowest S-XES lifetime broadening: < 0.5 eV

Page 13: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Stimulated X-ray Emission Spectroscopy

13

Ø Kb Seed pulse outruns Ka emission → seeded stimulated Kb emission

Ø Requirement: Overlap in time, space and energy

Stimulated (non-linear) emission:Amplified spontaneous emission (ASE) + seeded stimulated emission

Pump:> abs. energy

Seed:Kb energy Ka

Kb

Page 14: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Experimental Setup

14

- Highly focused 10 fs beam (100 x 150 nm2)

- Use part of the undulators for seed pulse

- Two flat crystals in series in forward direction for simultaneous detection of Ka and Kb

Page 15: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

15

Seeded Stimulated Kb emission

Biggest issue:

- Seed pulse and stimulated emission are at the same energy

- How to separate the stimulated signal from the SASE seed pulse?

Pump:> abs. energy

Seed:Kb energy

Page 16: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Conclusions

16

• Strongly stimulated XES in Mn solutions has been observed • Gain curves for X-ray lasing have been measured• Gain narrowing to less than the natural line width• Chemical information appears to be preserved!• Seeded stimulated Kb emission observed

Future• Improved diagnostics:

• especially in time domain

• Seeded beam diagnostic

Page 17: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

17

Page 18: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Stimulated X-ray Emission has been observed

18

Past achievements:

Soft X-rays

- Stimulated soft X-ray Ne laser

(Rohringer et al, Nature 481, 488 (2012), LCLS)

- Ne gas

- Stimulated X-ray Emission in Silicon L Lines (70-100 eV)

(Beye et al, Nature 501, 191 (2013), LCLS)

- Si

Hard X-rays

- Stimulated hard X-ray Fe laser

(Yoneda et al., Nature 524, 446 (2015), SACLA)

- Fe foil

Page 19: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

High number of photons:

19

Varying pulse energy:

o Increase of Ka2 for high fluences

o Can be explained by final state effects

0.001

0.01

0.1

1

-10 -5 0 5relative photon energy (eV)

MnCl2 FWHM: 2.2 eV 3.3 eV 4.6 eV

Cu foil(Yoneda et al.,Nature 524, 446 (2015))

T. Kroll et al. Phys. Rev. Letter 120, 133203 (2018)

Page 20: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Chemical Sensitivity

20

Compare solution spectra:

o Stimulated data retain the

expected chemical shift

o Need to address stimulated

photon / matter interaction in

more detail

T. Kroll et al. Phys. Rev. Letter 120, 133203 (2018)

Page 21: Stimulated X-ray Emission Spectroscopy with hard X-rays · 2019-07-30 · 2 KMn(VII)O 4 KMnO 4 norm 0 Relative Energy [eV] 35 Intensity [a.u.] Ka 1 Kb'' Kb' Kb 2,5 Kb 1,3 Ka 2 Valence

Experimental Setup

21

LCLS @ SLAC Linear Accelerator Laboratory

- > 3 km long building

- Electrons are accelerated

- Undulators create photons

- Pulsed and highly focused beam

- Large number of photons per pulse:

- 1011 per pulse of 10 fs

X-ray Free Electron Laser: LCLS