20
Heavy Metal Sequestration Using Functional Nanoporous Materials US EPA Workshop on US EPA Workshop on Nanotechnology for Site Nanotechnology for Site Remediation Remediation [email protected] [email protected] October 20 October 20 - - 21, 2005 21, 2005 Glen E. Fryxell, Shas V. Mattigod, Kent Parker, Richard Skaggs

Steward Advanced Materials fryxell_glenn

Embed Size (px)

Citation preview

Page 1: Steward Advanced Materials fryxell_glenn

Heavy Metal Sequestration Using Functional Nanoporous Materials

US EPA Workshop on US EPA Workshop on Nanotechnology for Site Nanotechnology for Site

RemediationRemediation

[email protected]@pnl.gov

October 20October 20--21, 200521, 2005

Glen E. Fryxell, Shas V. Mattigod, Kent Parker, Richard Skaggs

Page 2: Steward Advanced Materials fryxell_glenn

EPA’s Clean Air Mercury Rule (CAMR) (3/15/05)Current estimated power plant emissions range from 43 to 52 tons Hg/year (48) (158 tons anthropogenic Hg/year total)

Two options:1) Install MACT and reduce emissions nationwide by 14 tons (29%) by 20082) Or, by 2010, reduce this to 38 tons Hg/year (co-benefit, “CAIR”), and by 2018, reduce this to 15 tons Hg/year

Current air pollution control devices can capture some Hg, but this varies widely depending on a number of variables

Current baseline estimates: $50,000-$70,000 per pound Hg removed ($4.3B to $6.7B)

Near-term goal: 50-70% Hg capture, at 25-50% reduction in cost

Longer-term goal: 90+% capture by 2010

Mercury Emissions

Page 3: Steward Advanced Materials fryxell_glenn

Advantages of nanomaterialsfor heavy metal sequestration

High surface area (capacity)Well defined structureHigh reactivityEasy dispersabilityReadily tailored for application in different environmentsChemistry/materials developed for remediation processes are readily tailored to sensing/detection

Nanomaterials provide:

Page 4: Steward Advanced Materials fryxell_glenn

Surfactant-Oil-Water Phase Diagram

Inverse

Cubic Inverse

Hexagonal

Inverse Cylindrical MicellesMicroemulsion Domain

Cylindrical Micelles

Spherical Micelles

Hexagonal

Surfactant

Water Oil

Inverse SphericalMicelles

CubicLamellar

Micelles as macromolecular templates

Page 5: Steward Advanced Materials fryxell_glenn

Surfactants

R-N+-(CH3)3X-

Micelles

Nanoporous Ceramic SubstratesNanoporous Ceramic Substrates

Sol-gel

Template removal

Page 6: Steward Advanced Materials fryxell_glenn

Nanoporous Ceramics SubstrateNanoporous Ceramics Substrate

Large surface area: ~600 - 1000 m2/g

Controlled pore channels: 1.5 - 40 nm

~5 – 10 grams

“..God made the bulk but the devilcreated the surface” – Enrico Fermi

Page 7: Steward Advanced Materials fryxell_glenn

So the way that we get the surface chemistry we need is….

Molecular self-assembly

Pore Surface

Self-assembly driven by Van der Waalsinteractions between chains, as well as the interaction between the headgroupand the surface.

“Designing Surface Chemistry in Mesoporous Silica” in “Adsorption on Silica Surfaces”; pp. 665-687, Marcel-

Dekker, 2000.

Monolayer AdvantagesWell-established silanation chemistryStabilized surfaceHighest possible ligand densityEasily tunable chemistry

Page 8: Steward Advanced Materials fryxell_glenn

SAMMS: Self-Assembled Monolayers on Mesoporous Supports

20 nm20 nm

A. Self-assembled monolayers

B. Ordered mesoporous oxide+

First reported in:

Science 1997, 276, 923-926.

Page 9: Steward Advanced Materials fryxell_glenn

SAMMS in a Nutshell

Extremely high surface area = high capacityRigid, open pore structure provides for fast sorption kineticsChemical specificity dictated by monolayer interface, easily modified for new target speciesProximity effects allow multiple ligand/cation interactionsSequestration can be driven either by metal/ligand affinity or by adduct insolubilityGood chemical and thermal stability Easily regenerated/recycled

“Environmental and Sensing Applications of Molecular Self-Assembly”

in “Encyclopedia of Nanoscience and Nanotechnology”;

Dekker, 2004, pp. 1135-1145.

Page 10: Steward Advanced Materials fryxell_glenn

Tailoring SAMMS interfacial chemistry to the periodic table

H HeLi Be B C N O F NeNa Mg Al Si P S Cl ArK Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I XeCs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At RnFr Ra Ac Rf Db Sg Bh Hs Mt Uun Uuu Uub 113 Uuq 115 117

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb LuTh Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Chemistry of Materials 1999, 11, 2148-2154J. Physical. Chem. B. 2001, 105, 6337-6346.J. Synchrotron Radiation, 2001, 8, 922-924

Cu-EDA

OOSi

SH

OOSi

SH

HO OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OHOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

HO OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OOSi

SH

OHOSi

SH

OOSi

SH

OHOSi

SH

Science, 1997, 276, 923-926.J. Synchrotron Radiation, 1999, 6, 633-635Sep. Sci. & Technol. 1999, 3411, 2329-2345Mat. Tech. Adv. Perf. Mat. 1999, 14, 183-193Surf. Sci. & Catalysis, 2000, 105, 729-738.

Thiol

SiO2

Si

O

O O

NHO

PHO

OHO

SiO2

Si

O

O O

NHO

NHO

O

3,2 HOPO

CH3

HOPO Prop-Phos

Cu-FC-EDA Cs

Env. Sci. & Tech. 2001, 35, 3962-3966.

Env. Sci. & Tech. 2005, 39, 1324-1331 .

Env. Sci. & Tech. 2005, 39, 1332-1337 .

J. Materials Chemistry2004, 14, 3356-3363

Chem. Comm. 2002, 1374-1375.

Radiochimica Act2003, 91, 539-545

….all by varying the monolayer ligand field.

Page 11: Steward Advanced Materials fryxell_glenn

Thiol-SAMMS overviewExtensive literature precedent for using thiols to bind “soft” heavy metals (e.g. Hg, Cd, Au, etc.).Silane loading density can be tailored to 4, 5 or 6 silanes/nm2 depending on the synthetic methodology employed.This loading density allows Thiol-SAMMS to absorb as much as 2/3 of its own weight in Hg.

Mercaptopropyl siloxane monolayer lining the pore surface of mesoporous silica. The mercury (shown in blue) binds to the sulfur atoms (sulfur atoms are shown in yellow).

http://www.cluin.org/products/newsltrs/tnandt/view.cfm?issue=0905.cfm#5

(Sept. 2005 issue)

Page 12: Steward Advanced Materials fryxell_glenn

0.01

0.10

1.00

10.00

0 100 200 300 400 500

Time (min)

Conc. (mg/L)

GT-73

SAMMS

Mercury Adsorption Kinetics:Thiol SAMMS

Page 13: Steward Advanced Materials fryxell_glenn

0.0001

0.001

0.01

0.1

1

580 590 600 610 620

Hg Loading (mg/kg)

Hg conc. (mg/L)

EPA Regulatory Level: 0.2 mg/L

TCLP Data for Hg-loaded thiol-SAMMSTCLP Data for Hg-loaded thiol-SAMMS

Page 14: Steward Advanced Materials fryxell_glenn

Actual Hg waste clean-up

10L of lab waste (146 ppm Hg)

Est. disposal cost $2000

86 g of Thiol SAMMS used (final Hg conc. 0.04 ppm)

Treatment cost $180

10-fold reduction in cost.

200L of EVS scrubber waste (4.64 ppm Hg)Est. disposal cost $3400Thiol SAMMS used (final Hg conc. 0.05 ppm)Est. treatment cost $210 15-fold reduction in cost.

Mixed waste oils (0.8-50 ppm Hg)Thiol SAMMS used (final Hg conc. <0.2 ppm)Only method proven effective in hydrophobic media.

Ref: Klasson et al. 1999, 2000 ORNL

Case #1

Case #2Case #3

Page 15: Steward Advanced Materials fryxell_glenn

Preliminary Material Lifetime Cost Comparison

BasisBasis SAMMSSAMMS Resin Act. CResin Act. C

Material Cost ($/kg)Hg Loading (g/kg)Substrate (kg)

Material cost to remove ~1 kg HgWaste Disposal Cost @ $60/cftTotal Treatment Cost ~5.4Mgal

$19,141 $86,349 $3,380,952

Waste Stream Hg Waste Stream Hg ConcConc: : 10 10 ppmppm

110 40 26 0.5 0.002

167 2000 500,000

$18,370 $80,000 $1,000,000

$771 $6,349 $2,380,952

Page 16: Steward Advanced Materials fryxell_glenn

Variations on the SAMMS theme: Functionalized TiO2 Nanoparticles

TiNano40TM Characteristics

Surface Area (BET) 51.2 m2/gParticle Density 3.88 g/cm3Particle Size 40 – 60 nmTiO2 99.8%

Impurities0.2%

(ZrO2, SiO2,Cl, P2O5, ZnO)Crystalline Phase Anatase

0

250

500

750

1000

Inte

nsity

(CP

S)

21-1272> Anatase, syn - TiO2

h20904e1.dsp> Unidentified (1 Peak, d = 2.85 Å)

10 20 30 40 50 60 702-Theta(°)

[h20904e.dif] TiO2 Sample

Phase Identification X-ray diffraction analysis

Env. Sci. & Technol. 2005 (in press).

Page 17: Steward Advanced Materials fryxell_glenn

Functionalization

Env. Sci. & Technol. 2005, 39, 7306-7310.

Cu (II) EDA Functionality for

bonding tetrahedral anions (e.g. arsenate,

chromate)

Chem. Mater. 1999, 11, 2148-2154.

NH2Cu

NH

H2NNH2

NHNH

SiO

SiOSi

O

OO O

O

OCu

NH

NH2

NHNH

SiO

SiOSi

O

OO O

O

NH2

NH2

TcO

OO

TcO4-

Binding mechanism

J. Physical. Chem. B. 2001, 105, 6337-6346.

Page 18: Steward Advanced Materials fryxell_glenn

Performance

y = 3.0072x2.9643

R2 = 0.95370.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

0.0 10.0 20.0 30.0 40.0

Tc-99 Equilibrium Activity (pCi/ml)

Tc-9

9 ad

sorb

ed (p

Ci/g

)

y = 26.084x0.5453

R2 = 0.97320.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

5.0E+03

10.0 100.0 1000.0 10000.0

Solution:Solid Ratio (ml/g)

Dis

tribu

tion

Coe

ffici

ent (

Kd m

l/g)

02468

10121416

0 1 2 3

# of Pore Volumes Injected

Inle

t Pre

ssur

e (p

si)

0.01.02.03.04.05.06.07.08.0

0 10 20 30 40 50 60 70 80 90 100

Column Length (cm)

TiO

2 (w

t %)

Loading

Distribution coefficient

Back pressure

Distribution in soil column

Tc-99 Adsorption ExperimentsMaximum Tc-99 loading: ~1.3 x 105 pCi/g.Tc-99 Kd: 1.5 x 102 – 4.0 x 103 ml/g.

30 mesh sand test matrix

Page 19: Steward Advanced Materials fryxell_glenn

Variations on the SAMMS theme:Promising new materials….

Mesoporous metal phosphates –actinides, pertechnetate, chromate, etc.

Capture the strengths of SAMMS:

High surface area

High functional density

Rigid open pores structure

High affinity

….and use this an opportunity to:

Make the backbone inherently functional

Tailor materials for harsh environments

Functional mesoporous carbons –heavy metals

Page 20: Steward Advanced Materials fryxell_glenn

Conclusions

SAMMS is a very effective method for separation and stabilization of environmentally problematic speciesHigh surface area and dense monolayer coating creates high sorbent capacityRigid open pore structure allows for facile diffusion into the pores, hence rapid sorption kinetics.Specificity is dictated by the monolayer interface, and is easily tailored for a wide variety of heavy metals and radionuclidesNew classes of functional nanomaterials that also capture these strengths are on the horizon.