46
Directly testing the linearity assumption for assay validation Steven Novick / Harry Yang May, 2013 1 Manuscript accepted March 2013 for publication in Journal of Chemometrics

Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Directly testing the linearity assumption for assay validation

Steven Novick / Harry Yang

May, 2013

1

Manuscript accepted March 2013 for

publication in Journal of Chemometrics

Page 2: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

• Steven Novick

– Associate Director @ GlaxoSmithKline

• Harry Yang

– Senior Director of statistics @ MedImmune LLC

2

Page 3: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Purpose

• Illustrate a novel method to test for linearity in an analytical assay.

3

Page 4: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Analytical assay – standard curve

• We wish to measure the concentration of an analyte (e.g., a protein) in clinical sample.

• Standards = known concentrations of an analyte.

• To estimate the concentration, we create a standard curve.

4

Page 5: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Concentration

Assa

y S

ign

al

log10 Concentration

Assay S

ignal

Standards

with a fitted standard curve

5

Page 6: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Concentration

Assa

y S

ign

al

log10 Concentration

Assay S

ignal

Clinical sample

Estimated concentration

6

Page 7: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Concentration

Assa

y S

ign

al

log10 Concentration

Assay S

ignal

Clinical sample

Estimated concentration

7

To many, the only

interest lies in the

linear portion of the

curve.

???

Page 8: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

ICH Q2(R1) guideline

• http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf

• Evaluate linearity by visual inspection

8

Page 9: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

log10 Concentration

Assay S

ignal

9

Page 10: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

The EP6-A guidelines

• Clinical and Laboratory Standards Institute

– http://www.clsi.org/source/orders/free/ep6-a.pdf

• Compare straight-line to higher-order polynomial curve fits

– Recommendation: Test higher-order coefficients.

10

Page 11: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

log10 Concentration

Assay S

ignal

11

Page 12: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Notation

E[ Yij | Xi ] = a1 + b1 Xi = g1(Xi)

E[ Yij | Xi ] = a2 + b2 Xi + c2 Xi2 = g2(Xi)

E[ Yij | Xi ] = a3 + b3 Xi + c3 Xi2 + d3 Xi

3 = g3(Xi)

• Assume IID normally distributed errors with equal variance.

i = 1, 2, …, L concentrations

j = 1, 2, …, ni replicates

12

Page 13: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Orthogonal polynomials • The orthogonal polynomial of degree k is of

the form

r = (k+1) constants (to be estimated)

fr(x) = (k+1) orthogonal polynomials

x = concentration

13

∑r=0

k

θr f r( x ) ,

See: Robson, 1959

Page 14: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Orthogonal polynomials properties

14

∑i=1

L

n i f r (X i )=0

∑i=1

L

ni f r (X i) f s (X i)=0

∑i=1

L

ni f r2(X i)=1 ortho-normal property

See: Robson, 1959

Page 15: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

OLS: orthogonal polynomials

15

Y=

(Y 11

Y 12⋮

Y 1n1⋮

Y L 1Y L 2⋮

Y L nL

),

F=(f 0(X 1)

f 0(X L nL)

f 1(X 1)⋮

f 1(X L nL)

f k (X 1)⋮

f k (X Ln L)), θ=(

θ0

θ1

θk)

E [Y ]=F θ Var [Y ]=σ2 I N , N=total sample size

Var [ θ]=σ2 I k+1 .θ=FTY and

Page 16: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

16

FT

Y

L

L

L

L

Ln

Ln

Ln

Ln

XfXfXf

XfXfXf

XfXfXf

XfXfXf

32313

22212

12111

02010

cubic][θ

Y linear][θ

L

L

L

L

Ln

Ln

Ln

Ln

XfXfXf

XfXfXf

XfXfXf

XfXfXf

32313

22212

12111

02010

Intercept and slope estimates are same for both!

Page 17: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Literature • Krouwer and Schlain (1993)

– Assume linearity, except at last concentration

– Ha: max - (a1 + b1 Xmax) 0

• EP6-A

– Ha: One or both of c3 , d3 0

– Ha:

• Kroll et al. (2000)

– Composite statistic, ADL

– Ha: ADL >

17

∑i=1

L

{gk (X i)−g1(X i)}2/ X i

Wrong power profile

Assumes linearity?

Wrong power profile

Difficult to choose

∣gk (X i)−g1(X i)∣<δ for all i = 1, 2, …, L Tested without use

of inference

Page 18: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

More literature

• Hsieh and Liu (2008)

– Ha: I-U tests for all i = 1, 2, …, L

• Hsieh, Hsiao, and Liu (2009)

– Composite statistic,

– Ha: SSDL <

– Generalized pivotal quantity (GPQ) method

18

SSDL=L−1

∑i=1

L

{gk (X i)−g1(X i)}2.

∣gk (X i)−g1(X i)∣<δ

Choice of concentrations?

Difficult to choose

Generally << 2 !

Page 19: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Our proposed hypothesis • Ha: for all

• Similar to I-U testing, but instead of individual concentrations, performed across a range of interesting concentrations.

• Bayesian(or GPQ) methods.

– Linear models

– Test is function of linear contrast

19

∣g k(x)−g1( x)∣<δ x∈[x L , xU ]

Page 20: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Our proposed test statistic

• Accept linearity if p > p0 (e.g., p > 0.9).

20

p (δ , xL , xU )=Pr{ maxx∈[xL , xU]

∣∑r=2

k

θr f r( x)∣<δ∣data}

∣g k(x)−g1( x)∣<δ

maxx∈[xL , xU ]

∣∑2

k

θr f r(x )∣<δ

x∈[x L , xU ]for all

Page 21: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

log10 Concentration

Assay S

ignal

21

Page 22: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

How to: with Jeffrey’s prior (or GPQ)

• Given Y (responses) and F (orth poly design matrix). Assume a kth-degree polynomial.

• Let and be OLS estimates

• Error degrees of freedom = N-(k+1)

22

Page 23: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

• Generate two random variables

Z ~ Nk+1( 0, I )

U ~ 2(N-k-1)

23

1

ˆ

kNU

ZBayes

k

rrBayes

xxx

xfUL 2

,

,

)(max

Generate “B” of these

To estimate p(, xL, xU),

count the proportion of times:

Page 24: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Calcium Assay example • From NCCLS EP6-A,

Appendix C, ex. 2

24

Dilution Replicate

1

Replicate

2

1 4.7 4.6

2 7.8 7.6

3 10.4 10.2

4 13 13.1

5 15.5 15.3

6 16.3 16.1

Cubic model = best fit

Compare cubic to linear from Dilution =1 to Dilution = 6: = 0.9 for testing.

NCCLS EP6-A: =0.2 mg/dL

Page 25: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

25

Dilution

Mean

difference:

Cubic – Linear

1 -0.53

2 -0.13

3 0.42

4 0.74

5 0.42

6 -0.93

+/- =0.9 around cubic fit

Page 26: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Clear failure at Dilution = 6

• Hsieh and Liu I-U test p-value = 0.61

– for all i = 1, 2, …, 6

– Linear fit not adequate

• p(, xL, xU) = 0.39

– for all 1 x 6

– Linear fit not adequate

• Probability > 0.99

– Linear fit is equivalent to cubic fit 26

26

1

2

136

1

i

ii XgXgSSDL

ii XgXg 13

xgxg 13

Page 27: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Try again without last dilution • From NCCLS EP6-A,

Appendix C, ex. 2

27

Dilution Replicate

1

Replicate

2

1 4.7 4.6

2 7.8 7.6

3 10.4 10.2

4 13 13.1

5 15.5 15.3

6

Quadratic model = best fit

Compare quadratic to linear from Dilution =1 to Dilution = 5 with = 0.9 for testing.

Page 28: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

28

Dilution

Mean

difference:

Quad – Linear

1 -0.18

2 0.09

3 0.18

4 0.09

5 -0.18

6

+/- =0.9 around quadratic fit

Page 29: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Linear and quadratic fits equivalent

• Hsieh and Liu I-U test p-value < 0.01

• p(, xL, xU) > 0.99

• SSDL probability > 0.99

• Linear fit is equivalent to quadratic fit for dilutions between 1 and 5.

29

Page 30: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Simulation

30

Page 31: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Quadratic vs. Linear Simulation

• g2(x) = 10 + (1-40)x + x2, 1 x 40

• = 0 = linear: g2(x) = 10 + x

• = 0.04 = large quadratic component.

• Y ~ N( g2(x), =3 ). 10 g2(x) 50

• 6 concentrations with two replicates each

• Testing limit: = 6.1

31

Page 32: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

32

Two sets of concentrations

Set 1: Maximum deviation occurs at x = 1

Set 2: Maximum deviation occurs between points

This case is H0/H1 border

Page 33: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

33

Test is generally

Too powerful

Maximum difference occurs at x = 1 SSDL can be tuned

with knowledge of

unknown curve.

Because max diff occurs at design point,

these tests are very similar

Page 34: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

34

Tests are generally

Too powerful

Maximum difference occurs between points SSDL can be tuned

with knowledge of

unknown curve.

Our method retains similar

power profile

Page 35: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Inverting the test

• Consider the true mean response gk(x) and the reduced model g1(x)=a+bx.

• Let zk(x) = { gk(x) – a }/b

– This is polynomial Y-value back-calculated with best-fitting straight line.

• How close is zk(x) to x ?

35

Page 36: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

A few hypotheses to consider

• | zk(x) – x | < for all xL x xU

• | 100%{zk(x) – x}/x | <

• | log{zk(x)} – log(x) | <

36

Many others!

Page 37: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

• We can compute conditional probability

Pr{| log{zk(x)} – log(x) | < | data }

Or

• Find such that

Pr{| log{zk(x)} – log(x) | < | data } = 0.95

37

Page 38: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

38

Pr{| log{z3(x)} – log(x) | < 0.15 | data } = 0.95

Back-calculated values are

within 100%(100.15-1) = 40%

of true value.

Back-calculated values are

within 0.15 log10 units of

true value.

for all 1 x 6

Page 39: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

39

Pr{| log{z2(x)} – log(x) | < 0.05 | data } = 0.95

Back-calculated values are

within 100%(100.05-1) = 12%

of true value.

Back-calculated values are

within 0.05 log10 units of

true value.

for all 1 x 5

Page 40: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Extra bits

• When k=2 (quadratic vs. linear), the proposed test statistic is central T distributed.

• When k = 2, by altering the testing limits, the I-U, SSDL, and proposed test methods can be made equal.

• From simulations, test size for the proposed test statistic appears to be , depending on the experimental design.

40

Page 41: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Summary

• Test method extends idea of NCCLS EP6-A by computing probability that best-fit curve is equivalent to a linear fit.

• Testing performed across a range of concentrations and not at experimental design points.

41

Page 42: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

References: Guidelines

• ICH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International Conference on Harminisation of Technical Requirements for Registration of Pharmaceuticals for Human Use”, http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf.

• Clinical Laboratory Standard Institute (2003), “Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; Approved Guideline”, http://www.clsi.org/source/orders/free/ep6-a.pdf.

• National Committee for Clinical Laboratory Standards. Evaluation of the linearity of quantitative analytical methods; proposed guideline. NCCLS Publ. EP6-P. Villanova, Pk NCCLS, 1986.

42

Page 43: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

• Krouwer, J. and Schalin, B. (1993). “A method to quantify deviations from assay linearity”, Clinical Chemistry, 39(8), 1689-1693.

• Kroll MH, Præstgaard J, Michaliszyn E, Styer PE (2000). “Evaluation of the extent of nonlinearity in reportable range studies”, Arch. Pathol. Lab. Med, 124: 1331–1338.

• Hsieh E, Liu JP (2008). “On statistical evaluation of linearity in assay validation”, J. Biopharm. Stat., 18: 677–690.

• Hsieh, Eric, Hsiao, Chin-Fu, and Liu, Jen-pei (2009). “Statistical methods for evaulation the linearity in assay validation”, Journal of chemometrics, 23, 56-63.

43

References: Linearity tests

Page 44: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

• Narula, Sabhash (1979). “Orthogonal Polynomial Regression”, International Statistical Review, 47 : 1, 31-36.

• Robson, D.S. (1959). “A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced”, Biometrics, 15 : 2, 187-191.

44

References: Orthogonal polynomials

Page 45: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

References: Bayes, GPQ, Fiducial inference

• Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004). Bayesian Data Analysis Second Edition, New York: Chapman & Hall.

• Hannig, Jan (2009). “On Generalized Fiducial Inference”, Statistica Sinica, 19, 491-544.

• Weerahandi, S. (1993). ―Generalized Confidence Intervals,‖ Journal of the American Statistical Association 88:899-905.

• Weerahandi, S. (1995). Exact Statistical Methods for Data Analysis, New York: Springer-Verlag.

• Weerahandi, S. (2004). Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models, New Jersey: John Wiley & Sons.

45

Page 46: Steven Novick / Harry Yang May, 2013 · 28/05/2013  · References: Guidelines • IH (2005), “Validation of Analytical Procedures: Text and Methodology Q2(R1) – International

Thank you!

Questions?

46