46
JHEP 1512 (2015) 023 [1507.05694] JHEP 1501 (2015) 006 [1409.4330] A. Adulpravitchai, MS based on Sterile Neutrino Dark Matter Production from Scalar Decay Michael A. Schmidt 23 August 2016 @ NuFact The University of Sydney

Sterile Neutrino Dark Matter - Institut national de ...vietnam.in2p3.fr/2016/nufact/transparencies/Parallel2/WG5_Schmidt.… · Adhikari et al. 1602.04816 Hint for 3.5 keV X-ray line

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • JHEP 1512 (2015) 023 [1507.05694]

    JHEP 1501 (2015) 006 [1409.4330]

    A. Adulpravitchai, MS

    based on

    Sterile Neutrino Dark Matter

    Production from Scalar Decay

    Michael A. Schmidt

    23 August 2016 @ NuFact

    The University of Sydney

    http://www.arxiv.org/abs/1507.05694http://www.arxiv.org/abs/1409.4330

  • Dark Matter

    • Virial theorem(12

    〈v2〉

    = GMR)

    applied to

    COMA cluster (F.Zwicky 1933)

    • Galactic rotation curves [O(10s)kpc]• Gravitational lensing [< O(200)kpc]• Bullet cluster (X-ray + grav. lensing)• Cosmic microwave background

    Large scale structure

    • . . .

    1

  • Dark Matter

    • Virial theorem(12

    〈v2〉

    = GMR)

    applied to

    COMA cluster (F.Zwicky 1933)

    • Galactic rotation curves [O(10s)kpc]• Gravitational lensing [< O(200)kpc]• Bullet cluster (X-ray + grav. lensing)• Cosmic microwave background

    Large scale structure

    • . . .

    1

  • Dark Matter

    • Virial theorem(12

    〈v2〉

    = GMR)

    applied to

    COMA cluster (F.Zwicky 1933)

    • Galactic rotation curves [O(10s)kpc]• Gravitational lensing [< O(200)kpc]• Bullet cluster (X-ray + grav. lensing)• Cosmic microwave background

    Large scale structure

    • . . .

    1

  • Dark Matter

    • Virial theorem(12

    〈v2〉

    = GMR)

    applied to

    COMA cluster (F.Zwicky 1933)

    • Galactic rotation curves [O(10s)kpc]• Gravitational lensing [< O(200)kpc]• Bullet cluster (X-ray + grav. lensing)• Cosmic microwave background

    Large scale structure

    • . . .

    1

  • Dark Matter

    • Virial theorem(12

    〈v2〉

    = GMR)

    applied to

    COMA cluster (F.Zwicky 1933)

    • Galactic rotation curves [O(10s)kpc]• Gravitational lensing [< O(200)kpc]• Bullet cluster (X-ray + grav. lensing)• Cosmic microwave background

    Large scale structure

    • . . .

    1

  • Properties of Dark Matter

    • Relic density Planck 1502.01589

    Ωdmh2 = 0.1199± 0.0022

    • Stable on cosmological timescales

    • Neutral• Structure formation⇒ DM sufficiently cold

    1407.0017

    • Consistent with stellar evolution and BBN• Not excluded by direct or indirect searches• Compatible with constraints on self-interactions

    2

    http://www.arxiv.org/abs/1502.01589http://www.arxiv.org/abs/1407.0017

  • Properties of Dark Matter

    • Relic density Planck 1502.01589

    Ωdmh2 = 0.1199± 0.0022

    • Stable on cosmological timescales

    • Neutral• Structure formation⇒ DM sufficiently cold

    1407.0017

    • Consistent with stellar evolution and BBN• Not excluded by direct or indirect searches• Compatible with constraints on self-interactions

    2

    http://www.arxiv.org/abs/1502.01589http://www.arxiv.org/abs/1407.0017

  • keV Sterile Neutrinos

    Planck 2015

    • Dark matter about a quarter of the energy density• Interacts with SM particles weakly• Existence established across many scales• However problems at small scales

    • DM momentum distribution crucial foraccretion and structure formation

    • Characterised by free-streaming horizonrFS =

    ∫ t0ti

    〈v(t)〉a(t) dt

    Lovell et al. 1104.2929

    Lα Lβ

    HνHν

    H H

    Nk

    • Could be linked to neutrino physics• Decaying DM like a keV sterile neutrino• Fermionic DM in radiative seesaw Ma hep-ph/0601225

    produced via freeze-in Molinaro, Yaguna, Zapata 1405.1259 3

    http://www.arxiv.org/abs/1104.2929http://www.arxiv.org/abs/hep-ph/0601225http://www.arxiv.org/abs/1405.1259

  • keV Sterile Neutrinos

    Planck 2015

    • Dark matter about a quarter of the energy density• Interacts with SM particles weakly• Existence established across many scales• However problems at small scales

    • DM momentum distribution crucial foraccretion and structure formation

    • Characterised by free-streaming horizonrFS =

    ∫ t0ti

    〈v(t)〉a(t) dt

    Lovell et al. 1104.2929

    Lα Lβ

    HνHν

    H H

    Nk

    • Could be linked to neutrino physics• Decaying DM like a keV sterile neutrino• Fermionic DM in radiative seesaw Ma hep-ph/0601225

    produced via freeze-in Molinaro, Yaguna, Zapata 1405.1259 3

    http://www.arxiv.org/abs/1104.2929http://www.arxiv.org/abs/hep-ph/0601225http://www.arxiv.org/abs/1405.1259

  • keV Sterile Neutrinos

    Planck 2015

    • Dark matter about a quarter of the energy density• Interacts with SM particles weakly• Existence established across many scales• However problems at small scales

    • DM momentum distribution crucial foraccretion and structure formation

    • Characterised by free-streaming horizonrFS =

    ∫ t0ti

    〈v(t)〉a(t) dt

    100 101 102

    k [h/Mpc]

    10-2

    10-1

    100

    ∆2

    (k)

    pure CDM

    WDM: m=2.0keV

    WDM: m=3.0keV

    WDM: m=4.0keV

    Schneider 1412.2133

    Lα Lβ

    HνHν

    H H

    Nk

    • Could be linked to neutrino physics• Decaying DM like a keV sterile neutrino• Fermionic DM in radiative seesaw Ma hep-ph/0601225

    produced via freeze-in Molinaro, Yaguna, Zapata 1405.1259 3

    http://www.arxiv.org/abs/1412.2133http://www.arxiv.org/abs/hep-ph/0601225http://www.arxiv.org/abs/1405.1259

  • keV Sterile Neutrinos

    Planck 2015

    • Dark matter about a quarter of the energy density• Interacts with SM particles weakly• Existence established across many scales• However problems at small scales

    • DM momentum distribution crucial foraccretion and structure formation

    • Characterised by free-streaming horizonrFS =

    ∫ t0ti

    〈v(t)〉a(t) dt

    100 101 102

    k [h/Mpc]

    10-2

    10-1

    100

    ∆2

    (k)

    pure CDM

    WDM: m=2.0keV

    WDM: m=3.0keV

    WDM: m=4.0keV

    Schneider 1412.2133

    Lα Lβ

    HνHν

    H H

    Nk

    • Could be linked to neutrino physics• Decaying DM like a keV sterile neutrino• Fermionic DM in radiative seesaw Ma hep-ph/0601225

    produced via freeze-in Molinaro, Yaguna, Zapata 1405.1259 3

    http://www.arxiv.org/abs/1412.2133http://www.arxiv.org/abs/hep-ph/0601225http://www.arxiv.org/abs/1405.1259

  • What do we know?

    Constraints

    • X -ray observations

    • Coarse-grained phasespace density

    Tremaine,Gunn 1979

    • Ly-α forestViel et. al 1306.2314

    mth ≥ 3.3keV(2σ)[mth ≥ 2keV(cons)]

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Adhikari et. al 1602.04816

    DW production

    N νν `

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    Adhikari et al. 1602.04816

    Hint for 3.5 keV X-ray line

    Bulbul et al. 1402.2301; Boyarsky et al. 1402.4119; . . .

    ⇒ Could be explained by7 keV sterile neutrino with∑α sin

    2(2θα) ' 7× 10−11

    4

    http://www.arxiv.org/abs/1306.2314http://www.arxiv.org/abs/1602.04816http://www.arxiv.org/abs/1602.04816http://www.arxiv.org/abs/1402.2301http://www.arxiv.org/abs/1402.4119

  • What do we know?

    Constraints

    • X -ray observations

    • Coarse-grained phasespace density

    Tremaine,Gunn 1979

    • Ly-α forestViel et. al 1306.2314

    mth ≥ 3.3keV(2σ)[mth ≥ 2keV(cons)]

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Adhikari et. al 1602.04816

    DW production

    N νν `

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    Adhikari et al. 1602.04816

    Hint for 3.5 keV X-ray line

    Bulbul et al. 1402.2301; Boyarsky et al. 1402.4119; . . .

    ⇒ Could be explained by7 keV sterile neutrino with∑α sin

    2(2θα) ' 7× 10−11

    4

    http://www.arxiv.org/abs/1306.2314http://www.arxiv.org/abs/1602.04816http://www.arxiv.org/abs/1602.04816http://www.arxiv.org/abs/1402.2301http://www.arxiv.org/abs/1402.4119

  • What do we know?

    Constraints

    • X -ray observations

    • Coarse-grained phasespace density

    Tremaine,Gunn 1979

    • Ly-α forestViel et. al 1306.2314

    mth ≥ 3.3keV(2σ)[mth ≥ 2keV(cons)]

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Interaction strength Sin2(2θ)

    Dark matter mass MDM [keV]

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    2 5 50 1 10

    DM overproduction

    Tremaine-Gunn / Lyman-α Excluded by X-ray observations

    Adhikari et. al 1602.04816

    DW production

    N νν `

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    1

    10

    0.01 0.1

    Lin

    e f

    lux,

    10

    -6 p

    ho

    ton

    s c

    m-2

    s-1

    Projected DM mass density, MSun/pc2

    GC

    M31

    Perseus

    Blank-sky

    Bulb

    ul e

    t al.

    (201

    4)

    Stac

    ked

    dSph

    bou

    nd

    τ DM =

    15.

    6 x 1

    027 s

    ec

    Adhikari et al. 1602.04816

    Hint for 3.5 keV X-ray line

    Bulbul et al. 1402.2301; Boyarsky et al. 1402.4119; . . .

    ⇒ Could be explained by7 keV sterile neutrino with∑α sin

    2(2θα) ' 7× 10−11

    but challenged e.g. Jeltema, Profumo 1408.1699

    no excess in Perseus Hitomi 1607.074204

    http://www.arxiv.org/abs/1306.2314http://www.arxiv.org/abs/1602.04816http://www.arxiv.org/abs/1602.04816http://www.arxiv.org/abs/1402.2301http://www.arxiv.org/abs/1402.4119http://www.arxiv.org/abs/1408.1699http://www.arxiv.org/abs/1607.07420

  • Sterile Neutrino DM Production

    Neutrino oscillations Barbieri, Dolgov 1991; Enqvist, Kainulainen, Maalampi 1991

    • Non-resonant oscillations – Dodelson-Widrow mechanismDodeson, Widrow hep-ph/9303287

    • Resonant oscillations – Shi-Fuller mechanism Shi, Fuller astro-ph/9810076

    Thermal production• Hidden decoupled (mirror) sector

    Berezhiani, Mohapatra hep-ph/9505385; Berezhiani, Dolgov, Mohapatra hep-ph/9511221

    • New gauge interaction and entropy dilutionBezrukov, Hettmansperger, Lindner 0912.4415; Nemevsek, Senjanovic, Zhang 1205.0844

    Scalar decays [if via same coupling as oscillations typically subdominant]• Inflaton decay Shaposhnikov, Tkachev hep-ph/0604236; Bezrukov, Gorbunov 0912.0390• In thermal equilibrium

    Kusenko hep-ph/0609081; Kusenko, Petraki 0711.4646; Frigerio, Yaguna 1409.0659; Adulpravitchai, MS 1507.05694

    • Out of thermal equilibrium Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330 5

    http://www.arxiv.org/abs/hep-ph/9303287http://www.arxiv.org/abs/astro-ph/9810076http://www.arxiv.org/abs/hep-ph/9505385http://www.arxiv.org/abs/hep-ph/9511221http://www.arxiv.org/abs/0912.4415http://www.arxiv.org/abs/1205.0844http://www.arxiv.org/abs/hep-ph/0604236http://www.arxiv.org/abs/0912.0390http://www.arxiv.org/abs/hep-ph/0609081http://www.arxiv.org/abs/0711.4646http://www.arxiv.org/abs/1409.0659http://www.arxiv.org/abs/1507.05694http://www.arxiv.org/abs/1306.3996http://www.arxiv.org/abs/1409.4330

  • Sterile Neutrino DM Production

    Neutrino oscillations Barbieri, Dolgov 1991; Enqvist, Kainulainen, Maalampi 1991

    • Non-resonant oscillations – Dodelson-Widrow mechanismDodeson, Widrow hep-ph/9303287 excluded e.g. Horiuchi et al. 1311.0282

    • Resonant oscillations – Shi-Fuller mechanism Shi, Fuller astro-ph/9810076

    Thermal production• Hidden decoupled (mirror) sector

    Berezhiani, Mohapatra hep-ph/9505385; Berezhiani, Dolgov, Mohapatra hep-ph/9511221

    • New gauge interaction and entropy dilutionBezrukov, Hettmansperger, Lindner 0912.4415; Nemevsek, Senjanovic, Zhang 1205.0844

    Scalar decays [if via same coupling as oscillations typically subdominant]• Inflaton decay Shaposhnikov, Tkachev hep-ph/0604236; Bezrukov, Gorbunov 0912.0390• In thermal equilibrium

    Kusenko hep-ph/0609081; Kusenko, Petraki 0711.4646; Frigerio, Yaguna 1409.0659; Adulpravitchai, MS 1507.05694

    • Out of thermal equilibrium Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330 5

    http://www.arxiv.org/abs/hep-ph/9303287http://www.arxiv.org/abs/1311.0282http://www.arxiv.org/abs/astro-ph/9810076http://www.arxiv.org/abs/hep-ph/9505385http://www.arxiv.org/abs/hep-ph/9511221http://www.arxiv.org/abs/0912.4415http://www.arxiv.org/abs/1205.0844http://www.arxiv.org/abs/hep-ph/0604236http://www.arxiv.org/abs/0912.0390http://www.arxiv.org/abs/hep-ph/0609081http://www.arxiv.org/abs/0711.4646http://www.arxiv.org/abs/1409.0659http://www.arxiv.org/abs/1507.05694http://www.arxiv.org/abs/1306.3996http://www.arxiv.org/abs/1409.4330

  • Sterile Neutrino DM Production

    Neutrino oscillations Barbieri, Dolgov 1991; Enqvist, Kainulainen, Maalampi 1991

    • Non-resonant oscillations – Dodelson-Widrow mechanismDodeson, Widrow hep-ph/9303287 excluded e.g. Horiuchi et al. 1311.0282

    • Resonant oscillations – Shi-Fuller mechanism Shi, Fuller astro-ph/9810076

    Thermal production• Hidden decoupled (mirror) sector

    Berezhiani, Mohapatra hep-ph/9505385; Berezhiani, Dolgov, Mohapatra hep-ph/9511221

    • New gauge interaction and entropy dilutionBezrukov, Hettmansperger, Lindner 0912.4415; Nemevsek, Senjanovic, Zhang 1205.0844

    Scalar decays [if via same coupling as oscillations typically subdominant]• Inflaton decay Shaposhnikov, Tkachev hep-ph/0604236; Bezrukov, Gorbunov 0912.0390• In thermal equilibrium

    Kusenko hep-ph/0609081; Kusenko, Petraki 0711.4646; Frigerio, Yaguna 1409.0659; Adulpravitchai, MS 1507.05694

    • Out of thermal equilibrium Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330 5

    http://www.arxiv.org/abs/hep-ph/9303287http://www.arxiv.org/abs/1311.0282http://www.arxiv.org/abs/astro-ph/9810076http://www.arxiv.org/abs/hep-ph/9505385http://www.arxiv.org/abs/hep-ph/9511221http://www.arxiv.org/abs/0912.4415http://www.arxiv.org/abs/1205.0844http://www.arxiv.org/abs/hep-ph/0604236http://www.arxiv.org/abs/0912.0390http://www.arxiv.org/abs/hep-ph/0609081http://www.arxiv.org/abs/0711.4646http://www.arxiv.org/abs/1409.0659http://www.arxiv.org/abs/1507.05694http://www.arxiv.org/abs/1306.3996http://www.arxiv.org/abs/1409.4330

  • In thermal equilibrium decay

    SM+N+Hν [1507.05694]

    http://www.arxiv.org/abs/1507.05694

  • Neutrinophillic Two-Higgs Doublet Model

    • New particles odd under Z2Sterile neutrino N → −NSecond Higgs doublet Hν → −Hν

    • Lagrangian

    −LN = yLNLHνN +1

    2mNN N + h. c.

    • Scalar potential

    V = µ2νH†νHν +

    λ22

    (H†νHν)2

    + λ3H†H H†νHν + λ4|H†Hν |2 +

    λ52

    [(H†Hν)2 + h. c.]

    • Scalar particle masses m2kk = µ2ν + (λ3 + λ4) v2

    m2k,K0 = m2kk ± λ5v2 m2K± = m2kk − λ4v2

    6

  • Neutrino Mass

    Radiative seesaw Ma hep-ph/0601225; Molinaro, Yaguna, Zapata 1405.1259• Hν does not obtain VEV• Radiative neutrino mass generation

    mν ' 10−2eV(λ5y

    22,3

    10−11

    (

    1TeVM2,3

    )mkk � M2,3(

    1TeVmkk

    )(M2,3mkk

    )mkk � M2,3

    • keV sterile neutrino does not (significantly) contribute• Sterile neutrino is stable

    Lα Lβ

    HνHν

    H H

    Nk

    Naturally small seesaw Ma hep-ph/0011121; Haba, Ishida, Takahashi 1407.6827• Soft-breaking term Vsoft = µ212H†Hν + h. c.⇒ Induced VEV 〈Hν〉v =

    Re(µ212)

    m2k+ i

    Im(µ212)

    m2K0

    • Active-sterile mixing θα ' yLN,α〈Hν〉mN⇒ Possible explanation of 3.5 keV X-ray line

    Lα Lβ

    Hν Hν

    Nk

    7

    http://www.arxiv.org/abs/hep-ph/0601225http://www.arxiv.org/abs/1405.1259http://www.arxiv.org/abs/hep-ph/0011121http://www.arxiv.org/abs/1407.6827

  • Neutrino Mass

    Radiative seesaw Ma hep-ph/0601225; Molinaro, Yaguna, Zapata 1405.1259• Hν does not obtain VEV• Radiative neutrino mass generation

    mν ' 10−2eV(λ5y

    22,3

    10−11

    (

    1TeVM2,3

    )mkk � M2,3(

    1TeVmkk

    )(M2,3mkk

    )mkk � M2,3

    • keV sterile neutrino does not (significantly) contribute• Sterile neutrino is stable

    Lα Lβ

    HνHν

    H H

    Nk

    Naturally small seesaw Ma hep-ph/0011121; Haba, Ishida, Takahashi 1407.6827• Soft-breaking term Vsoft = µ212H†Hν + h. c.⇒ Induced VEV 〈Hν〉v =

    Re(µ212)

    m2k+ i

    Im(µ212)

    m2K0

    • Active-sterile mixing θα ' yLN,α〈Hν〉mN⇒ Possible explanation of 3.5 keV X-ray line

    Lα Lβ

    Hν Hν

    Nk

    7

    http://www.arxiv.org/abs/hep-ph/0601225http://www.arxiv.org/abs/1405.1259http://www.arxiv.org/abs/hep-ph/0011121http://www.arxiv.org/abs/1407.6827

  • Sterile Neutrino DM Production

    Scalar decay

    k,K 0,K±

    ν, ν, `±

    N

    • Dominating for T . mkk• One daughter has Fermi-Dirac distribution⇒ Pauli-blocking

    Scattering

    • Freeze-in IR dominated• Scattering suppressed for T . mkk• In agreement with Adulpravitchai, MS 1409.4330• Neglected in analytic study

    k ,K 0,K±

    `∓, `∓, ν W±

    N

    ν, ν, `±

    Derived analytic solution to Boltzmann equationFinite temperature corrections neglected among other

    approximations.

    See Drewes, Kang 1510.05646 for finite temperature corrections 8

    http://www.arxiv.org/abs/1409.4330http://www.arxiv.org/abs/1510.05646

  • Sterile Neutrino DM Production

    Scalar decay

    k,K 0,K±

    ν, ν, `±

    N

    • Dominating for T . mkk• One daughter has Fermi-Dirac distribution⇒ Pauli-blocking

    Scattering

    • Freeze-in IR dominated• Scattering suppressed for T . mkk• In agreement with Adulpravitchai, MS 1409.4330• Neglected in analytic study

    k ,K 0,K±

    `∓, `∓, ν W±

    N

    ν, ν, `±

    Derived analytic solution to Boltzmann equationFinite temperature corrections neglected among other

    approximations.

    See Drewes, Kang 1510.05646 for finite temperature corrections 8

    http://www.arxiv.org/abs/1409.4330http://www.arxiv.org/abs/1510.05646

  • Dark Matter Abundance [Pauli blocking neglected]

    10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

    M1 (GeV)

    10-1210-1110-1010-910-810-710-610-510-410-310-210-1100101102

    ΩN

    1h

    2

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS=200 GeV

    mS=400 GeV

    mS=800 GeV

    mS=1000 GeV

    mS=2000 GeV

    100 101 102 103 104 105

    T (GeV)

    10-1610-1510-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-2

    YN

    1(T

    )

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS =400 GeV

    mH± =400 GeV, mH0 =200 GeV

    mH± =400 GeV, mH0 =600 GeV

    mH± =200 GeV, mH0 =400 GeV

    mH± =600 GeV, mH0 =400 GeV

    study of fermionic FIMP DM in radiative seesaw model Molinaro, Yaguna, Zapata 1405.1259

    9

    http://www.arxiv.org/abs/1405.1259

  • Dark Matter Abundance [Pauli blocking neglected]

    10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

    M1 (GeV)

    10-1210-1110-1010-910-810-710-610-510-410-310-210-1100101102

    ΩN

    1h

    2

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS=200 GeV

    mS=400 GeV

    mS=800 GeV

    mS=1000 GeV

    mS=2000 GeV

    100 101 102 103 104 105

    T (GeV)

    10-1610-1510-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-2

    YN

    1(T

    )

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS =400 GeV

    mH± =400 GeV, mH0 =200 GeV

    mH± =400 GeV, mH0 =600 GeV

    mH± =200 GeV, mH0 =400 GeV

    mH± =600 GeV, mH0 =400 GeV

    study of fermionic FIMP DM in radiative seesaw model Molinaro, Yaguna, Zapata 1405.1259

    9

    http://www.arxiv.org/abs/1405.1259

  • Dark Matter Abundance [Pauli blocking neglected]

    10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

    M1 (GeV)

    10-1210-1110-1010-910-810-710-610-510-410-310-210-1100101102

    ΩN

    1h

    2

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS=200 GeV

    mS=400 GeV

    mS=800 GeV

    mS=1000 GeV

    mS=2000 GeV

    100 101 102 103 104 105

    T (GeV)

    10-1610-1510-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-2

    YN

    1(T

    )

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS =400 GeV

    mH± =400 GeV, mH0 =200 GeV

    mH± =400 GeV, mH0 =600 GeV

    mH± =200 GeV, mH0 =400 GeV

    mH± =600 GeV, mH0 =400 GeV

    study of fermionic FIMP DM in radiative seesaw model Molinaro, Yaguna, Zapata 1405.1259

    9

    http://www.arxiv.org/abs/1405.1259

  • Dark Matter Abundance [Pauli blocking neglected]

    10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

    M1 (GeV)

    10-1210-1110-1010-910-810-710-610-510-410-310-210-1100101102

    ΩN

    1h

    2

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS=200 GeV

    mS=400 GeV

    mS=800 GeV

    mS=1000 GeV

    mS=2000 GeV

    100 101 102 103 104 105

    T (GeV)

    10-1610-1510-1410-1310-1210-1110-1010-910-810-710-610-510-410-310-2

    YN

    1(T

    )

    y1 =10−8

    y1 =10−9

    y1 =10−10

    y1 =10−11

    y1 =10−12

    100 101 102 103 104

    T (GeV)

    10-11

    10-10

    10-9

    10-8

    10-7

    YN

    1(T

    )

    mS =400 GeV

    mH± =400 GeV, mH0 =200 GeV

    mH± =400 GeV, mH0 =600 GeV

    mH± =200 GeV, mH0 =400 GeV

    mH± =600 GeV, mH0 =400 GeV

    study of fermionic FIMP DM in radiative seesaw model Molinaro, Yaguna, Zapata 1405.1259

    9

    http://www.arxiv.org/abs/1405.1259

  • Momentum Distribution Function

    non-relativistic

    relativistic

    thermal

    this work

    0 2 4 6 8 10x=

    p

    T

    x2f(x) • Distribution functions normalised to 1

    • Assumption: common scalar mass

    • Spectrum cooler than thermal decoupling

    • Similar to decay of relativistic scalar

    • Hotter than decay of non-relativistic scalar

    10

  • Dark Matter Abundance

    100 200 300 400 500 600 700 800 900 1000mkk [GeV]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    √∑

    α|y L

    Nα|2

    ×10−8

    0.1

    0.2

    0.30.51.0

    0.01

    0.05

    Contour plot of ΩNh2

    ∑α sin

    2(2θα) ' 7× 10−11mN = 7.1 keV,

    0.1199± 2σ

    Contribution from non-resonant oscillations negligible11

  • Dark Matter Abundance II

    10 20 30 40 50 60 70 80 90 100mN [keV]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    √∑

    α|y L

    Nα|2

    ×10−8

    100

    300500

    700 1000

    2000

    Contour plot of mkk [GeV]

    10 20 30 40 50 60 70 80 90 100mN [keV]

    100

    200

    400

    600

    800

    1000

    mkk

    [GeV

    ]

    3× 10−9

    4× 10−9

    6×10−9

    7× 1

    0−9

    10−8

    10−8

    Contour plot of√∑

    α |yLNα|2/10−8

    DM abundance

    ΩNh2 ' 3.5× 1015 mN

    10keV

    100GeV

    mkk

    α

    |yLN,α|2

    ⇒ Yukawa couplings ∼ 10−8 for scalars at TeV scale12

  • Suppression of Small Scale Structure

    Free-streaming scale: rFS

    Size of astrophysical object: L

    time

    ν

    ν

    c

    c

    ψ

    L� rFS

    c ν c ν cνcνcψ

    L� rFS

    c

    ν

    νc

    ψ

    L� rFS

    L� rFS

    Potential stays the samePotential

    weakens

    CDM and ν’s cluster only

    CDM

    clusters

    13

  • Suppression of Small Scale Structure

    Free-streaming scale: rFS

    Size of astrophysical object: L

    time

    ν

    ν

    c

    c

    ψ

    L� rFS

    c ν c ν cνcνcψ

    L� rFS

    c

    ν

    νc

    ψ

    L� rFS

    L� rFS

    Potential stays the samePotential

    weakens

    CDM and ν’s cluster only

    CDM

    clusters

    13

  • Suppression of Small Scale Structure

    Free-streaming scale: rFS

    Size of astrophysical object: L

    time

    ν

    ν

    c

    c

    ψ

    L� rFS

    c ν c ν cνcνcψ

    L� rFS

    c

    ν

    νc

    ψ

    L� rFS

    L� rFS

    Potential stays the samePotential

    weakens

    CDM and ν’s cluster only

    CDM

    clusters

    13

  • Suppression of Small Scale Structure

    • Free streaming horizon e.g. Boyarsky, Lesgourges, Ruchayskiy, Viel 0812.0010

    rFS '∫ t0td

    〈v(t)〉a(t)

    dt =

    ∫ tnrtd

    1

    a(t)dt+

    ∫ teqtnr

    〈v(t)〉a(t)

    dt+

    ∫ t0teq

    〈v(t)〉a(t)

    dt

    td decay time; teq time of matter-radiation equality; t0 today

    Hasenkamp, Kersten 1212.4160; Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330

    • Average velocity

    〈v(t)〉 =

    1 for t < tnr〈p〉mN

    for t > tnr

    • Sterile neutrino become non-relativistic at time tnr with

    mN = 〈p(Tnr )〉 ' 2.46Tnr ⇒ tnr ' 1500s(

    10keV

    mN

    )2

    14

    http://www.arxiv.org/abs/0812.0010http://www.arxiv.org/abs/1212.4160http://www.arxiv.org/abs/1306.3996http://www.arxiv.org/abs/1409.4330

  • Free-Streaming Horizon

    10 20 30 40 50 60 70 80 90 100mN [keV]

    10−2

    10−1

    r FS

    [Mpc

    ]

    Ly-α

    mth [keV]23.35

    10

    20

    HDM

    CDM

    WDM

    rFS =√teqtnraeq

    (5 + ln

    teqtnr

    )' 0.047Mpc

    (10keVmN

    )

    1keV < mth < 5keV ⇒ 2.5 keV . mN . 13 keV15

  • Free-Streaming Horizon

    10 20 30 40 50 60 70 80 90 100mN [keV]

    10−2

    10−1

    r FS

    [Mpc

    ]

    Ly-α

    mth [keV]23.35

    10

    20

    HDM

    CDM

    WDM

    rFS =√teqtnraeq

    (5 + ln

    teqtnr

    )' 0.047Mpc

    (10keVmN

    )

    1keV < mth < 5keV ⇒ 2.5 keV . mN . 13 keV15

  • Out-of-equilibrium decay

    SM+N+ϕ [1409.4330]

    http://www.arxiv.org/abs/1409.4330

  • Model

    • New particles and discrete lepton number Z4: L→ iLSterile neutrino N → −iNReal scalar φ→ −φ• Lagrangian

    −∆L = −λHφ2

    H†Hφ2 +[yLNLHN +

    yN2φN2 + h.c.

    ]

    • Small couplings: λHφ, yLN � 1• Effective scalar interaction after EWSB

    [〈H〉 =(

    0 v)T

    and φ = vφ + σ]

    ∆V (h, σ) = λHφ

    (h2σ2

    4+

    v√2hσ2)

    16

  • Sterile Neutrino DM Production

    SM→ Nν N

    L

    L N

    N

    H

    Dominantly two step production

    SM σ N1 2

    SM → σf

    σ

    σh

    V

    V

    σ

    σh

    h

    h

    σ

    σh

    h

    h

    σ

    σh

    σ

    σ

    σ → N

    σ

    N

    N

    Several approximations:

    g∗ = const,

    no finite T effects, . . .17

  • Sterile Neutrino DM Production

    SM→ Nν N

    L

    L N

    N

    H

    Dominantly two step production

    SM σ N1 2

    SM → σf

    σ

    σh

    V

    V

    σ

    σh

    h

    h

    σ

    σh

    h

    h

    σ

    σh

    σ

    σ

    σ → N

    σ

    N

    N

    Several approximations:

    g∗ = const,

    no finite T effects, . . .17

  • Dark Matter Abundance

    104 1000 100 10 110-13

    10-11

    10-9

    10-7

    10-5

    T @GeVD

    Ymσ = 500GeV; λHφ = 2.7 · 10−7

    Tin = 8.8 GeV

    YN

    104 1000 100 10 110-13

    10-11

    10-9

    10-7

    10-5

    T @GeVD

    Y

    mσ = 30GeV; λHφ = 3.7 · 10−9

    Tin = 17 GeV

    YN

    Higgs annihilation solid (decay dashed), ZZ (solid), WW (dashed); tt̄

    mN = 7.1 keV;λφ = 0.5

    Dark matter abundance [Ωsh2 ' 0.1199± 0.0027 Planck 1303.5076]

    ΩN 'mσ Y

    ∞N T

    30

    g s∗(T0)g s∗(Tin)

    ρc

    Higgs decays dominant contribution when kinematically accessible18

    http://www.arxiv.org/abs/1303.5076

  • Free-Streaming Horizon rFS '√teqtnraeq

    (5 + ln teq

    tnr

    )

    5 10 15 20mN[keV]0.005

    0.010

    0.050

    0.100

    0.500rFS[Mpc]

    HDM

    CDM

    WDM

    Ly-α

    mth[keV]2

    3.35

    10

    20

    500

    170

    60

    30

    mN = 〈p(Tnr )〉 '√π

    2Tnr ⇒ tnr '

    π

    16

    m2σm2N

    (g s∗ (T0)

    g s∗ (Tin)

    )2/3tin

    19

  • Conclusions

  • Conclusions

    • keV sterile neutrinois a viable DM candidate

    • Freeze-in production via scalar decay is aninteresting alternative to oscillations

    • Can be both cold or warm DM

    19

  • 13th International Symposium on Cosmology and Particle Astrophysics

    (CosPA 2016),Sydney, Nov 28 – Dec 2, 2016

    LOC: Jan Hamann (USyd), Gary Hill (Adelaide), Archil Kobakhidze (USyd), Geraint Lewis (USyd), Michael Schmidt (USyd), Kevin Varvell (USyd), Yvonne Wong (UNSW)

    https://indico.cern.ch/event/491882

    https://indico.cern.ch/event/491882/https://indico.cern.ch/event/491882

    In thermal equilibrium decay SM+N+H [1507.05694]Out-of-equilibrium decay SM+N+ [1409.4330]Conclusions