32
Stereoselective Oxidation and Reduction Reactions Dr Simon Woodward School of Chemistry, University of Nottingham

Stereoselective Oxidation and Reduction Reactions

Embed Size (px)

DESCRIPTION

Stereoselective Oxidation and Reduction Reactions. Dr Simon Woodward School of Chemistry, University of Nottingham. Epoxidation Epoxide opening Dihydroxylation Aminohydroxylation Alcohol oxidation. Oxidation Reactions. “ Click Chemistry: Diverse Chemical Function - PowerPoint PPT Presentation

Citation preview

Page 1: Stereoselective Oxidation and Reduction Reactions

Stereoselective Oxidationand Reduction Reactions

Dr Simon WoodwardSchool of Chemistry, University of Nottingham

Page 2: Stereoselective Oxidation and Reduction Reactions

Oxidation Reactions

• Epoxidation

– Epoxide opening

• Dihydroxylation

• Aminohydroxylation

• Alcohol oxidation

“Click Chemistry: Diverse Chemical Function from a Few Good Reactions” Kolb, Finn, Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.

Page 3: Stereoselective Oxidation and Reduction Reactions

Sharpless Asymmetric Epoxidation of Allylic Alcohols

Review: Katsuki and Martin, Org. React., 1996, 48, 1.

OH

R1R2

R3

(-)-DET "O"

(+)-DET "O"

Sharpless, J. Am. Chem. Soc., 1987, 109, 5765 .Mechanism: J. Am. Chem. Soc., 1991, 113, 106 and 113.

• tBuOOH, Ti(OiPr)4, DET, CH2Cl2, 4Å MS

• Hydroxamic acid ligands for Vanadium-catalysed asymmetric epoxidation of allylic alcohols: Yamamoto, J. Am. Chem. Soc. 2000, 122, 10452.

Page 4: Stereoselective Oxidation and Reduction Reactions

Chiral Mn(salen) Catalysts: Overview

N N

O OtBu tBu

tButBu

Mn

Cl

H H

Stoichiometric co-oxidants:Usually aq. NaOCl, CH2Cl2mCPBA / NMO (low temperature)

Preparation of catalyst: Organic Syntheses, 1998, 75, 1.Polymer supported catalyst: e.g. Janda, J. Am. Chem. Soc., 2000, 122, 6929.

Cis-Disubstituted alkenes: J. Am. Chem. Soc. 1991, 113, 7063.Trisubstituted alkenes: J. Org. Chem. 1994, 59, 4378.Tetrasubstituted alkenes: Tetrahedron Lett. 1995, 36, 5123.Cinnamate esters: Tetrahedron 1994, 50, 4323.

Review: Katsuki Coord. Chem. Rev. 1995, 140, 189.

• Poor enantioselectivities for trans-disubstituted and terminal alkenes] (but see Katsuki, Synlett, 2000, 1557)

•Via radical intermediate, so stereospecificity with respect to alkene geometry sometimes eroded. Can use to make trans-epoxides from cis-alkenes: Jacobsen, J. Am. Chem. Soc. 1994, 116, 6937.

• Asymmetric epoxidation of E-alkenes using Cr(salens): Gilheany, Org. Lett. 2001, 3, 663, and refs. therein

PhPh

O

0.04eq. (R,R)-Mn(salen)Cl

NaOCl, pH 11.3CH2Cl2, 4ºC

84% yield92% ee

Page 5: Stereoselective Oxidation and Reduction Reactions

Dioxiranes

R1 R1

O Oxone® (KHSO5)

R1 R2

OO

Base

Isolation of dioxiranes: neutral, anhydrous oxidantsPreparation of dimethyldioxirane (DMDO) solutions: Adam, Chem. Ber., 1991, 124, 2377.More concentrated, “acetone free” solutions: Messeguer, Tetrahedron Lett., 1996, 37, 3585.

• Electrophilic oxidants, but successful for epoxidation of electron poor alkenes: e.g. Baumstark, J. Org. Chem., 1993, 58, 7615.

In situ dioxirane formationBiphasic, CH2Cl2 / H2O: Denmark, J. Org. Chem., 1995, 60, 1391.Monophasic, CH3CN / H2O: Yang, J. Org. Chem., 1995, 60, 3887.In situ DMDO prep.: Shi, J. Org. Chem., 1998, 63, 6425.Trifluoroacetone + H2O2: Shi, J. Org. Chem., 2000, 65, 8808.

Page 6: Stereoselective Oxidation and Reduction Reactions

Chiral Dioxiranes: Asymmetric Epoxidation of trans-Alkenes

Shi, J. Am. Chem. Soc. 1997, 119, 11224. Review: Shi, Synthesis, 2000, 1979.

• Preparation: 2 steps from D-fructose (enantiomer available in 5 steps from L-sorbose)• Excellent enantioselectivities for epoxidation of trisubstituted and trans-disubstituted alkenes• Poor ee for cis- and terminal alkenes

• Ketone decomposes by Baeyer-Villiger reaction - cannot be recycled. High pH conditions required.

O

O

O

OO

O

PhCH3

30 mol% ketone

Oxone, K2CO3CH3CN, 0ºC

pH 10.5 buffer

PhCH3

O

93% yield; 92% ee

(Use of H2O2 as primary oxidant: Tetrahedron Lett., 1999, 40, 8721;Tetrahedron, 2001, 57, 5213.)

O

OO

OO

OO

RH

R

Other substrate types:Conjugated dienes: J. Org. Chem. 1998, 63, 2948Enynes: Tetrahedron Lett. 1998, 39, 4425.

Modified catalyst for cis-alkenes: J. Am. Chem. Soc. 2000, 122, 11551.Terminal alkenes: Org. Lett., 2001, 3, 1929.

Stable catalysts:Armstrong, Chem. Commun. 1998, 625; Tetrahedron: Asymmetry, 2000, 11, 2057. Shi, Org. Lett. 2001, 3, 715.

Page 7: Stereoselective Oxidation and Reduction Reactions

Oxidation of silyl enol ethers

Other methods for asymmetric oxidation of silyl enol ethers:Chiral Mn(salens):Thornton, Chem. Commun. 1992, 172; Adam, Tetrahedron Lett. 1996, 37, 6531, and refs. therein.Chiral oxaziridines: Review: Davis, Chem. Rev., 1992, 92, 919.Asymmetric dihydroxylation: J. Org. Chem. 1992, 57, 5067.

Shi, Tetrahedron Lett. 1998, 39, 7819:

Ph

OTBDMS

Ph

OCat. ketone, Oxone

CH3CN, aq. buffer

OH

80% yield90% ee

O OO

O

OO

Ketone =

OR ORO

R=Ac: 59% yield, 74% eeR=Bz: 82% yield, 93% ee

O

OBz

O

OBz

pTsOHsilica gelor YbCl3or AlMe3R=Bz

90% ee 87-91% ee

ShiJ. Am. Chem. Soc. 1999, 121, 4080.

Page 8: Stereoselective Oxidation and Reduction Reactions

Hydrolytic Kinetic Resolution

Jacobsen, Science 1997, 277, 936. Acc. Chem. Res. 2000, 33, 421.

O1. 0.2 mol% (salen)*Co(III)(OAc) 0.55 eq. H2O, rt, 12 hr

2. Distillation

OOH

OH

> 98% ee(44% yield)

> 98% ee(50% yield)

+

• Catalyst can be recycled (AcOH, air)

• Easily-synthesised oligomeric Co(salen) catalysts are highly active for epoxide opening by water, alcohols and phenols: J. Am. Chem. Soc. 2001, 123, 2687.

Page 9: Stereoselective Oxidation and Reduction Reactions

Asymmetric Epoxidation of Electron-Deficient Alkenes

R1 R2

O

R1 R2

OO

Review: M.J. Porter and J. Skidmore, Chem. Commun., 2000, 1215.

• Polyleucine, H2O2, base: e.g. Tetrahedron Lett., 2001, 42, 3741. Reviews: Tetrahedron: Asymmetry 1997, 8, 3163; 1998, 9, 1457.

• Catalytic Mg peroxides (tBuOOH, cat. Bu2Mg, cat. diethyl tartrate): R1, R2=Ph Jackson, Angew. Chem., Int. Ed. Engl. 1997, 36, 410. • Chiral phase-transfer catalysts (R2 can be alkyl): Lygo, Tetrahedron, 1999, 55, 6289; Tetrahedron Lett. 2001, 42, 1343.

• Lanthanide catalysis (BINOL, La(OiPr)3 or Yb(OiPr)3, 4Å MS, tBuOOH): R1=Ph, iPr or Me; R2=Ph, iPr, Ph(CH2)2 or Me. La-BINOL-Ph3AsO -mechanistic studies: J. Am. Chem. Soc., 2001, 123, 2725.

• Chiral hydroperoxides, KOH, CH3CN: Adam, J. Am. Chem. Soc., 2000, 122, 5654.

• Stoichiometric zinc alkylperoxides (O2, Et2Zn, R*OH): R1=Ph or tBu, R2=alkyl or aryl Enders, Angew. Chem. Int. Ed. Engl. 1996, 35, 1725; Liebigs Ann. Chem. 1997, 1101

• Chiral dioxiranes: e.g. Tetrahedron: Asymmetry, 2001, 12, 1113.

Page 10: Stereoselective Oxidation and Reduction Reactions

Alkene Dihydroxylation

R1

R3

R2

R4 R3 R4

OH OHR1 R2

OsO4

R3 R4

O OR1 R2

OsO O

Catalytic systems:• NMO / acetone / H2O (Upjohn procedure): Tetrahedron Lett. 1976, 23, 1973.

• Cat. Me3NO•2H2O, CH2Cl2: Poli, Tetrahedron Lett. 1989, 30, 7385.

• K3Fe(CN)6, K2CO3, tBuOH / H2O: Minato, Yamamoto, Tsuji, J. Org. Chem. 1990, 55, 766.

• NMO, PhB(OH)2, CH2Cl2: Narasaka, Chem. Lett. 1988, 1721. - Diol trapped as boronate ester - useful if diol is unstable or highly water soluble

• Selenoxides as co-oxidants: Krief, Synlett, 2001, 501.

• H2O2, cat. flavin, cat. N-methylmorpholine: Backvall, J. Am. Chem. Soc. 1999, 121, 10424; J. Am. Chem. Soc. 2001, 123, 1365.• H2O2, cat. V(O)(acac)2, NMM, acetone/water: Backvall, Tetrahedron Lett., 2001, 42, 2569.

• O2, K2[OsO2(OH)4], tBuOH / H2O: Beller, Angew. Chem. Int. Ed. 1999, 38, 3026; J. Am. Chem. Soc. 2000, 122, 10289. Wirth, Angew. Chem. Int. Ed. 2000, 39, 334.

Fe-catalysed asymmetric dihydroxylation: Que, J. Am. Chem. Soc. 2001, 123, 6722.

Page 11: Stereoselective Oxidation and Reduction Reactions

Directed Dihydroxylations

“Kishi rule” - dihydroxylation occurs anti- to oxygen functionality.Review: Cha, Chem. Rev. 1995, 95, 1761.

OH

But

OH

But

OH

But

OsO4, NMO, acetone / H2OOsO4, TMEDA, CH2Cl2, -78ºC

+

OH

OH

OH

OH

anti syn

7:11:24

O

H

But

OsO

N O

O

N

O

OH OH

OsO4, TMEDA

CH2Cl2, -78ºCHO

OH

Regioselectivity > 25:1

Hydroxyl-directed dihydroxylation: Donohoe, Tetrahedron Lett. 1997, 38, 5027.

• Bidentate ligand required

• Dihydroxylation directed by trichloroacetamides: Donohoe, J. Org. Chem. 1999, 64, 2980.• Catalytic directed dihydroxylation of cyclic trichloroacetamides: Donohoe, Tetrahedron Lett. 2000, 41, 4701. • Syn-selective dihydroxylation of acyclic allylic alcohols: Donohoe, Tetrahedron Lett. 1999, 40, 6881.

Page 12: Stereoselective Oxidation and Reduction Reactions

Sharpless Asymmetric Dihydroxylation

NNO

N

OMe

N

O

N

MeO

H

EtN

Et

H

(DHQD)2-PHAL

AD-Mix:K2OsO2(OH)4, ligand,

K3Fe(CN)6, K2CO3

Review: Sharpless, Chem. Rev. 1994, 94, 2483.

RM

H

RS

RL

"HO" "OH"

"HO" "OH"

-face

-face

slightly hindered

very!!!!!hindered

attractive area - good for aromatic

and alkyl substituents

DHQD= dihydroquinidineDHQ= dihydroquinine "pseudoenantiomers"

DHQ series

DHQD series

Page 13: Stereoselective Oxidation and Reduction Reactions

Sharpless AD: Recent DevelopmentsImproved ligands:• Pyrimidine (PYR) spacer for sterically congested / terminal alkenes: J.Org. Chem. 1993, 58, 3785.• Anthraquinone (AQN) spacer gives better results for almost all alkenes having only aliphatic substituents: Angew. Chem. Int. Ed. Engl. 1996, 35, 448.

Mechanism:

• Comparison of theoretical and experimental kinetic isotope effects supports [3+2]-mechanism Sharpless, Houk et al. J. Am. Chem. Soc. 1997, 119, 9907.

OOs

O

O O

[3+2]

Os O

OO

OOs O

OO

O[2+2]

OOs

O

O O

Origins of asymmetric induction:Sharpless: J. Am. Chem. Soc. 1997, 119, 1840.Corey (“enzyme like” binding pocket): J. Am. Chem. Soc. 1996, 118, 319; 11038.

Polymer supported chiral ligands: Review: Synlett, 1999, 1181. Crudden, Org. Lett. 2001, 3, 2325. Bolm, Synlett, 2001, 93 (AQN-ligands). Polymer supported Os-catalyst: Kobayashi, J. Am. Chem. Soc. 1999, 121, 11229. Org. Lett. 2001, 3, 2649.

Importance of pH control: improved rates for internal olefins at pH 12 (no MeSO2NH2); higher ee for terminal olefins at pH 10: Beller, Tetrahedron Lett. 2000, 41, 8083.

Page 14: Stereoselective Oxidation and Reduction Reactions

AminohydroxylationReview: O’Brien, Angew. Chem., Int. Ed. Engl. 1999, 38, 326.

R1

R2

XNClNa (X=Ts, Ms, CBz, Boc, Teoc)OR XNBrLi (X=Ac)

4 mol% K2OsO2(OH)25 mol% (DHQ)2PHAL

1:1 ROH:H2O

R1

R2R1

R2

NHX

OH

OH

NHX

+

• DHQD-ligand series generally provide opposite enantiomer.• Effect of substrate structure on regioselectivity: Janda, Chem. Eur. J. 1999, 5, 1565.

PhCO2Me

PhCO2Me

NHX

OH

X=Ts: 60% yield, 82% eeX=Cbz: 65% yield, 94% ee

Cinnamates:

Styrenes, Aryl alkenes (X=Ts, CBz, Boc, Teoc):

OH

NHBoc

70% yield98% ee

• Altering ligand spacer, solvent can reverse regioselectivity without decreasing ee!

• Aryl esters (and AQN-ligands) give opposite regioselectivity! Panek, Org. Lett. 1999, 1, 1949. • Can be run at higher concentration in presence of acetamide to suppress diol formation: Wuts, Org. Lett. 2000, 2, 2667.

Page 15: Stereoselective Oxidation and Reduction Reactions

Recent Developments in Asymmetric Aminohydroxylation

• Amino-substituted heterocycles as nitrogen sources: Sharpless, Angew. Chem. Int. Ed. Engl. 1999, 38, 1080.• Adenine derivatives as N-source: Sharpless, Tetrahedron Lett. 1998, 39, 7669.

N N

NH2

1. tBuOCl, EtOH, 0ºC

2. Aq. NaOH, 0ºCN N

N-Cl Na+

PhPh

5% K2OsO2(OH)46% (DHQ)2PHAL

rt

PhPh

OH

NH

N

N

45% yield97% ee

• N-bromo-N-lithio salts of primary carboxamides as N-source: Sharpless, Org. Lett. 2000, 2, 2221.• Unsaturated phosphonates as substrates: Sharpless, J. Org. Chem., 1999, 64, 8379.

Page 16: Stereoselective Oxidation and Reduction Reactions

Pd-Catalysed Oxidative Kinetic Resolution of Secondary Alcohols with O2

Sigman, J. Am. Chem. Soc. 2001, 123, 7475. Stoltz, J. Am. Chem. Soc. 2001, 123, 7725.

OH O OH5 mol% Pd(nbd)Cl220 mol% (-)-sparteine

3Å MS, 1 atm O2PhCH3, 80ºC

+

(±)

S = kfast/kslow = 47.1

55% conversion5.0 g 2.7 g 2.2 g, 99% ee

NaBH4, MeOH99%

Page 17: Stereoselective Oxidation and Reduction Reactions

Reduction Reactions

• Hydrogenation

• Transfer hydrogenation

• Boranes

• Hydride reagents

• Hydrosilylation

Asymmetric reduction of alkenes, ketones, imines…….

Page 18: Stereoselective Oxidation and Reduction Reactions

Monsanto synthesis of L-DOPA

CO2Me

NHAc

CO2Me

NHAc0.1% [(R,R)-(dipamp)Rh(COD)]+BF4

3 atm H2, 50°C, H2O / iPrOH

MeO OMe MeO OMe

CO2-

NH3+

HO OH

HBr

L-DOPA(anti-Parkinson's)

OMe

P P

MeO

Ph

Ph

= (R,R)-dipamp

94% ee

Page 19: Stereoselective Oxidation and Reduction Reactions

Rh(I)-BINAP Complexes

(S)-BINAP

PPh2

PPh2

[(S)-(BINAP)Rh(nbd)]+ClO4-

Ph NHAc

CO2R

Ph NHAc

CO2R

H2, MeOHR=Me 98%, 93% eeR=H 97%, 100% ee

[(S)-(BINAP)Rh(nbd)]+ClO4-

NHAc

CO2H

Ph NHAc

CO2H

H2, MeOH93%, 87% ee

Ph

Noyori, J. Am. Chem. Soc. 1980, 102, 7932.

Ru BINAP complexes are more general; work for e.g. simple acrylic acids. Mechanistically distinct: Tetrahedron Lett. 1990, 31, 7189.

Page 20: Stereoselective Oxidation and Reduction Reactions

Rh(I)-diphosphole Complexes

P P

R

RR

R

P

P

R

R

R

RR = Me, Et, Pr

(R,R)-DuPHOS(R,R)-BPE

Review: Burk, Acc. Chem. Res. 2000, 33, 363

0.05% [Rh(R,R-nPr-DuPHOS)(COD)]+TfO-

R2 NHAc

CO2Me

NHAc

CO2Me

2 atm H2, MeOH

R1=H, R2=MeR1=Me, R2=H

R1

99.6% ee99.4% ee

• sense of enantioselectivity independent of acrylamide geometry

Page 21: Stereoselective Oxidation and Reduction Reactions

Monodentate ligands

O

OPNMe2

O

OP O

(S)-MonoPhos

Ligand A

MonoPhos: deVries, Feringa, J. Am. Chem. Soc. 2000, 122, 11539. Ligand A: Reetz, Angew. Chem. Int. Ed. 2000, 39, 3889.Review: Angew. Chem. Int. Ed. 2001, 40, 1197.

CO2Me

CO2Me

CO2Me

CO2Men% [Rh(cod)2]BF4

2n% ligand, CH2Cl2

(S)-MonophosLigand A

n=5, 1atm H2, 0°Cn=0.1, 1.3 bar H2, rt

94.4% ee99.6% ee

NHAc

CO2Me

NHAc

CO2Men% [Rh(cod)2]BF4

2n% ligand, CH2Cl2

(S)-MonophosLigand A

n=5, 1atm H2, rtn=0.1, 1.3 bar H2, rt

99% ee95.5% ee

Page 22: Stereoselective Oxidation and Reduction Reactions

Asymmetric Hydrogenation of Functionalised Ketones

OXR

Ru

(S)-BINAP

(R)-BINAP

O

RX

RX

OH

R

MePhMeMe

(CH2)2CH=Me2CH2Cl

Me

X

NMe2NMe2CH2OHCO2MeCO2MeCO2Et

Br

BINAP

969598989897

92

[(Ru(S-BINAP)X2] or [Ru(R,R-iPr-BPE)Br2]

10 atm H2, MeOH

BPE

---

99.3-

76

-

ee

Ru BINAP: J. Am. Chem. Soc. 1987, 109, 5856; J. Am. Chem. Soc. 1988, 110, 629.Ru BPE: J. Am. Chem. Soc. 1995, 115, 4423.

Review: Ager, Tetrahedron Asymm. 1997, 8, 3327.

Page 23: Stereoselective Oxidation and Reduction Reactions

• Mixed Ru bisphosphine/diamine complexes afford much improved turnover numbers:

0.05% [Ru(R-xylBINAP)Cl2] + R-daipen

1 mol% KOtBu, 8 atm H2, iPrOHPhNMeAc

O

PhNMeAc

OH

87%. 97% ee

PAr2

Ar2P

Ru

Cl

Cl NH2

H2N

OMe

OMe

iPr

• Basic conditions allow dynamic kinetic resolution:

Noyori, J. Am. Chem. Soc. 2000, 122, 6510.

0.33% [Ru(R-xylBINAP)Cl2] + S-daipen

66 mol% KOH, 8 atm H2, iPrOH

98%, 82% ee

O

NHCO2tBu

OH

NHCO2tBu

(±)

Also for reduction of unfunctionalised ketones. Review: Noyori, Angew. Chem., Int. Ed., 2001, 40, 40.

Catalytic asymmetric hydrogenation of aminoketones

Page 24: Stereoselective Oxidation and Reduction Reactions

Asymmetric Transfer Hydrogenation of KetonesReduction with the aid of a hydrogen donor in the presence of a catalystReviews: Wills, Tetrahedron Asymmetry, 1999, 10, 2045; Noyori, Acc. Chem. Res. 1997, 30, 97.

MO

H

O

L L

R1

R2

Meerwein-Ponndorf-Verley type(main group or lanthanide metals)

(a) (b)

MH O

L LM

H O

L L

O

orM

H O

L L

R1R2

Metal hydride type:transition metals, iPrOH or formate as reductant

0.5% [RuCl2(hexamethylbenzene)2]

Ligand, iPrOH/KOH, 28CR

O

R

OH

X X

NHMe

OH

Ph

Ph

ligand=

XHOMeH

RMeMeEt

Yield947395

% ee927982

Aminoalcohols as ligands:

Arylalkylketones with electron rich aryl groups and benzocycloalkanones suffer from reversibility and give lower ee…but aminoalcohols are generally not compatible with the irreversible hydride donor formic acid

Page 25: Stereoselective Oxidation and Reduction Reactions

O

RS

NH2

N

Ph

PhRn

SO2Ar

RL

OH

RSRL

O O

MeO

O O

Ru

Cl

O OH

NH2

NH

Ph

Ph

O2S

HN

dend

J. Am. Chem. Soc., 1995, 117, 7562; J. Am. Chem. Soc., 1996, 118, 2521; Chem. Commun., 2001, 1488

iPrOH/KOH or HCO2H/Et3N

0.5%iPrOH/KOH

HCO2H/Et3N97% ee98% ee

72% ee97% ee

97% ee97% ee

91% ee99% ee

- supported and dendritic versions of the ligands have been prepared:

1 % [RuCl2(cymene)]2

1% ligand, HCO2H/Et3N

iPrOH/KOHHCO2H/Et3N

Run:

12345

% ee

96.596.796.796.495.0

conv.

9993868852

ligand:

Monotosylated diamines: formic acid-tolerant ligands for transfer hydrogenation

- monotosylated diamines give slightly less reactive catalysts than the amino alcohols but have proven to be a more useful ligand system for ruthenium based transfer hydrogenations since compatibility with the formic acid system allows efficient reduction even in readily reversible systems:

Page 26: Stereoselective Oxidation and Reduction Reactions

Ketone Reduction Catalyzed by Oxazaborolidines

N B

O

H PhPh

MeO

RS RS

OH

RL RL+ BH3.THF or catecholborane

(typically ca. 10% loading)

Review: Angew Chem. Int. Ed. 1998, 37, 1986

OH

X

X=HX=MeX=Cl

96.5% ee96.7% ee95.3% ee

tBu

OH

97.3% ee

OH

CO2Me

96.7% eePh

OH

Ph

97% ee

H17C6

OH

95% ee

OH

94% ee

Bu3Sn

TBSO

OH

O O

92% ee

Page 27: Stereoselective Oxidation and Reduction Reactions

Polymer-supported amino alcohol and in situ generation of borane

Angew. Chem. Int. Ed., 2001, 40,1109

O OH25% catalyst

NaBH4 / TMSCl

THF, reflux

HBr

MeONO2

% ee95.796.184.196.6

Yield98979799

R

R R

SO2

NOH

PhPh

Catalyst:

Page 28: Stereoselective Oxidation and Reduction Reactions

O

OLiAlH4 Al

H

ORLi+

OAl

O O LiH

R

O

R UnO

AlO O Li

H

R

O

Un R

R1 R2

O

R1 R2

OH

problems: stoichiometric, capricious to prepare, requires long reaction times at very low temperatures

i) (S)-BINOL

ii) ROH

(S)-BINAL-H

Un = aryl, heteroaryl, alkene, alkyne

enantioselectivity is largely electronic in origin:

_

electrostaticrepulsion

Asymmetric reduction of ketones: stoichiometric aluminium hydrides

Noyori, J. Am. Chem. Soc., 1984, 106, 6709, 6717

Page 29: Stereoselective Oxidation and Reduction Reactions

O

SGa

H

OR'

Li+

Un R

O

O

SGa

O

OR'

Li+ R

Un

H

Un R

OB

Ph

C-EtC

Me

Me

Me

_ _

catecholborane

Un R

Conditions:

2.5 mol% cat.,

-20oC, THF

2-furyl

PhCH=CH-

n-hexyl

Yield ee

95

76

70

60

91

81

75

63

A catalytic binapthyl-substituted hydride source based on hard-soft principles

Woodward, Angew. Chem., Int. Ed. Engl., 1999, 38, 335; Chem. Eur. J. 2000, 6, 3586.

- replacing 'hard' aluminium by 'soft' gallium, the intermediate 'hard' alkoxide can be transferred to the 'hard' borane stoichiometric co-reductant, allowing catalytic turnover:

Page 30: Stereoselective Oxidation and Reduction Reactions

Ph CH3

O

Ph2PO

Ph2PO OBnO

O

O

Ph CH3

OH

N

N

O

N

O

R R

N

N

O

R

[(pigiphos)Rh(COD)]+ BF4-

87% ee

83% ee1:1:1 (R,R-pybox)/[Rh(COD)Cl]2/AgBF4

or 10:1:1 (S-pymox)/[Rh(COD)Cl]2/AgBF4

Ph2SiH2 or NpPhSiH2

then H3O+ work-up

65% ee

catalyst

(S-pymox)(S,S-pybox)pigiphos

Organometallics, 1991, 10, 560;Tetrahedron:Asymm., 1991, 2, 919

Hydrosilylation of imines/ketones: an alternative to hydrogenative reduction

Page 31: Stereoselective Oxidation and Reduction Reactions

O OH

NR

HNR

TiF F

TiH

2% cat, 97% ee, 84% yield

0.5% cat, 91% ee, 96% yield

pre-treated catalyst

5 eq. PMHS

THF, 15oC

slow addition of MeOH

5 eq. PMHS, THF, 60oC

slow addition of iBuNH2

pre-treated catalyst

precatalyst =

catalyst =

PhSiH3, piperidine,

MeOH

R = Bn

R = Ph 2% cat, 99% ee, 63% yield

Ph Ph

Asymmetric hydrosilylation of ketones and imines using cheap siloxanes

PMHS = poly(methylhydrosiloxane)

J. Am. Chem. Soc., 1999, 121, 5640 (ketone);Angew. Chem., Int. Ed. Engl., 1998, 37, 1103, Org. Lett., 2000, 2, 713 (imine)

Me3SiO Si OSiMe3

Me

H n

Page 32: Stereoselective Oxidation and Reduction Reactions

OEt

O

OEt

O

OEtOOEt

O

O

O

OMe

O

O

OMe

(S)-p-Tol-BINAP, CuCl

(S)-p-Tol-BINAP, CuCl

NaOtBu, PMHS, PhCH3

NaOtBu, PMHS, PhCH3

90%85% ee

93%80% ee

(S)-p-Tol-BINAP, CuCl

NaOtBu, PMHS, PhCH3

86%92% ee

Catalytic asymmetric hydrosilylation of enones/enoates

Buchwald, J. Am. Chem. Soc., 1999, 121, 9473; J. Am. Chem. Soc., 2000, 122, 6797