24
17/5/2009 1 Stereo Imaging Stereo Imaging Introduction 9 Example of Human Vision 9 Perception of Depth from Left and right eye images 9 Difference in relative position of object in left and right eyes. 9 Depth information in the 2 views?? 9 Depth information in the 2 views?? Saurav Basu

Stereo Imaging - Aegean

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

17/5/2009

1

Stereo ImagingStereo Imaging

Introduction

Example of Human VisionPerception of Depth from Left and right eye imagesDifference in relative position of object in left and right eyes.Depth information in the 2 views??Depth information in the 2 views??

Saurav Basu

17/5/2009

2

Stereopsis

Retinal disparityRetinal disparityp yp y– The horizontal distance between the corresponding left and right image points of the superimposed retinal images.

– The disparity is zero if the eyes are converged.

Stereopsis– The sense of depth combined from two different perspective views by the mind.

The Stereo Problem

– The stereo problem is usually broken in to two subproblemstwo subproblems•Extraction of Depth information from Stereo Pairs

•Use of  depth data to visualize the world scene in  3‐dimensions by a suitable projection techniqueprojection  technique. 

Saurav Basu

17/5/2009

3

Stereo Images

Depth Estimation

Visualization

Saurav Basu

What are Stereo Images? 

Images of the same world scene    taken from slightly displaced view points are called stereoslightly displaced view points are called stereo images.To illustrate how a typical stereo imaging system let us take a look at the camera model for obtaining stereo images

17/5/2009

4

Camera Model Of  A Stereo System

Image 1

Image 2

Image 1

W (X,Y,Z)

BaseLine distance

y

x

x

y

(x2,y2)

(x1,y1)

Optical Axis

BaseLine distance

Saurav Basu

Important Points about the Model

The cameras are identicalTh di t t f b thThe coordinate systems of both cameras are perfectly alligned.Once camera and world co‐ordinate systems are alligned the xy plane of the image is allignedwith the XY plane of the world co‐ordinate system then Z coordinate of W is same for bothsystem,then Z coordinate of W is same for both camera coordinate systems.

Saurav Basu

17/5/2009

5

Relating Depth with Image Coordinates

X

(x1,y1) Z - λZ

W (X,Y,Z)Origin Of

World Coordinate

B

λ

Image 1

Z λ

System λ

Image 2(x2,y2)

Saurav Basu

By Similar Triangles:

)( 11

1 −= λλ

ZxX

)(

)()(

)(

21

22

111

1

21

12

22

2

−=−⇒

−=+⇒−=⇒

==+=

−=

λλ

λλ

λλ

λλ

λ

xxBZ

ZxBXZxX

ZZZBXX

ZxX

Disparity x2- x1where

Disparity

1

KB Depth, - Z

21

21

=

⇒−

=⇒

==

α

λλ

Depthxx

KDepth

Putxx

Saurav Basu

17/5/2009

6

Thus Depth is inversely proportional to (x1

Important Result

Thus Depth is inversely proportional to (x1‐x2) where   x1 and x2 are pixel coordinates of the same world point when projected  on the stereo image planes.(x1‐ x2) is called the DISPARITY The problem of finding x1 and x2 in theThe problem of finding x1 and x2 in the stereo pairs is done by a  stereo matching technique.

Saurav Basu

Stereo Matching

– The goal of stereo matching algorithms is to find matching locations in the left and rightfind matching locations in the left and right images .

– Specifically find the coordinates of the pixel on the left and right images which correspond to the same world point.  It is also called the correspondence problem– It is also called the correspondence problem.

Saurav Basu

17/5/2009

7

Correlation based approaches

– A common approach to finding correspondences is to search for local regionscorrespondences is to search for local regions that appear similar

– Try to match a window of pixels on the left image with a corresponding sized window on the right image.

Saurav Basu

Matching PixelsMatching Window

Left Image Right Image

Diagram to illustrate the Stereo Matching

Assumption :Matching Pixels lie on same horizontal Raster Line(Rectified stereo)

Disparity of this pixel is 1 since x1=0 and x2=1,x2-x1=1

Saurav Basu

17/5/2009

8

The SSD and SAD are commonly used correlation functions

SSD:Sum of Squared Deviations

2)),(),(()),(),,(( ydxIyxIydxIyxI rlrl +−=+ψ

),(),()),(),,(( ydxIyxIydxIyxI rlrl +−=+ψ

q

SAD:Sum of Absolute Differences

Saurav Basu

The Multi Window Algorithm

In this algorithm technique 9 different i d d f l l tiwindows are used for calculating 

disparity of a single pixel.The window which gives the maximum correlation is used for disparity calculations.a u a io

Saurav Basu

17/5/2009

9

Left Image Right Imageg g g

Demonstration of the 9 different windows used for the Correlation

Saurav Basu

Disparity Map

Based on the calculated disparities a di it i bt i ddisparity map is obtainedThe disparity map is a gray scale map where the intensity represents depth.The lighter shades (greater disparities) represent regions with less depth asrepresent regions with less depth as opposed to the darker regions which are further away from us.

Saurav Basu

17/5/2009

10

Visualization

Visualization is the process by which we th d th ti t f th tuse the depth estimates from the stereo 

matching to build projections .3‐D information can be represented in many ways :

‐Orthographic projectionsO og ap i p oje io‐Perspective Projections

Saurav Basu

Perspective Projections

Perspective projections allow a more li ti i li ti f ldrealistic visualization of a world scene 

The visual effect of perspective projections is similar to the human visual system and photographic systems.Hence perspective projection of the 3‐dHence perspective projection of the 3‐d data was implemented for the stereo pairs.

Saurav Basu

17/5/2009

11

A

B

•In Perspective projections the projectors are of finite length and converge at a pointA’

B’ Projection Plane

converge at a point called the center of projection.

•In perspective projection size of an object is

Center Of Projection

inversely proportional to its distance from ooint of projection

Projectors

V

(Umax,Vmax)VUP

Window

CW

U

(Umin,Vmin)

VPN

VRP

VIEW PLANE

N

CW

Center of Projection

THE 3-D VIEWING REFERENCE COORDINATE SYSTEM

DOP

Saurav Basu

17/5/2009

12

Specifying a 3‐D View

To specify a 3‐d view we need to specify a projection plane and a center of Projection:projection plane and a center of Projection: The Projection plane specified by 1.  A    point  on the plane called the 

View   Reference Point (VRP)2. The normal to the view plane,i.e.  

Vi Pl N l (VPN)View   Plane Normal (VPN)

Saurav Basu

We define a VRC (View Reference Coordinate system) on the projection plane with u v and n being

Specifying a 3‐D View

system) on the projection plane with u,v,and n being its 3 axes forming a right handed coordinate system The origin of the VRC system is the VRPThe VPN defines the ‘n’ axis of the VRC systemA View Up Vector (VUP) determines the ‘v’ axis of the VRC system. The projection of the VUP parallel t th i l i i id t ith th ‘ ’ ito the view plane is coincident with the ‘v’ axis.The ‘u’ axis direction  is defined such that the ‘u’,’v’ and ‘n’ form a right handed coordinate system. 

Saurav Basu

17/5/2009

13

A view Window on the view plane is defined ,projections

Specifying a 3‐D View

p ,p jlying outside the view window are not displayed .The coordinates (Umin,Vmin) and (Umax,Vmax) define this window. The center of projection Projection Reference Point(PRP).

Saurav Basu

The semi infinite pyramid formed by the PRP d th j t i th h

Specifying a 3‐D View

PRP and the projectors passing through the corners of the view window form a view volume.A Canonical view volume is one where the VRC system is alligned with the World e y e i a ig e i e oCoordinate system.

Saurav Basu

17/5/2009

14

X or YBack Plane

1

Front Plane

-1

-Z

The 6 bounding planes of the canonical view volume have equations:

PRP

-1

Canonical view volume for Perspective Projections

equations:

x=z ,x=-z ,y=z, y=-z z=zmin, z=-1

Saurav Basu

Perspective projection when VRC alligned with World Coordinate system

V

P(X,Y,Z)Y

X

U

N

P(Xp,Yp,d)

P(X,Y,Z)

Zd

PRPCW

Saurav Basu

17/5/2009

15

d Zd

ZYY

dZXX

TrianglesSimilar From

pp ===

matrix a as drepresente becan tion Transforma The

dd

0100010000100001

Mper

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

1] /

/

[] z [1

.

0d100

ddz

ydz

xdzyxz

yx

Mper ==⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎦

⎢⎣

Saurav Basu

Only true when view volume is canonicalFor arbitrary view volume ‐For arbitrary view volume First  transform the view volume into

canonical form and then apply the above formula to take projections

Saurav Basu

17/5/2009

16

For transforming a view volume we do the following:1 Translate VRP to origin1. Translate VRP to origin2. Rotate VRC to  allign u,v and  n axes with the X,Y and Z 

axes.3. Translate the PRP to origin4. Shear to make center line of view volume the z‐axis.5. Scale such that the view volume becomes the canonical 

perspective view volume

Saurav Basu

The translation matrix is

100010001

),,(dzdydx

dzdydxT⎥⎥⎥⎤

⎢⎢⎢⎡

=Z

)(1000

100

VRPT

dz

⎥⎥

⎦⎢⎢

2. The Rotation matrix is

⎥⎤

⎢⎡ 0111 zyx rrr

N

V

U

X

YVRP

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

=

100000

333

222

zyx

zyx

rrrrrr

R

Saurav Basu

17/5/2009

17

VPNwhere

][

][

][

222

1 1 1

3 3 3

RRrrrRRVUPRVUPrrrR

VPNVPNrrrR

z

zzyxx

zyxz

×==

××

==

==

)( 3.][ 2 2 2

PRPTRRrrrR xzzyxy

−×==

Saurav Basu

The Shear Matrix

SH shyshx

⎥⎥⎤

⎢⎢⎡

010001

Y

dopx

Let

SH shyper

=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

=

WindowofCenter :CWProjection ofDirection :DOP

PRP-CWDOP 10000100010 Y

CW

dopzdopyshy

dopzdopxshx

−=

−=

PRP -Z

Saurav Basu

17/5/2009

18

The scale transformation

⎥⎥⎤

⎢⎢⎡

00s0000s

y

x

Y

BVRPuuVRPs

PRPTSHVRPLet

S

z

zx

per

per

+=

−=

⎥⎥⎥

⎦⎢⎢⎢

=

− )')(('2

1] 0 0 0).[(.' 10000s0000s0

minmax

z

y Y

CW

Y=-Z

BVRPs

BVRPvvVRPs

zz

z

zy

+−

=

+=

'1

)')(('2

minmax

PRP -Z

Y=-Z

Saurav Basu

Once all the projected points have been l l t d l th di t t fit thcalculated, scale the coordinates to fit the 

display screen.A wire frame display of the image is obtained by joining the projections of all points lying on the same row or column.poi yi g o e a e o o o uMap the pixel colors of the image on to the projected points to create a realistic effect.

Saurav Basu

17/5/2009

19

Limitations

Can work well only for stereo images h i t d t il t i dwhere minute details are not required. 

More suited for depth estimation of landscape through images taken from top.No accurate metric calculations done.

Saurav Basu

Stereo ImagingThere are two methods for creating stereo pairs:

1. Side-by-side display of both images

2. Use different colors for each image eg. Anaglyphs of red-green which produce a monochrome 3D image

Slide 38 t:/powerpnt/course/ /524lect6.ppt© 1994-2004 J.Paul Robinson - Purdue University Cytometry Laboratories

17/5/2009

20

Creating Stereo pairs

Pixel shifting -ive pixel shift for left+ive pixel shift for right

z

Slide 39 t:/powerpnt/course/ /524lect6.ppt© 1994-2004 J.Paul Robinson - Purdue University Cytometry Laboratories

xy

Method 1: Separated Images

Actually present two different imagesActually present two different images to the eyes 

Left eye

Right eye

Left eye view Right eye view

AJ MinichFinal Project

17/5/2009

21

Method 1: Separated Images

Left eye view Right eye view

AJ MinichFinal Project

Method 2: Anaglyphs

Use colored glasses to receive different visualsUse colored glasses to receive different visuals

Left eye

Right eye

Left eye view Right eye view

AJ MinichFinal Project

17/5/2009

22

Method 2: Anaglyphs

Left eye view

Right eye view

Method 2: Anaglyphs

AJ MinichFinal Project

17/5/2009

23

Method 2: Anaglyphs

AJ MinichFinal Project

Method 2: Anaglyphs

Background Image

AJ MinichFinal Project

17/5/2009

24

Method 2: Anaglyphs

Background Image

AJ MinichFinal Project

Method 2: Anaglyphs

AJ MinichFinal Project