48
Stellar radiation characteristics (Astr 351) Part I: Spectroscopy Chapter 6: Spectral classification and luminosity classes Stellar spectra + H Stellar spectra + H R diagram R diagram

Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Stellar radiation characteristics (Astr 351) Part I: Spectroscopy  

Chapter 6: Spectral classification and luminosity classes 

Stellar spectra + HStellar spectra + H‐‐R diagramR diagram

Page 2: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What do you do when you don’t understand the data?

CLASSIFY!

Page 3: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Wide Field Spectra

But, who is going to

classify all this data?

Page 4: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Women at Harvard• Much of the work in classifying and

explaining stellar spectra was done by women at Harvard around the turn of the century.

Page 5: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Women Computers (1890)

Page 6: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)
Page 7: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Annie Jump Cannon (1863-1941)

Page 8: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Annie Jump Cannon:

• Single-handedly classified more than 250,000 stellar spectra.

• Confirmed work of Antonia Maury that classes made more sense if arranged by temperature

Page 9: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Henrietta Leavitt (1868-1921)

Page 10: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Classification Scheme

ABCDE

Page 11: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

O

B

A

F

G

K

M

Page 12: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

BUT WHY?

• Most astronomers believed that the differences were due to subtle differences in chemical abundance.

• Indian physicist Meghnad Sahaoffered another explanation, which was confirmed at Harvard.

Page 13: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Cecelia Payne-Gaposchkin (1900-1979)

Page 14: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Cecelia Payne-Gaposchkin• Gave theoretical explanation for Cannon’s

classification scheme.• Argued that differences in spectra

(absorption lines) are due to temperature not abundance (Saha Equation)

• Differences in temperature create differences in the observed absorption spectra.

• Also, she provided the convincing argument that stars are mostly made of hydrogen.

Page 15: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What does this give us?

• a new way to measure temperature

• can speak of color, spectral class or temperature

(we needed both spectral class and temperature for many stars to establish this connection)

Page 16: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Summary of Spectral Classes

O hotter than 25,000 KB 11,000 - 25,000 KA 7500 - 11,000 KF 6000 - 7500 KG 5000 - 6000 KK 3500 - 5000 KM cooler than 3500 K

Page 17: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Stars are classified by their spectra as O, B, A, G, K, and M spectral types

Page 18: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Stars are classified by their spectra as O, B, A, G, K, and M spectral types

• O B A F G K M• hottest to coolest• bluish to reddish• An important sequence to remember:

– Our Best Astronomers Feel Good Knowing More

– Oh Boy, An F Grade Kills Me– Oh Be a Fine Guy (or Girl), Kiss Me

Page 19: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Luminosity of  Stars

• Apparent brightness refers to the amount of a star’s light which reaches us per unit area.• the farther away a star is, the fainter it appears 

to us

• how much fainter it gets obeys an inverse square law

• its apparent brightness decreases as the (distance)2

f =  L / 4πd2

Luminosity – the total amount of power radiated by a star into space. 

• The apparent brightness (flux of radiant energy) of a star depends on two things:

• How much light is it emitting: luminosity (L) [watts]

• How far away is it:  distance (d) [meters]

Page 20: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Luminosity of the Sun, L = 3.9x1026 Watts

r

f = L / 4πr2

(Units are W/m2)

Flux of radiant energy from the Sun = luminosity / area = f

4πr2

Page 21: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

HOTCOOL

BRIGHT

FAINT

• A very useful diagram for understanding stars• We plot two major properties of stars:

• Temperature (x) vs. Luminosity (y)• Spectral Type (x) vs. Absolute Magnitude (y)

• Stars tend to group into certain areas

The Hertzsprung‐Russell Diagram

Page 22: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Normal hydrogen-burning stars reside on the main sequenceof the H-R diagram

Low-Mass Stars

High-Mass Stars

Page 23: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

The Main Sequence (MS)

90% of all stars lie on the main sequence!

Page 24: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Stars with low temperature and high luminosity must have large radius

GIANTS

SUPERGIANTS

Page 25: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Temperature

Lum

inos

ityH-R diagram depicts:

TemperatureColorSpectral

Type LuminosityRadius*Mass*Lifespan*Age

Page 26: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Regions of the H‐R Diagram

Page 27: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

• How can two stars have the same temperature, but vastly different luminosities?

The stars have different sizes!!• The luminosity of a star depends on 2 things:

• surface temperature• surface area (radius)

• The largest stars are in the upper right corner of the H-R Diagram.

f = σ T4; f = L / 4 π R2

so:L = σ T4 4 π R2

Page 28: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

RED GIANTS•• Cool but VERY BRIGHT!Cool but VERY BRIGHT!

•• Betelgeuse: 3500 K (10% as Betelgeuse: 3500 K (10% as bright/unit area as Sun) but 100,000 bright/unit area as Sun) but 100,000 times as luminoustimes as luminous‐‐‐‐must have 1 must have 1 million times the areamillion times the area

•• radius must be 1000x that of Sun!radius must be 1000x that of Sun!

Page 29: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

WHITE DWARFS•• Hot but not very luminousHot but not very luminous•• Sirius BSirius B: 3% as luminous as Sun : 3% as luminous as Sun but same temp. as Spica but same temp. as Spica (10,000x)(10,000x)‐‐‐‐Sirius B must be 1/600 Sirius B must be 1/600 the radius of Spicathe radius of Spica

•• Also much smaller than SunAlso much smaller than Sun

Page 30: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)
Page 31: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

• Main sequence stars are found in a band from the upper left to the lower right

• Giant and supergiant stars are found in the upper right corner

• Tiny white dwarf stars are found in the lower left corner of the HR diagram

Page 32: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Stellar Luminosity Classes 

Page 33: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Luminosity classes

• Class I includes all the supergiants

• Class V includes the main sequence stars

• e.g., the Sun is a G2 V

Page 34: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Stellar Masses on the H‐R Diagram

Page 35: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Mass-Luminosity Relation

L ∝ m3.5

for main sequence stars only

We use binary stars to measure directly the masses of stars of every type.  This leads to the:

• As one moves to the upper‐left of the main sequence:

• stars become more massive • stars become even much more luminous• stars become fewer in number

Page 36: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Mass–Luminosity Relation

• All main sequence stars fuse H into He in their cores.• Luminosity depends directly on mass because:

• more mass means more weight from the star’s outer layers

• nuclear fusion rates must be higher in order to maintain gravitational equilibrium

Page 37: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Lifetime on the Main Sequence

How long will it be before MS stars run out of fuel?   i.e. Hydrogen?

How much fuel is there? M

How fast is it consumed? L ∝M3.5

How long before it is used up?M/L = M/M3.5 = M‐2.5

Page 38: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Lifetime on the Main Sequence

• O & B Dwarfs burn fuel like a bus!

• M Dwarfs burn fuel like a compact car! 

• Our Sun will last 1010 years on the Main Sequence 

•MS Lifetime  τ = 1010 yrs / M2.5

Page 39: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

So for example:

B2 dwarf (10 M )  lasts 3.2 x 107 yrF0 dwarf (2 M ) lasts 1.8 x 109 yr

M0 dwarf (.5 M ) lasts 5.6 x 1010 yr

But the Universe is 1.37 x 1010 yr old!

Every M dwarf that was ever created is stillon the main sequence!!

Page 40: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?• How can we learn about the lives of stars, which last millions to billions of years?• By taking observations of many stars, we can study stars in many phases of life, just as we might study how humans age by observing the humans living in a village at one time.

• What two basic physical properties do astronomers use to classify stars?• Stars are classified by their luminosity and surface temperature. These properties, in turn, depend primarily on a star’s mass and its stage of life. 

Page 41: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?• What is luminosity and how do we determine it?

• A star’s luminosity is the total power (energy per unit time) that it radiates into space. It can be calculated from a star’s measured apparent brightness and distance, using the luminosity‐distance formula: apparent brightness = luminosity / (4� × distance2).

• How do we measure the distance to nearby stars?• The distance to nearby stars can be measured by parallax, the shift in the apparent position of a star with respect to more distant stars as the Earth moves around the Sun.

Page 42: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?• How are stars classified into spectral types?

• Stars are classified according to their spectra, with different spectral types generally corresponding to different temperatures. In order from hottest to coolest, the major spectral types are O, B, A, F, G, K, and M. These are subdividedinto numbered categories; for example, the hottest A stars are type A0 and the coolest A stars are type A9, which is slightly hotter than F0.

• Does a star’s spectral type depend on its composition?• No. All stars are made primarily of hydrogen and helium, and themain factor in determining a star’s spectral type is its surface temperature.

• What are the two main elements in all stars?• Hydrogen and helium.

Page 43: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?

How luminous are stars?

• The apparent brightness of a star in our sky depends on both its luminosity —the total amount of light it emits into space—and its distance from Earth, as expressed by the inverse square law for light. 

Page 44: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?

• How hot are stars?• The surface temperatures of 

the hottest stars exceed 40,000 K and those of the coolest stars are less than 3,000 K. We measure a star’s surface temperature from its color or spectrum, and we classify spectra according to the sequence of spectral types OBAFGKM, which runs from hottest to coolest. 

Page 45: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?

• How massive are stars?

• The overall range of stellar masses runs from 0.08 times the mass of the Sun to about 100 times the mass of the Sun. 

Page 46: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

Main‐Sequence Star SummaryHigh Mass:

High LuminosityShort-LivedLarge RadiusBlue

Low Mass:

Low LuminosityLong-LivedSmall RadiusRed

Page 47: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?

• How do we classify stars?

• We classify stars according to their spectral type and luminosity class. 

• The spectral type tells us the star’s surface temperature

• The luminosity class how much light it puts out.

• Why is a star’s mass its most important property?

• A star’s mass at birth determines virtually everything that happens to it throughout its life. 

Page 48: Stellar spectra H R diagram - kau 351 - Stellar... · 2009. 3. 4. · explaining stellar spectra was done by women at Harvard around the turn of the century. Women Computers (1890)

What have we learned?• What is a Hertzsprung‐Russell diagram?

• An H–R diagram plots stars according to their surface temperatures and luminosities.