Stelite Welding Stanless Steel WJ_1980_07_s213

Embed Size (px)

Citation preview

  • 8/17/2019 Stelite Welding Stanless Steel WJ_1980_07_s213

    1/4

    I n f l uence o f P rehea t Tempera tu re on

    Stell i te Deposits

    Preheating to   900°Q  followed by air cooling to 450°C after depo sition

    to avoid further sensitization of the base metal and then

    furnace cooling to room temperature produces sound deposits

    without any undesirable features

    z

    UJ

    SE

    o

    >

    UJ

    Q

    I

    O

    cr

    <

    to

    UJ

    a.

    o

    BY M. D . MA THE W S. L M A NN A N A ND S. K. GUPTA

    ABS TRACT. The in f lue nce o f preheat

    temperatures in the range 150-900°C

    (302-1.652°F) on S tel l i te dep osit s on

    Types 304 and 316 stainless steel has

    been s tud ied . S te l l ite g rade 6 (AWS

    RCoCr-A) bare rod was used and the

    oxyace ty lene we ld ing p rocess was em

    p loyed to prepare the over lays . The

    meta l lu rg ica l eva lua t ion o f the va r ious

    depos i ts inc luded me ta l log raph ic in

    ves t iga t ions , m ic roha rdness measu re

    men ts and e lec t ron m ic rop robe

    stud ies on the S te l l i te dep os i t , the

    in te r face be tw een S te l li te and base

    and the base mater ia l . Microcracks

    wer e observed in the S te l l i te as we l l as

    a long the in ter face in depos i ts pre

    pa red by em p loy ing p rehea t tempera

    tures of 150 and 300°C (302 and

      572°F).

    Preheat ing to  600°C  (1112°F) tends to

    sensit ize the base material. I t has been

    es tab l ished tha t a p rehea t temp era tu re

    of 900°C  (1652°F)  and a i r coo l ing to

    450°C (842°F) a f ter depos i t ion ,

      f o l

    l owed by fu rnace coo l ing to room

    tempera tu re p roduces sound depos i ts

    w i thou t any undes i rab le fea tu res .

    M ic roha rdness measu remen ts we re

    taken a long the m ic rop robe t rave rses

    to examine the var ia t ion in hardness

    a l o n g w i t h e l e m e n t a l d i s t r i b u t i o n

    across the in ter face. Microhardness

    across the in ter face has been found to

    co r re la te w i th the coba l t con ten t .

    I n t r o d u c t i o n

    Austen i t ic s ta in less s tee ls have been

    chosen fo r va r ious s t ruc tu ra l compo-

    M. D. MATHEW and S. L. MANNAN are

    with the Metallurgy Programme and

      S.

      K.

    GUPTA is with the  FBTR  Construction

    Group, Reactor Research

     Center,

     Kalpak-

    kam Tamil Nadu, India.

    nen ts o f sod ium -coo led fas t b reede r

    reactors because o f the i r exce l len t cor

    ros ion res is tance in l iqu id sod ium and

    g o o d e l e v a t e d t e m p e r a t u r e m e c h a n

    ica l p ropert ies . The h igh operat ing

    temperatures necess i ta te hard fac ing o f

    ce r ta in componen ts to avo id ga l l i ng

    and a lso to reduce the wear o f the

    c o m p o n e n t . I n a d d i t i o n , t h e d e p o s i t

    shou ld have good the rma l shock

    resistance as w e l l .  S te l l i te grade 6 (cor

    respond ing to AWS RCoCr-A) has ,

    the re fo re , been spec i f ied fo r ha rd fac

    ing va r ious com pon en ts l i ke the

      c o n

    t ro l rod d r i ve mechan ism (CRDM),

    co re cove r p la te d r i ve mechan ism, g r id

    p la te and var ious subassembl ies in the

    reactor core of the fast breeder test

    reactor (FBTR) now under construc

    t ion at the Reactor Research Centre,

    Ka lpakkam.

    This paper presents the results of a

    de ta i led s tudy o f the in f luence o f p re

    hea t tempera tu re on the qua l i t y o f

    AW S RCoC r-A depos i ts on Types 316

    and 304 sta in less s tee l CR DM co mp o

    n e n t . O w i n g t o t h e l o w d u c t i l i t y o f

    coba l t -base a l loys , inadequ a te p rehea t

    P RE P A RA T I O N

    OF CYLINDERS

    S TELLIT ING BY

    O X Y - A CE T Y LE NE

    P RO CE S S

    PRE HEAT

    150°C

    PRE HEAT

    300°C

    PRE HEAT

    600°C

    PRE HEAT

    900

     °C

    M AC H INING

    METALLURGICAL

    E V A L U A T IO N

    M I CRO P RO B E

    S T U D I E S

    H A R D N E S S

    M E A S U R E M E N T S

    METALLOGRAPHY

    I

    o

    cr

    <

    UJ

    c/>

    UJ

    cr

    -

    i -

    z

    UJ

    CL

    O

    _ l

    UJ

    >

    O

    cr

    <

    UJ

    to

    Q.

    O

    o

    cr

    <

    U J

    CO

    U J

    cr

    CL

    o

    _ i

    UJ

    >

    x

    o

    r

    <

    U J

    CO

    U J

    cr

    Fig.

     1—Block

      diagram oi experimental program

    W E L D I N G R E S E A RC H S U P P L E M E N T  I 213 s

  • 8/17/2019 Stelite Welding Stanless Steel WJ_1980_07_s213

    2/4

    Fig. 2—Part

      of control rod drive mechanism

    used for surfacing with AWS

     RCoCr-A

      type

    bare rod

    :

    C B

    8S3 iS i$P% S i l l

    :

      '  • •  K P ?

    Fig.

     3—Micrographs

     showing typical S tellite (i.e., AWS RCoCr-A) deposits prepared by

    emp loying prehe at temp eratures of: A-150 °C (302°F);

     B-300 C

      (572 F);

     C-600°

    (1112 F);

    D-90VC   (1652°F)

    Table 1 Hardness  of AWS RCoCr-A Type

    Deposits

    HISS

    •-

    Deposit

    A

    B

    C

    D

    Rockwell C

    45 50

    47 49

    46 47

    47 52

    can lead to the c rack ing o f the depos

    it s  by   h igh shr inkage s tresses deve l

    oped du r ing we ld ing . P rehea t ing re

    duces shr inkage s tresses and e l imi

    na tes c rack ing and d is to r t ion , p ro

    v ided the p rehea t ing is un i fo rm . In

    add i t ion , p rehea t ing to h igh tempera

    tures leads to greater d i lu t ion o f the

    depos i t w i th the base me ta l impa r t ing

    some g rad ien t in i ts mechan ica l p rop

    ert ies and consequent res is tance to

    shock, though a t the cos t o f wear

    resistance. The results of the present

    inves t igat io n in d ica te that i t is essen

    t ia l to preheat the base meta l to h igher

    tempera tu res   ~  900°C  (1652°F)  f o l

    l owed by s low coo l ing in o rde r to

    p roduce sound depos i ts w i th the

    des i red p rope r t ies .

    E x p e r i m e n t a l P r o c e d u r e

    Figure 1 show s the b lock d ia gram of

    the expe r imen ta l p rog ram.

    Preparation of the Deposits

    The

      c o m p o n e n t o f C R D M

      was

    ma chin ed f r om a 55 m m (2.17 in .)

    d iam eter rou nd as sho wn in F ig. 2 , and

    dye -pene t ran t inspec ted . I t was then

    tho rough ly c leaned to remove o i l ,

    g rease, e tc . , be fore weld ing. For the

    150°C

      (302° F) preh eat de po sit T ype

    V  _  -

    j :*Ly t~.*'°  • •£

    -  ''.•*'•  3' V /  *%tV-'*

    • . . , . ••••;:••$

    fi % %y M

    3

    r

      1

    • _ _ \

    :

    Fig.  4—Micrographs  showing microcracks in deposits prepared by employing preheat

    tempe ratures: A-150 °C (302°F) and B-30 0°C (572°F); interface regions w ith pre heat

    temperatures:

      C-60VC

      (1112°F)  an d D-900°C (1652°F)

    316 stainless steel was used as base for

    p repa r ing the ove r lay , wh i le fo r o the r

    depos i ts T ype 304 was used. We do

    no t expec t any d i f fe renc e be tw een the

    behav ior o f over lays us ing Types 316

    and 304 stainless steel as the base

    meta l .

    The oxyace ty lene we ld ing p rocess

    w a s e m p l o y e d f o r p r e p a r i n g th e A W S

    RCoCr-A depos i ts . Th is process pro

    duces h igh qua l i ty depos i ts re la t ive ly

    und i lu te d by the base me ta l , co m

    pa red to o the r me thods o f p repa r ing

    depos i ts , and a lso is more su i tab le for

    com p lex shapes and d ime ns ions . The

    nature o f the f lame is an im po rtan t

    pa rame te r in de t e rm in ing the s t ruc tu re

    and propert ies o f the depos i t . In the

    present s tudy, a 3X f lame was used;

    th is led to some carbon p ick-up in the

    depos i ts .

    Fou r depos i ts we re p repa red w i th

    preheat tem pera tures o f 150, 300, 600

    and 900°C (302, 572,1112  and 1652°F);

    these are refer red t o as dep osit s A, B, C

    and D, respect ive ly , in fu r ther d iscus

    s ions. The depos i t A was a i r coo led to

    room tempera tu re wh i le depos i t D

    was a i r coo led to about 450°C  (842°F)

    a f te r depos i t ion to avo id sens i t i za t ion

    and then s low ly coo led to room

      t e m

    pe ra tu re in a fu rnace p rev ious ly

    hea ted to 45 0°C (842°F). Sa mples B

    and C were fu rnace coo led to room

    214-sl

      JULY 1980

  • 8/17/2019 Stelite Welding Stanless Steel WJ_1980_07_s213

    3/4

    Table  2 Chemical  Composi t ion o f AWS RCoCr

    E l em en t

    Coba l t

    C h r o m i u m

    Tungs ten

    Carbon

    S i l ic on

    I ron

    Bare Rod

    63.90

    26.59

    6.02

    1.22

    1.01

    0.80

    Depos i t

    A

    63.25

    28.98

    4.13

    1.62

    0.87

    -A Type Depostis and Bare Rod

    Depos i t

    B

    63.80

    26.96

    5.02

    1.57

    1.04

    1.03

    Depos i t

    C

    62.67

    27.56

    5.52

    1.64

    1.09

    0.80

    W C - %

    Depos i t

    D

    62.53

    26.00

    6.13

    1.64

    0.65

    2.36

    temp era tu re a f te r dep os i t io n . The s low

    cool ing was resorted to to reduce

    stresses due to weld ing.

    The as-depos i ted th ickness o f the

    over lays was in the range 4-5 mm

    (0.16-0.20  in.)  and bare rods o f d iame

    ter 4.1 mm (0.161 in.) were used for

    p repa r ing the ove r lays . Mach in ing o f

    the over lays was carr ied out to leave a

    th ickness o f the depos i t o f 2 .5 mm

    (0.098 in . ) . Dye -p ene t ran t inspe c t ion ,

    u l t rason ic inspect ion and hardness

    measurements were carr ied out on a l l

    the depos i ts be fo re and a f te r mach in

    ing.  Tab le 1 shows the hardness o f the

    depos i ts a f te r mach in ing . Ove r lays

    w e r e c o l l e c t e d d u r i n g m a c h i n i n g a n d

    analyzed for var ious e lements .

    Metallurgical Tests

    The me ta l lu rg ica l eva lua t ion o f the

    A W S R C o C r - A d e p o s i t s i n c l u d e d m e t

    a l log raph ic s tudy o f the depos i ts ,

    microprobe scans across the over lays

    and m ic roha rdness measu rem en ts

    a long the m ic rop robe t rave rses .

    Metallography.  M e t a l l o g r a p h i c i n

    ves t igat ions were carr ied out on t rans

    ve rse sec t ions removed f rom va r ious

    locat io ns o f the S te l l i ted rounds . A

    mix ture o f 25 ml g lycer ine, 25 ml  HCI

    and 10 ml H N O , was used as the

    e tchan t fo r m ic ros t ruc tu ra l examina

    t i o n .  The ent i re surface o f the sample

    was exa min ed to assess the q ua l i ty o f

    the depos i t . M ic rog raphs were taken

    of important features o f the depos i t

    and a lso o f typ ic a l a reas o f S te l l i te fo r

    each depos i t .

    Electron Microprobe and Micro

    hardness Examination.

      S ma l l samp les

    su i tab le fo r m ic rop robe ana lys is we re

    sec t ioned f rom the me ta l log raph ic

    samples . These were aga in po l ished

    and g iven a l i gh t e tch w i th a m ix tu re o f

    20 ml HC I, 20 ml

     H 0 10

      m l H N O , a n d

    0.5g  FeCI ,  b e f o re m i c r o p r o b e a n a ly

    sis.

    S amp les we re ana lyzed fo r coba l t ,

    c h r o m i u m ,   i r o n ,  tungs ten and n icke l

    to s tudy the ex ten t o f d i lu t io n us ing a

    C A M E C A M S - 4 6 E l ec tr o n M i c r o p r o b e

    Ana lyse r . M ic rop rob e runs we r e made

    across the samples s tar t ing f rom the

    AWS RCoCr-A reg ion and ex tend ing

    we l l i n to the base . M ic roha rdness

    measu remen ts we re ca r r ied ou t on

    these samp les a long the m ic rop robe

    scans us ing a d ia mo nd inden te r to

    s tudy the co r re la t ion be tween e le

    men ta l d is t r ibu t ion and the m ic ro

    hardness.

    Resul ts and Discuss ion

    The dye -pe ne t ran t inspec t ion and

    u l t rason ic inspect ion carr ied out a f ter

    depo s i t ion and a f te r ma ch in in g d id

    not reveal any cracks. Figure 3 shows

    typ ica l m ic ros t ru c tu re o f S te l l ite fo r

    the d i f fe ren t depos i ts . The d end r i tes

    appear to coarsen wi th h igher preheat

    tempera tu res . The p resence o f m ic ro -

    c racks in depos i ts p repa red w i th p re

    heat temperatures o f 150 and 300°C

    (302 an d  572°F)  i s shown , respec t i ve ly ,

    in Figs. 4A and 4B.

    S ome po ros i ty was also de tec te d in

    the depo sit wi th 150°C (302°F) pre heat

    tempera tu re . No c racks we re obse rved

    w i th p rehea t tempera tu res o f 600 and

    900°C (1112 and 1652°F). The typical

    m ic ros t ruc tu re o f in te r face reg ion o f

    depos i ts w i th these p rehea t tempera

    tures are sh ow n in F igs . 4C and 4 D.

    Howeve r , p rehea t ing to 600°C

    (1112°F)  tends to sens i t ize the base

    mater ia l—Fig. 4C Therefore , a preheat

    to 900°C (1652°F) which is above the

    sens i t iza t ion range shou ld be pre

    fe r red .

      In add i t ion to p roduc ing a

    sound depos i t , th is p rehea t tempera

    ture is a lso expec ted to re duce the

    ^ ^ • T

    J

    > ^ » » a ^ r ^

    e

    »

    50 I00 150  200  250 300 350 iOO  i5 0  500

    ( MI CRO NS )

    D I S T A N C E F RO M S T E L L I T E TO B A S E M A T E R I A L

    (I  M I C R O N S   )

    A S E M A T E R I A L

    ^ ' n f r n

    1

     

    50 100 150 200  250 300  350   iOO i5 0  ( MsCRONS )

    D I S T A N C E F R O M S T E L L I T E TO B A S E M A T E R I A L

    Too

    (  MICRONS)

    D I S T A N C E F R OM  S T E L U T E  T O B A S E M A T E R I A L

    Fig. 5-Craphs showing distribution of elements and microhardne ss across sample at: A-150°C (302°F);  B-300°C  (572°F);  C-6 00°C  (1112°F);

    D~~900°C (16S2°F). Legend: solid black  circles-cobalt;  open face circles with plus sign-chromium ; open face triangles-iron; open face circles

    with dot in center-nickel; X's-tungsten; solid black squares-m icrohardness (Vickers hardness   number,  load = 50  gm)

    W E L D I N G R E S E A R CH S U P P LE M E N T I

     215 s

  • 8/17/2019 Stelite Welding Stanless Steel WJ_1980_07_s213

    4/4

    res idua l s tresses. S ens i t iza t ion in the

    base mater ia l dur ing coo l ing is

    avo ided by fas t coo l ing to about 450°C

    (842°F).

    Tab le 2 shows the resu lts o f ch em i

    ca l ana lys is o f the over lays . The chem

    ical analysis of the bare rod used in

    prep ar ing these depos i ts is a lso sho wn

    in Table 2. It can be seen that no

    s ign i f icant d i lu t ion o f the over lays has

    taken p lace. Th is is expe cted w he n the

    oxyace ty lene p rocess is em p loy ed fo r

    d e p o s i t i o n .

      The ca rbon con ten t in the

    depos i ts is mu ch h ighe r com pared to

    that in the bare rod analysis. This has

    resu l ted f rom the nature o f the f lame

    emp loyed . As the ca rbu r iz ing f lame

    (3X) was used in prepar ing these de

    pos i ts , excess carbon would have

    en te red the depos i ts .

    The resu l ts o f the e lec t ron m ic ro

    probe and microhardness t raverses are

    show n in F ig . 5 . The m ic rop r obe

    results are plotted as ratios of X-ray

    in tens i t ies f rom the AWS RCoCr-A

    depos i t / base to tha t o f pu re e lemen t

    for each e lement ana lyzed vs . d is tance

    a long t rave rses f rom AWS RCoCr-A to

    base me ta l . These in tens i ty p lo ts sho w

    d is t r ibu t ion o f each e lemen t in va r ious

    reg ions o f the sample . As no correc

    t i o n w a s m a d e f o r a m u l t i - c o m p o n e n t

    sys tem, these in tens i ty ra t ios sh ou ld

    not be cons idered as represent ing

    c h e m i c a l c o m p o s i t i o n .

    An examina t ion o f the m ic rop robe

    resu l ts revea ls that a h igher preheat

    tempera tu re resu l ts in smoo the r va r ia

    t ion o f compos i t ion ac ross the in te r

    face.  Th is w ou ld lead to an impro ve

    ment in the thermal shock res is tance.

    As seen f rom Table 1 , hardness o f the

    depos i t is not a f fec ted by th is smal l

    am oun t o f d i l u t i on . F igs. 5A and 5 D

    also show that there ex is ts a corre la

    t ion o f m ic roha rdness w i th the coba l t

    content . These resu l ts are s imi la r to

    the f ind ings o f Dou ty and S chwar tz -

    bart .

    1

    C o n c l u s i o n

    The resu l ts o f th is invest igat ion

    revea l that a h igh preheat tem per atu re

    is essent ia l to avo id m icro cra ck in g o f

    the depos i ts . M ic roc racks we re ob

    served in depos i ts prepared by em

    p loy ing a preheat o f 150 and 300°C

    (302 and 572°F). Preheating to 900°C

    (1652°F), fo l lo w ed by ai r co o l i ng to

    450°C (842°F) a f ter depo s i t i on to a vo id

    any fur ther sens i t iza t ion o f the base

    and then fu rnace coo l ing to room

      t e m

    pe ra tu re p roduced sound depos i ts

    w i thou t any undes i rab le fea tu res .

    M ic rop robe ana lys is ac ross the de

    pos i ts ind ica ted tha t the re i s a sm oo th

    e r va r ia t io n in com pos i t ion ac ross the

    in te r face in depos i ts w i th h igh p rehea t

    tempera tu re . M ic roha rdness measu re

    men ts a long the m ic rop robe t rave rses

    revea led a co r re la t ion o f m ic roh a rd

    ness w i th co ba l t con t en t o f the dep os

    its.

    Acknowledgments

    The authors are indebted to Dr. P.

    Rodr iguez for usefu l d iscuss ions.

    Tha nks are also due t o S hri K. G.

    S amue l fo r he lp in me ta l log raphy , S h r i

    S . A rava mu dhan fo r he lp in p repa r ing

    the depos i ts and Sh r i S . Venkadesan

    fo r m ic rop robe ana lys is .

    References

    1.  Dou ty, R. A., and S chwartzbart, H.,

    S urfacing of 304 S tainless S teel for Liquid

    S odium S ervice,

    Welding lournal,

      51(8),

    Aug.

      1972, Research S uppl., pp. 406-s to

    416-s.

    WRC Bulletin

      257

    February  1980

    Analysis  of the   Ultrasonic Examinations  of   PVRC Weld

    Specimens 155

    202 and 203 by

     Standard

      and

     Two-Point

    Coincidence Methods

    by R. A. Buchanan prepared for publication by 0. F.

     Hedden

    This report descr ibes two me thod s o f ana lys is o f u l t rason ic ex am inat io n data obt a ine d in a 13 team

    round - rob in examina t ion o f th ree in ten t iona l l y f lawed we ldmen ts . The ob jec t i ve o f the examina t ions i s to

    determine the accuracy o f independent ly detec t ing, locat ing and s iz ing the weld f laws, us ing a f ixed

    procedure.

    Com pu te r p rog rams to fac i l i ta te comp ar ison o f f law loca t ions w i th the u l t rason ic da ta , fo r each o f the

    spec imens and bo th o f the me thods , a re appended to the repo r t .

    Pub l i ca tion o f th is repo r t was sponso red by the S ubcom mi t tee on N ondes t ruc t i ve E xamina t ion o f M a te r ia ls

    for Pressure Co mp on en ts o f the Pressure Vesse l Research Co m m it t ee o f the We ld in g Research Cou nc i l .

    The price of WRC Bulletin 257 is

      11.00

      per copy, p lus $3.00 for pos tage and hand l ing. Orders shou ld be

    sent wi th pa yme nt to the Weld ing Research Cou nc i l , 345 E ast 47t h S t . , Room 8 01 , New York , NY 1001 7.

    216-sl  JULY 1980