39
Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics U N I V E R S I T Y O F MARYLAND Steering Forces/Flexible Wheels • Final project grading rubric • Wheel-soil interactions in steering • Flexible wheels 1 © 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Steering Forces/Flexible Wheels - UMD

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Steering Forces/Flexible Wheels• Final project grading rubric• Wheel-soil interactions in steering• Flexible wheels

1

© 2020 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Page 2: Steering Forces/Flexible Wheels - UMD

Case Study: Final Design Project ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Final Project Grading Rubric (1)• Final design of rover (20 pts.)

– Solid models of design– Design evolution throughout as the analysis progressed– “Baseball card” with details of mass, power, etc.

• Trade studies (NOT an exhaustive list!) (20 pts.)– Number, size, configuration of wheels– Diameter and width of wheels– Size and number of grousers– Suspension design– Steering design– Alternate design approaches (e.g., tracks, legs, hybrid)

2

Page 3: Steering Forces/Flexible Wheels - UMD

Case Study: Final Design Project ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Final Project Grading Rubric (2)• Vehicle stability (10 pts.)

– Slope (up, down, cross)– Acceleration/deceleration– Turning– Combinations of above

• Terrain ability (“trafficability”) (10 pts.)– Weight transfer over obstacles– Climbing/descending vertical or inclined planes– Hang-up limit (e.g., high-centering, wheel capture)

3

Page 4: Steering Forces/Flexible Wheels - UMD

Case Study: Final Design Project ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Final Project Grading Rubric (3)• Design Details (20 pts.)

– Suspension dynamics– Development of drive actuator requirements– Detailed wheel-motor design– Development of steering actuator requirements– Detailed steering mechanism design– Mass budget (with margin)– Power budget (with margin)

• “Above and beyond” - e.g., attention to detail, particularly good presentation slides, name/logo,innovative design, high feasibility (20 pts.)

4

Page 5: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Steering Forces – Coordinate System

5

from Ishigami et.al., “Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil” J. Field Robotics 24 (3), 233-250

β = tan−1Vy

Vx

Page 6: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Forces Acting on Steered Wheel

6

s = {(rω − Vx)/rω (rω > Vx :  driving )(rω − Vx)/Vx (rω < Vx :  braking )

from Yoshida and Ishigami, “Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

Fx = rb∫θf

θr

{τx(θ)cos θ − σ(θ)sin θ} dθ

β = tan−1Vy

Vx

Page 7: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

σ(θ) = σmax (cos θ − cos θf

cos θm − cos θf )n

Normal Stress under Wheel

7

( for θm < θ < θf)

σ(θ) = σmax

cos {θf −θ − θr

θm − θr (θf − θm)} − cos θf

cos θm − cos θf

n

( for θr < θ < θm)

σmax = rn ( kc

b+ kϕ) (cos θm − cos θf)

n

from Ishigami et.al., “Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil” J. Field Robotics 24 (3), 233-250

Page 8: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Calculating Shear Stresses

8

θm = (a0 + a1s) θf

a0 and a1 depend on wheel-soil interactions, but generally 

a0 ≈ 0.4 and 0 ≤ a1 ≤ 0.3

τx(θ) = (c + σ(θ)tan ϕ)[1 − e−jx(θ)/kx]τy(θ) = (c + σ(θ)tan ϕ)[1 − e−jy(θ)/ky]

jx(θ) = r [θf − θ − (1 − s)(sin θf − sin θ)]jy(θ) = r(1 − s)(θf − θ) tan β

kx and ky are shear displacements in those directions 

Page 9: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Lateral Wheel Force Fy

9

Fy = Fu + Fs

Fu = Force from shear stress under the wheelFu = Force from bulldozing with the side of the wheel

Soil deformation  jy = ∫t

0Vydt = ∫

θf

θV sin β

=V sin β

ω (θf − θ)= r(1 − s)(θf − θ) tan β

Fu = rb∫θf

θr

τy(θ)dθ

Page 10: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

h ⋅ c +12

ρh2 (cot Xc − tan α′ ) + (cot Xc − tan α′ )2

tan α, + cot ϕ

Bulldozing Force with Side of Wheel

10

Rb =cot Xc + tan (Xc + ϕ)

1 − tan α ⋅ tan (Xc + ϕ)×

From Hegedus' bulldozing resistance formula,

Angle of approach a′  should be =0 for side of wheel

h(θ) = r (cos θ − cos θf) + c0s

Xc =π4

−ϕ2

Page 11: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Wheel Sideways Bulldozing Force

11

Rb = {cot Xc + tan (Xc + ϕ)} h ⋅ c +12

ρh2 (cot Xc +cot2 Xc

cot ϕ )

Fs = ∫θf

θr

Rbdl = ∫θf

θr

Rb(r − h(θ)cos θ)dθ

Fs = {cot Xc + tan (Xc + ϕ)} ×

∫θf

θr

h(θ) +12

ρh2(θ)(cot Xc +cot2 Xc

cot ϕ ) (r − h(θ)cos θ)dθ

Page 12: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Resolution into Rover Axes

12

from Yoshida and Ishigami, “Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

FC = Fx sin β + Fy cos β

FB = Fx cos β − Fy sin β

Page 13: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Procedure for Solution of Side Force• Input the vertical load , the longitudinal slip

ratio , and the steering angle

• Determine the angle of contact and the angle of departure from the model of wheel sinkage

• Determine the vertical stress and the shear stresses , under the wheel

• Determine the longitudinal wheel force

• Determine the lateral wheel force

Fzs β

θfθr

σ(θ)τx(θ) τy(θ)

Fx

Fy

13

Page 14: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Simulation Parameters and Values

14

from Yoshida and Ishigami, “Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

Page 15: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Side Force as a Function of Slip

15

from Yoshida and Ishigami, “Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

Page 16: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Relationship between and Fx Fy

16

from Yoshida and Ishigami, “Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

Page 17: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Experimental Set-Up

17

from Yoshida and Ishigami, “Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

Page 18: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Experimental Results

18

from Yoshida and Ishigami, “Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

Page 19: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Four-Wheel Test Parameters

19

from Ishigami et.al., “Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil” J. Field Robotics 24 (3), 233-250

Page 20: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Four-Wheeled Test Vehicle

20

from Ishigami et.al., “Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil” J. Field Robotics 24 (3), 233-250

Page 21: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Drawbar Pull vs. Slip Ratio

21

from Ishigami et.al., “Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil” J. Field Robotics 24 (3), 233-250

Page 22: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Side Force vs. Slip Ratio

22

from Ishigami et.al., “Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil” J. Field Robotics 24 (3), 233-250

Page 23: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Typical Flexible Wheels

23

Sharma et. al., “Systematic design and development of a flexible wheel for low mass lunar rover ” J. Terramechanics 76 (2018)

Page 24: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Flexible (“Elastic”) Wheel Analysis

24

Ground Pressure: Pgr =W

ℓcb

b = wheel width

ℓc = length of contact patch

W = weight on wheel

Pgr = [ kc

b+ kϕ]

12n + 1

[ 3W

(3 − n)b D ]2n

2n + 1

Page 25: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Bekker Substitution Circle

25

The performance of an elastic wheel can be modeled by that of a larger rigid wheel

R*R0

= 1 +f0h

+f0h

R * = equivalent radius of rigid wheelR0 = actual radius of flexible wheelh = sinkage of flexible wheel in soil ( = z)f0 = deflection of flexible wheel under load

Value of is usually determined by finite element analysisf0

G. Sharma et al., Journal of Terramechanics 76 (2018)

Page 26: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Flexible Wheel Analysis

26

G. Sharma et al., Journal of Terramechanics 76 (2018)

H = (cA + W tan φ)[1 −ksl (1 − e

−slk )]

Drawbar Pull

θf = 2 sin−1 ( l2r )

Contact Angle

ng min =360∘

θf

ng max =2πrlqp

lqp =hb

tan ( π4 − ϕ

2 )

hb = height of grousers

lqp = length of stress zone due to grousers

Page 27: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Grouser Traction

27

Nϕ = tan2 ( π4

+ϕ2 )

Fp = b ( 12

γsh2b Nϕ +

Wbl

hbNϕ + 2chb Nϕ)Grouser traction

Page 28: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Experimental Setup

28

R0 = 90 mm

b = 50 mm

G. Sharma et al., Journal of Terramechanics 76 (2018)

R * = 325 mm

Page 29: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Flexible Wheel Tested Characteristics

29

G. Sharma et al., Journal of Terramechanics 76 (2018)

Page 30: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Smooth Wheel Performance vs. Slip

30

G. Sharma et al., Journal of Terramechanics 76 (2018)

Page 31: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Drawbar Pull vs. Wheel Loading

31

(Number of grousers)G. Sharma et al., Journal of Terramechanics 76 (2018)

Page 32: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

A Slightly More Rigorous Approach

32

Y. Favaedi et al., Journal of Terramechanics 48 (2011)

Page 33: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Sinkage and Normal Pressure

33

Z = L cos θ − L1 cos θ1

σ1(θ) = − ( kc

Bs+ kϕ) (L cos θ − L1 cos θ1)n

Along arc CD:

Along flat section BC:

Z0 = Ldf cos θdf − L1 cos θ1

σdf = − K (Ldf cos θdf − L1 cos θ1)n

σ2(θ) = − K (Ldf cos θdf − L2 cos θ2)n

Z2 = Ldf cos θdf − L2 cos θ2

Along arc AB:

Page 34: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Fast Forwarding…

34

• Calculate slip velocity under the wheel (not a constant!)

• Calculate shear displacement and soil adhesion• Calculate soil thrust and drawbar pull by sections

(CD, BC, AB)• Add in effects of grousers

Page 35: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Rigid vs. Flexible Wheel Performance

35

Y. Favaedi et al., Journal of Terramechanics 48 (2011)

Page 36: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Experimental vs. Theoretical Sinkage

36

Experimental Theoretical

Y. Favaedi et al., Journal of Terramechanics 48 (2011)

Page 37: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Experimental vs. Theoretical Torque

37

Experimental Theoretical

Y. Favaedi et al., Journal of Terramechanics 48 (2011)

Page 38: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Experimental vs. Theoretical DP

38

Experimental Theoretical

Y. Favaedi et al., Journal of Terramechanics 48 (2011)

Page 39: Steering Forces/Flexible Wheels - UMD

Steering Forces/Flexible Wheels ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Closing Comments• Full analysis of flexible wheels gets really complex

– the current SOA is for finite element modeling of both the wheel and the soil

• Soil is a lot more complex than is typically modeled

• If experimental results are within the general vicinity of the predicted values, declare victory and submit the paper

• Terramechanics is hard!

39