217
DOE BestPractices Steam End User Training Guide Alternate Text Narratives and Graphic Descriptions June 29, 2010

Steam End User Training Guide

Embed Size (px)

DESCRIPTION

sream

Citation preview

  • DOEBestPracticesSteamEndUserTraining

    Guide

    AlternateTextNarrativesand

    GraphicDescriptions

    June29,2010

  • DOE BestPractices Steam End User Training

    SteamEndUserTrainingTableofContentsii

    June29,2010

    TableofContents

    Welcome ....................................................................................................................................................................................................... 3

    NavigationalTutorial............................................................................................................................................................................... 6

    Introduction ................................................................................................................................................................................................ 8

    TechnicalModules

    SteamGenerationEfficiency

    EfficiencyDefinition......................................................................................................................................................30

    ShellLosses.......................................................................................................................................................................42

    BlowdownLosses ..........................................................................................................................................................45

    StackLosses......................................................................................................................................................................73

    ResourceUtilizationAnalysis............................................................................................................................................. 114

    SteamDistributionSystemLosses ................................................................................................................................... 157

    Conclusion.............................................................................................................................................................................................. 188

    EndofCourseQuiz ............................................................................................................................................................................ 201

  • DOEs BestPractices Steam End User Training

    WelcomeModule1

    June28,2010

    SteamEndUserTraining

    SteamEndUserTrainingWelcomeModule

    Slide1SteamEndUserTraining

    WelcometotheDepartmentofEnergysIndustrialTechnologiesProgramBestPracticesSteamEndUserTraining.

    [SlideVisualSteamEndUserCourseWelcome]Banner:USDepartmentofEnergyEnergyEfficiencyandRenewableEnergy

    USDepartmentofEnergysIndustrialTechnologiesProgram

    BestPracticesSteamEndUserTraining

    Slide2CourseContentsTherearesevendifferentsectionsinthistraining.Thenavigationaltutorialwillprovideyouwithabriefdemonstrationonhowtonavigatethroughthetraining.TheIntroductionwillprovideyouahistoryofthecoursedevelopment,andthenfocusonthegeneralaspectsofsteamsystemmanagementandinvestigation.Inthissectionwewillintroducethefirstofthesteamsystemsoftwaretools,whichprovidessupportinidentifyingareasofpotentialimprovement.Thiswillprepareyouformoreindepthdiscussionsintheforthcomingsectionsofthetraining.TheSteamGenerationEfficiencymodulefocusesonboilerefficiency.Inthissectionthedefinitionofboilerefficiencywillbediscussedandthevariousavenuesofboilerlosseswillbeexplored.ResourceUtilizationEffectivenesswilldiscussfuelselection,steamdemands,andcogeneration.TheSteamDistributionSystemLossesmodulewillcoversteamleaks,steamtraps,insulationissues,andcondensateloss.EverythingwillbewrappedupwiththeConclusion.Lastly,therewillbeanEndofCourseQuiz,whichwillevaluateyourknowledgeandunderstandingofthetraining.Slide3SteamAssessmentsThiscourseisstructuredlikeatypicalsteamsystemassessment.Theassessmentisdesignedtoinvestigatetheperformancecharacteristicsofthesystem,pointoutbestpractices,identifyopportunitiestoimproveperformance,andevaluatetheeconomicimpactofpotentialimprovements.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingWelcomeModule2

    June28,2010

    Thistrainingwillprovideanoverviewoftypicalsteamsystems,theircomponents,operatingprinciples,managementtechniques,andpotentialimprovementopportunities.Steamsystemmodificationsoftenaffecttheentiresystemrequiringcomplicatedcalculationstoaccuratelyevaluatemass,energy,andeconomicimpacts.Thiscoursewillpointoutthevarioustoolswehaveavailabletousintheinvestigationprocess.Manyofthetoolsarethefundamentalprinciplesofphysicsthatallowustoidentifythebeforeandafterconditionsassociatedwithaspecificmodification.Additionally,theU.S.DOEhasdevelopedasophisticatedsetoftoolsthatenhanceourabilitytoaccuratelyandeffectivelyevaluatesteamsystemmodifications.Wewilldiscussthesefreetoolsthatcompletecomplicatedcalculationsandhelpyouidentify,analyze,quantify,andprioritizeenergysavingswithinyourplantssteamsystem.Slide4SteamSystemSchematicsWewilluseanexamplesteamsystemtoserveasthefocusofourinclasssteamsystemassessment.Theexamplesteamsystemrepresentsaheavyindustrysitewithtypicalcomponentsandcommonoperatingconditions.Theevaluationsandfindingsnotedinthistrainingrepresentopportunitiescommonlyidentifiedinindustrialsteamsysteminvestigations.Thissteamsystemisnotextraordinaryinanymannerincludingfuelcost,steamproduction,andoperatingconditions.Asyouwillsee,theexamplesystemoperateswiththreeboilerseachboilerconsumesadifferentfuel(naturalgas,number6fueloil,andgreenwood).Thetotalfuelexpenditureforthesiteisnominally19MillionDollarsperYear.Typicalsteamproductionis260,000poundsperhourof400psig,700Fsuperheatedsteam.Thethreeboilersdeliverhighpressuresteamtothedistributionsystemheader.Highpressuresteamservessteamloads,aswellasseveralcogenerationcomponents.Thebackpressureturbinesareconnectedtoelectricalgenerators,thusservingtoreducesteampressureandtogenerateelectricity.Pressurereducingstationsalsoassistinmanagingtheflowofsteamthroughthesystem.Asinallsteamsystemstherearemanyauxiliarycomponentssuchascondensaterecoverytanks,makeupwatertreatmentequipment,deaerator,feedwaterpumps,andmanymorecomponentsnotshownintheschematic.

    [SlideVisualSteamSystemSchematic]Thisschematicrepresentsathreeheadersteamsystemincorporatingthreeboilersandmanysystemcomponents.Thesteamdistributionsystemincludesthreebackpressureturbinesandtwopressurereducingvalves.Theturbinesandpressurereducingvalvesoperatebetweenthevarioussteampressuresofthesystem.Eachsteamheaderincludesendusesteamloadswhichdischargecondensatethroughsteamtrapstotheirrespectivecondensatecollectiontanks.Condensateisultimatelycollectedinthemaincondensatereceiver,thenpumpedtoadeaerator.Thedeaeratoralsoreceivesmakeupwaterandsteamtopreheatthecollectedcondensateandmakeupwater.Thedeaeratoroutflowbecomesthefeedwaterfortheboilers.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingWelcomeModule3

    June28,2010

    Slide6ResultsTheexamplesystem,whichisbasedonarealworldsteamsystem,wassubjectedtoasteamsystemassessmentusingfundamentalinvestigationtechniquesandtheU.S.DOESteamTools.Theassessmentidentifiedseveralprojectsthatwillresultinsignificantenergysavingsthatpresenteconomicallyattractiveprojects.Theassessmentidentifiedmorethan$1,300,000/yrofenergysavings,whichrepresentsmorethan7%ofthefuelinputcosttothesite.ThisSteamEndUserTrainingwillwalkyouthroughthisrealworldexampleofasteamsystemtohelpillustratehowyoucanidentifyareaswithpotentialforsavingenergyandforreducingcosts.Now,letsgetstartedsoyoucanlearnhowtoidentifyenergyefficiencyimprovementsatyoursite!

  • DOEs BestPractices Steam End User Training

    ng1

    SteamEndUserTrainiNavigationalTutorial

    June28,2010

    SteamEndUserTrainingNavigationalTutorialModule

    Slide1IntroductionHello,andwelcometotheSteamEndUserTraining.Iwouldliketotakeafewminutestoshowyouhowtonavigatethroughthetraining.Slide2TableofContents1Asyoucanseeinthetableofcontents,itisseparatedinto3differentmodules,eachonedemonstratingadifferentmajortopicintheSteamEndUserTraining:SteamGenerationEfficiency,ResourceUtilizationAnalysis,andSteamDistributionSystemLosses.Attheendofthecourse,youcantakeaninteractivequiztotestyourunderstandingofsteamsystemconceptsandimprovementopportunities.Clickonamodule,individualslide,orthequiz,tonavigatetoit.Slide6StatusIfyouclickonamodule,thesidebarwilldisplayitsindividualslides,aswellastheirtitlesandduration.Youcanclickonanyslideinordertonavigatetoit.UnderStatus,youwillseeacheckmarknexttoeachmoduleorslidethatyouhavecompleted.Atthebottom,youwillseethetotaltimeofthetraining,aswellashowmuchofthattimeyouhavecompleted.ClickonCleartogetridofallofthecheckmarks.Youcanalsoutilizethebookmarkfeature.Selectthesmallbuttonontheleftsideoftheslidetitletobookmarkaslide,Slide7Bookmarktoreturntoitlatertocompletethetrainingsession,orforreferenceorquestions.Youcanclickthebuttonagaintocancelthebookmark.Slide8Rewind/Play1Atanytimeyouhavenavigatedthecoursewiththesidebarorbottomcontrolbar,andtheaudiodoesnotbegin,doubleclickonthehighlightedsidebarslidetitle.Thehighlightidentifieswhereyouare,andtheaudioshouldrestart.Noticethetoolbarbelowthemainscreen.Rewindwilltakeyoutothebeginningofthemodulethatyouareviewing.Clickplaytocontinue,Slide10Back/Forwardandpausetopausethetraining,Backandforwardwillmovebackandforwardbetweenslides.Ifyouwanttogotwiceasfast,youcanclickon2timesFastForwardSpeed.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingNavigationalTutorial2

    June28,2010

    Slide11FastForwardClickonitagaintoget4timesFastForwardSpeed.Youmustreturntonormalspeedtoheartheaudio,astheaudioisoffduring2timesand4timesFastforward.Slide12NormalSpeedClickonitonemoretimetogobacktothenormalspeed.Slide13SliderBar1Youcanalsonavigatetoaparticularsectionofthetrainingbydraggingthesliderbackandforward.Clickitandholddownthemousebutton.Slide15SlideNumber/Play/Pause1Itwilldisplaywhichslideyouareon,outofthetotalnumberofslidesinthemodule.Asyourepositiontheslidercursor,youwillnoticethesidebarwillhighlighttheslidecorrespondingtothecursorposition.Slide16SlideNumber/Play/Pause2Torestartthetraining,youmayclickonthecorrespondingslide(whichishighlighted),orjusthittheplaybutton,asthepausebuttonwasautomaticallyengagedwhenusingtheslider.Slide19SoundOn/Off1Also,Youcanchoosetohavethesoundonoroff.Slide21ClosedCaptioning1CCallowstheusertoturntheclosedcaptioningonoroff.ClickingtheXwillexittheprogram.ClickingIwilldisplayinformationabouttheprogram,includingtheauthorandtheauthorsemailaddress.Slide23MinimizeScreenAtthetoprightofthescreen,youcanclicktheleftbuttontominimizethewindow.Slide24MaximizeScreenClickonthemiddlebuttontomaximizeit,sothatyoucanseeitbetter.ClickontheXallthewayontherightinordertoclosethetraining.IfyouareusingInternetExplorersF11Fullscreenmode,youwontbeabletoseethebigXintheupperrightcorneruntilyouhitF11again.IfyouareusingabrowserotherthanInternetExplorer,thesebuttonswilllookdifferent.Now,letsgetstarted!

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule1

    June28,2010

    SteamEndUserTrainingIntroductionModule

    Slide1IntroductionTitlePageHello,andwelcometotheSteamSystemEndUsertraining.Inthistraining,wewillinvestigatehowtoassess,evaluate,andmanagesteamsystems.Wewillcovertheentiresteamsystem,fromoneendtotheother.Letsgetstarteddiscussingtheoriginofthecourse,theneedforthecourse,andthentheoverallcourseobjectives.

    [SlideVisualIntroductionTitlePage]

    DOEsBestPracticesSteamEndUserTraining

    Introduction

    CourseDevelopmentTheNeedfortheCourse

    CourseObjectivesStarttheInvestigation

    Slide2OriginalCourseThiswebbasedtrainingtoolhasbeendevelopedfromitsoriginal,instructorledclassroomsetting.Theoriginalcoursewasdesignedprimarilywiththeindustrialsectorinmindandwithanindustrialexperiencebasis.Theprimaryprinciplesareapplicabletoallsteamsystemsandeventhermalwatersystems;but,thefoundationprinciplesarebasedinheavyindustry.Thecourseisdesignedforplantpersonnel,suchasenergymanagers,steamsystemsupervisors,engineers,equipmentoperators,andotherswithsteamsystemresponsibilitiesinindustrialapplications.Nowasawebbasedtrainingtool,participantscanaccessthetraininganytimeandreturntorevisittopicsofinteresttohelpimprovetheefficiencyandperformanceoftheirsteamsystems.

  • DOEs BestPractices Steam End User Training

    IntroductionModule2

    June28,2010

    SteamEndUserTraining

    [SlideVisualDescriptionoftheInstructorledClassroomCourse]Headercontains:

    IndustrialTechnologiesProgramTitleincludes:

    ABestPracticesTrainingPresentationUSDepartmentofEnergy

    SystemSystemsAssessmentTrainingIncludingUseoftheSteamSystemsToolSuite

    Threephotographsofsteamsystems.

    Photo1:alargeverticalexhaustpipeonabuildingexteriorexhaustingasteamplumefromthetopofthestack. Photo2:aseriesofsmallsteampipeswithasteampressuregauge. Photo3:Fivehorizontalrunsofsteamdistributionpipingfromacommonheader.Steamdistributionpipingisinsulatedwithan

    aluminumjacketing.Apersonisstandingneartheheader.

    Bottomfootercontains:USDepartmentofEnergySealUSDepartmentofEnergyEnergyEfficiencyandRenewableEnergyBringyouaprosperousfuturewhereenergyisclean,abundant,reliable,andaffordable.

    Slide3CourseDeveloperThiscoursewasdevelopedbyGregHarrellandisintendedtopresentarealworldviewofhowsteamsystemsoperate,practicalevaluationtechniques,andcommonimprovementopportunities.Thiscoursehasdevelopedovermanyyearsofobservingandinvestigatingsteamsystems.ItrepresentsthecompilationofBestPracticesobservedassustainablesteamsystemmanagementmeasures.

    [SlideVisualGregHarrellsCredentials]CourseDeveloperGregHarrell,Ph.D.,P.E.

    Ph.D.MechanicalEngineeringThermodynamics,VirginiaTech(VPI&SU)1997

    1987to1993DesignEngineer,UtilitiesProcessEngineer,BASFCorp.

    Oversightforengineering,technicalactivitiesofentireutilitiesdepartment(steamproduction,electricpowergeneration,compressedairsystems,industrialrefrigerationfacilities,industrialHVACsystems,waterfiltrationfacilitiesandwastewatertreatmentplant

  • DOEs BestPractices Steam End User Training

    AtVirginiaTechMechanicalEngineeringProfessor,EnergyManagementInstitute(EMI)

    SteamEndUserTrainingIntroductionModule3

    June28,2010

    From1997to2001DirectorofTechnicalAssistanceforEMI Undergraduateandgraduatelevelthermodynamicsprofessor Directlyinvolvedinimportantaspectsofenergymanagementforindustrieslocatedworldwide Hasconductednumerousenergysurveysforindustrialclientsthroughouttheworldon6continents,in22countries,andin36of

    theUnitedStates DevelopedU.S.DOEBestPracticesSteamEndUserTrainingandU.S.DOESteamSpecialistQualificationTraining PlayedmajorroleindevelopmentoftheUSDOEBestPracticesSteamToolsandauthoredSteamSystemSurveyGuide,whichhas

    becomeatextforuniversitymechanicalengineeringcourses ACertifiedInstructor,CompressedAirChallenge

    CurrentlyConsultantforEnergyManagementServices

    Primaryrolescontinuetoincludeindustrialsystemsenergyanalysisandindividualprocessanalyses,industrialtrainingcourses,universityinstruction,energysystemmodeling,andsoftwaredevelopment

    AprimaryinstructorintheNorthCarolinaStateUniversityEnergyManagementDiplomaProgram Majorsystemfocusareasboilers,steamsystems,combinedheatandpowersystems(cogeneration),gasturbines,and

    compressedairsystemsSlide4QualifiedPresentersThecoursehasbeenpresentedtothousandsofparticipantsrepresentingalltypesofindustry.Thecourseinstructorsallhavemanyyearsofpracticalsteamsystemexperiencetheircareersfilledwithconductingsteamsystemassessmentthroughouttheworldinalltypesofsettings.Thiscombinationoftechnicalexpertise,realworldexperience,anddirectfeedbackfromindustrialparticipantshasresultedinthepractical,useful,andstraightforwardcourseyouseetoday.

    [SlideVisualQualifiedPresentersandTheirContactInformation]

    GregHarrell,Ph.D.,P.E.EnergyManagementServices341WillocksDriveJeffersonCity,Tennessee37760Phone:8657190173Email:[email protected]

    RichardJendrucko,Ph.D.Consultant,IndustrialEnergyManagement458HillvaleTurnEastKnoxville,Tennessee37919Phone:8655237323Email:[email protected]

  • DOEs BestPractices Steam End User Training

    IntroductionModule4June28,2010

    SteamEndUserTraining

    RiyazPapar,P.E.,CEM

    HudsonTechnologies14SplitRailFenceTheWoodlands,Texas77382Phone:2812980975Email:[email protected]

    DebbieBloomNalcoCompany1601WestDiehlRoadNaperville,Illinois60187Phone:6303052445Email:[email protected]

    StephenTerry,Ph.D.,P.E.NorthCarolinaStateUniversityIndustrialAssessmentCenterDepartmentofMechanicalandAerospaceEngineeringRaleigh,NorthCarolina27695Phone:(919)5151878Email:[email protected]

    BillMoirSteamEngineeringInc.204NE117thAvenueVancouver,Washington98684Phone:(800)3466152Email:[email protected]

    Slide5IndustrialEnergyJustforamomentletsexaminetheimportanceofeffectivemanagementofsteamsystems.Tostartthisdiscussion,considertheamountofenergyrequiredtooperateourindustries.ItisinterestingtonotethatintheUnitedStatesenergyisusedinthreebroadcategoriesofconsumers.Theseconsumersaresegregatedintotransportation(automobiles,trucks,andairplanes),residentialcommercial(homesandbuildings),andindustry.ItisinterestingtonotethateachofthesethreesectorsconsumeapproximatelyonethirdoftheenergyusedintheU.S.Thetransportationsectorconsumesalmostonethirdoftheenergy,whileresidentialandcommercialtogetherusesomewhatmorethanonethirdoftheenergy.Remarkably,industryaloneusesathirdofthecountrysenergy.Thesethreesectorsuseenergyinverydifferentways.Thetransportationsectorusesprimarilyliquidfuelsastheenergyresource.Residentialandcommerciallocationsusealargeamountofelectricityalongwithnaturalgasandfueloils.Industryusesabroadmixofenergyresourcesincorporatingelectricity,manyfueltypes,andotherenergyresources.Managementandsupportforthesesectorsrequireverydifferentapproaches.OnethingisveryapparentmanagingtheenergyutilizationofindustryiscriticaltothecompetitivenessoftheU.S.ontheworldstage.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule5

    June28,2010

    [SlideVisual2004EnergyUsePieChart]Title:2004EnergyUse*

    Industry34.0%(orangeslice)Transportation28.0%(blueslice)Commercial17.0%(greenslice)Residential21.0%(yellowslice)

    Footnotes:

    *IncludeselectricitylossesSource:DOE/EIAMonthlyEnergyReview2004(preliminary)

    Slide6EnergyConsumptionOurfocushereistheindustrialsector.Itwillbeinterestingtoustocharacterizethetypesofenergyuseintheindustrialsector.U.S.DOEisservingasanenergymanagerforindustrialsitesintheUnitedStates.FromtheperspectiveoftheU.S.DOEhelpingU.S.industrymanageenergyresourcesisadauntingchallengethereareaquarterofamillionindustrialsitesintheUnitedStates.HowcanDOEhelpaquarterofamilliondiverseusers?LikeanygoodenergymanagerDOEinvestigatedthemeasurementsthatindicatehowenergyisusedinindustrythroughoutthecountry.WhatDOEfoundisthathalfoftheenergyusedinindustrialsitesisusedbylargeindustrialsites.Thisisveryinterestingbecauselargeindustrialsitescompriseonly3percentoftheindustrialpopulation.Ifwecaninfluencetheenergyconsumptionofthissmallfractionofthetotalindustrialpopulation,thenwecaninfluenceasignificantportionofU.S.energy!Also,thetechniquesusedtoaidthelargeindustrialsitescanbereplicatedtotheremainingindustrialsites.

    [SlideVisualU.S.ManufacturingPlants:BySizeBarChart}Title:U.S.ManufacturingPlants:BySize HorizontalAxis:PlantsizeandAnnualEnergyCosts

    SmallPlants$2MAllU.S.Plants(nocostprovided)

    VerticalAxis:NumberofU.S.Plants

    Range0to250,000by50,000increments

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule6

    June28,2010

    Chartreads:

    SmallPlants$2Mhas6,802plants(orangebar)AllU.S.Plants(nocostprovided)has226,737plants(greenbar)

    [SlideVisualPercentofTotalIndustri galEner yPieChart]Title:PercentofTotalIndustrialEnergy

    SmallandMedium47%(yellowslice)Large53%(orangeslice)

    Source:1998EIAMECS

    Slide7EnergyRequirementsAsaresult,letstakealookathowenergyisusedinatypicalindustrialsite.Asyoucanseefromthechart,mostoftheenergyisgoingintoprocessheatingandsteamsystems.Bothprocessheatingandsteamsystemsconsumemorethanonethirdoftotalindustrialenergy.Itisalsoexcellenttonotethateventhoughprocessheatingandsteamsystemshavetheirdistinctdifferences,theinvestigationtechniquesandopportunitieswehaveinprocessheatingareverysimilartothoseforsteam.Ifwecanbettermanageourprocessheatingandsteamsystems,wecanhaveasignificantimpactonourenergyconsumptionandcompetitivenessintheworldmarket.Thisistheprimarydrivingforceforthiscourse;inotherwords,steamsystemsareamajorfactorintheenergyconsumptionoftheUnitedStatesandmuchoftheworld;therefore,weneedtomanagethemeffectively.

    [SlideVisualTypicalEnergyRequirementsPieChart]Title:ManufacturingEnergyUsebyTypeofSystem(%)

    Steam35%(blueslice)ProcessHeating38%(brightyellowslice)MotorSystems12%(peachslice)ProcessCooling1%(whiteslice)ElectroChemical2%(yellowslice)Other4%(blueslice)Facilities8%(greenslice)

    Footnotes:

    Note:DoesnotincludeoffsitelossesSource:DOE/EIAMonthlyEnergyReview2004(preliminary)

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule7

    June28,2010

    Slide8CourseDivisionsThiscourseisarrangedinasimilarmannertoatypicalsteamsystemassessment.Wewillinvestigateallareasofthesteamsystem.WewillstartwiththeboileroperationsintheSteamGenerationAssessmentsectionofthecourse.Inthissectionwewillexaminetheenergyconversionefficiencyoftheboiler.Variousboilerefficiencyinvestigationmethodswillbeidentified.Boilerefficiencyimprovementavenueswillbeexploredalongwithcontrolstrategies.IntheResourceUtilizat sectionofthecoursewewilltargetsteamendusecomponents,fuelselection,steamsystembalancing,aswellascombinedheatandpoweractivities.Thesearemajorconcernsformostfacilitiesandcanpresentsignificantopportunitiesforeconomicimprovement.

    ionAnalysis

    TheDistributionSystemcanprovidetremendouswasteintheformofsteamleaks,steamtrapfailures,insulationrelatedlosses,andlostcondensate.Theseareaswillserveasinvestigationtargetsforourdiscussions.Slide9U.S.DOEToolsInvestigatingandanalyzingsteamsystemsrequiresasignificantamountofcomplexcalculationstoidentifytheimpactpotentials.Throughoutthistraining,wewilldemonstratethefundamentalcalculationsandinvestigationtechniquesrequiredtoevaluateeachareaandeachimprovementopportunity.TheSteamSystemSurveyGuideisacompaniondocumenttotheSteamEndUserTrainingtodiscussmajorareasofpotentialimprovementsforsteamsystemsandhowtoquantifythoseopportunitiesandisavailableforfreedownloadfromtheBestPracticesTrainingArea.AdditionaltechnicalpublicationsareprovidedforfreedownloadfromtheBestPracticesResources.Youcanreferencethesedocumentsasyouinvestigateimprovementsforyoursteamsystemsefficiencyandperformance.TheSteamSystemToolsSuiteisasetofsoftwaretoolsconstructedtoaidintheevaluationofsteamsystemprojects.ThesesoftwaretoolsareavailableforfreedownloadfromtheU.S.DOEwebsite.TheToolsSuiteincludestheSteamSystemScopingTool,whichisdesignedtoguidetheusertopotentialimprovementopportunities.Also,includedistheSteamSystemAssessmentTool,whichallowstheusertocompleteacomprehensivemass,energy,andeconomicbalanceonthesteamsystem.Thistoolisdesignedtoevaluatethesystemwideimpactsofchangesinthesteamsystem.Finally,theToolsSuitecontainsthe3EPlusInsulationEvaluationTool.Thistoolcanbeusedtoevaluateanyinsulationrelatedproject.Slide10CourseObjectives1Wearegoingtofocusourattentiononthefundamentalandpracticalaspectsofsteamsystemoperation,maintenance,andmanagement.Whatwewouldliketoaccomplishistohelpyouidentifyopportunitiesyoumayhavetoimproveyoursteamsystem,understandhowtoevaluatethetrueimpacts,andtosetapathtoimplementtheimprovements.Thefocuswillbeonthefundamentalsofsteamsystemsifthefundamentalsaremasteredthesteamsystemwillbewellmanaged.Effectivesteamsystemmanagementrequiresanexcellenttoolboxfilledwithevaluationtoolsandtechniquesthatwillenabletheskilledassessortoidentifyandquantifyimprovementopportunities.Wewillfocusontheessentialmeasurementsthatcharacterizeoperations.Wewillfocussomeattentionontheboilerandunderstandhowboilerefficiencycanbeimpactedandimproved.

  • DOEs BestPractices Stea

    sualCourseObjectives1]

    m End User Training

    IntroductionModule8

    June28,2010

    SteamEndUserTraining

    [SlideVi

    BecomefamiliarwithU.S.DOEToolsSuitetoassesssteamsystems

    Identifythemeasurementsrequiredtomanagesteamsystems Measureboilerefficiency Estimatethemagnitudeofspecificboilerlosses Identifyandprioritizeareasofboilerefficiencyimprovement Recognizetheimpactsoffuelselection

    Slide11CourseObjectives2Wewillintroducethetopicofcogenerationandidentifythecommonaspectsofturbineoperation.Attentionwillbegiventotheenduseequipmentandpotentialopportunitiestoreducesteamdemand.Steamtrapmanagement,insulationopportunities,andcondensaterecoveryareallvitalcomponentsinsteamsystems.Theseareaswillbeinvestigated.Thereisalotofinformationtodiscuss;so,letsgetstarted.

    [SlideVisualCourseObjectives2]

    Characterizetheimpactofbackpressureandcondensingsteamturbines Quantifytheimportanceofmanagingsteamconsumption Identifytherequirementsofasteamtrapmanagementprogram Evaluatetheeffectivenessofthermalinsulation Evaluatetheimpactofcondensaterecovery Recognizetheeconomicimpactsofsteamsystemoperations

    Slide12SteamSystem

    Steamsystemscanbelargeandcomplexwithmanycomponentsandarrangementsbutmanyoftheprimarycomponentswillbecommonfromsystemtosystem.

    Oneofthefirststepsincompletingasteamsystemassessmentistoidentifytheprimarycomponentsofthesteamsystem.

    Boilersandtheirauxiliarycomponents,heatexchangersandotherenduseequipment,watertreatmentsystems,condensaterecoverycomponents,distributionpiping,andmanyothercomponents.Thesecomponentsmaybearrangedinasimplesystem,withasingleboiler,maybeonebackupboileroritcanbemuchmorecomplicated.

    [SlideVisualSteamSystemImpactSchematic]

    Thisschematicrepresentsatwoheadersteamsystemwithtwoboilersandallofthesystemcomponents.Feedwaterispreheatedbysteaminjectionfromthelowpressuresteamdistributionheader,aswellaspreheatedmakeupwaterutilizingboilerblowdownheatrecovery.

  • DOEs BestPractices Steam End User Training

    ThetopoftheschematicshowstheBoilerFeedwaterenteringthetwoboilers.Thetwoboilersareconnectedtothehighpressuresteamdistributionheader.

    SteamEndUserTrainingIntroductionModule9

    June28,2010

    Thesteamexitstwoboilersandentersthehighpressuresteamsystemdistributionheader,indicatedbyalinebelowtheboilers.

    Atthefarrightofthehighpressuresteamdistributionsystem,thehighpressureendusercomponentloadsareidentifiedthrougharectangulargraphicandarrowsenteringandleavingtherectangle,indicatingheatexchangewiththecomponents.Theendusecomponentsdischargecondensatethroughasteamtrap,representedbyarectangulargraphic.Schematically,condensatepassesthroughthebottomofthetrapandrecoveredinacondensingtank.Thecondensatetankusesapump,whichisdenotedbyacircle/squarecombination,todeliverthecondensatetothemaincondensatereceiver.Themaincondensatereceiverthenpumps(denotedbyacircle/squarecombination)thecondensatetothedeaeratortankasdenotedbytworedrectangles,withthesmalleroneonthetop.Thetoprectanglealsoshowstwotriangles,eachpointedawayfromeachother,longestendsnearlytouching.Thebottomtriangleisconnectedtoacontrolvalverepresentedbyahourglassfigurewithadomeontheside,whichprovidessteamtothedeaeratorfromsteamdistributionsystemtopreheatthecollectedcondensateandmakeupwater.Makeupwateralsoschematicallyentersatthetopofthedeaeratorwiththecollectedcondensate.Theboilerfeedwaterschematicallyexitsthedeaeratorfromthebottomandispumped(denotedasacircle/squarecombination)tothefeedwaterinletsofeachboiler,nearthetoptheschematic.

    Slide13SteamSystem2PressuresThesystemmayincludemultipleboilers,severalsteampressures,differenttypesoffuel,steamturbines,andmanyprocessendusers.

    [SlideVisualSteamSystemImpactSchematic]

    Thisschematicrepresentsatwopressureheadersteamsystemwithmultipleboilersandallofthesystemcomponents.Feedwaterispreheatedbysteaminjectionfromthelowpressuresteamdistributionheader,aswellaspreheatedmakeupwaterutilizingboilerblowdownheatrecovery.ThetopoftheschematicshowstheBoilerFeedwaterenteringthetwoboilers.Thetwoboilersareconnectedtothehighpressuresteamdistributionheader.

    Thesteamexitstwoboilersandentersthehighpressuresteamsystemdistributionheader,indicatedbyalinebelowtheboilers.

    Underthehighpressuresteamdistributionline,youwillseethreeconeshapedgraphics,thatrepresentthesteamturbines.Theonenearesttotheleftisahighpressuretocondensingturbine.Thisturbinedischargestothecondenserrepresentedbythebluecirclebelowtheturbine.Therectangulargraphictotherightoftheconeshapedgraphicindicatestheelectricalgenerationcomponentofthesteamturbine.Theturbineinthemiddlereceiveshighpressuresteamandexhaustslowpressuresteamtothelowpressuresteamdistributionsystem,aswellasgenerateselectricity.Thisturbineisdenotedasredconeandrectanglecombination.Thesteamturbinetothemostrightreceiveshighpressuresteam,drivesapump(denotedasacircle/squarecombination)andisalsocalledasteamturbinedrivenpump,thendischargestothelowpressuresteamdistributionsystemheader.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule10

    June28,2010

    Betweenthecondensingturbineandthehightolowpressureturbine,alightbluetriangulargraphicthatrepresentsapressurereducingvalve,whichdischargestothelowpressuresteamdistributionheader,identifiedbyaredlinebelowtheturbines.Atthefarrightofthehighpressuresteamdistributionsystem,thehighpressureendusercomponentloadsareidentifiedthrougharectangulargraphicandarrowsenteringandleavingtherectangle,indicatingheatexchangewiththecomponents.Theendusecomponentsdischargecondensatethroughasteamtrap,representedbyarectangulargraphic.Schematically,condensatepassesthroughthebottomofthetrapandrecoveredinacondensingtankwhichisalsoconnectedtothelowpressuresteamdistributionsystem.Underthelowpressuresteamdistributionline,youwillseethelowpressureendusercomponentloadsidentifiedasarectangulargraphicandarrowsenteringandleavingtherectangle,indicatingheatexchangewiththecomponents.Theendusecomponentsdischargecondensatethroughasteamtrap,representedbyanotherrectangulargraphic.Schematically,condensatepassesthroughthebottomofthetrapandrecoveredinacondensatetank,inwhichsteamisventedrepresentedbyaverticalarrowleavingthetopofthetank.Thelowpressureendusercondensatetankusesapump,whichisdenotedbyacircle/squarecombination,todeliverthecondensatetothemaincondensatereceiver,whichisalargerectanglewiththreeinputsdenotedbythreearrowsatthetopoftherectangle.Thecondensateentersthismaincondensatereceivertank,afteritpassesthroughacontrolvalve,denotedasanhourglassshapewithadomeontop.Thethirdcondensateinputcomesfromthecondensatefromtheheatexchangerthatutilizesthehighpressuresteamturbine.Thecondensateleavesthisheatexchangerandisdeliveredviaapump(denotedasacircle/squarecombination)tothemaincondensatereceiver.Themaincondensatereceiverthenpumps(denotedbyacircle/squarecombination)thehighpressurecondensate,lowpressurecondensate,andthecondensingsteamturbinecondensatetothedeaeratortankasdenotedbytworedrectangles,withthesmalleroneonthetop.Thetoprectanglealsoshowstwotriangles,eachpointedawayfromeachother,longestendsnearlytouching.Thebottomtriangleisconnectedtoacontrolvalverepresentedbyaredhourglassfigurewithadomeontheside,whichprovideslowpressuresteamtothedeaeratorfromthelowpressuresteamdistributionsystemtopreheatthecollectedcondensateandmakeupwater.Preheatedmakeupwateralsoschematicallyentersatthetopofthedeaeratorwiththecollectedcondensate.Themakeupwaterispreheatedfromtheboilerblowdownandlowpressuresteam.Boilerblowdownfromeachboilerisnotedasreddashedlinesleadingtoablowdownreceivertankdenotedasaredrectangleontherightofthescreen.Flashsteamisdivertedfromtheblowdownflashvesseltothelowpressuresteamdistributionline,alsodenotedinreddashedlines.Liquidfromtheblowdownflashtankthenschematicallyentersthetopofaheatexchanger(representedasawhiteandgreenstripedrectangle).Makeupwaterisshownenteringtheheatexchangerfromtheright,afteritpassesthroughthewatertreatmentequipment,denotedastworedrectanglesfurtherontheright.Theliquidexitingtheheatexchangerissenttothedeaerator.Theheatedboilerfeedwaterschematicallyexitsthedeaeratorfromthebottomandispumped(denotedasacircle/squarecombination)tothefeedwaterinletsofeachboiler,nearthetoptheschematic.

  • DOEs BestPractices Steam End User Training

    IntroductionModule11June28,2010

    SteamEndUserTraining

    Slide14SteamSystem3PressuresSomesystemsareevenmorecomplicatedthanthatincludingmanysteampressuresandincorporatingsteamturbinesdrivingprocesscomponentsaswellaselectricalgenerators!

    [SlideVisualSteamSystemImpactSchematic]

    Thisschematicrepresentsathreepressureheadersteamsystemwithmultipleboilersandallofthesystemcomponents.Feedwaterispreheatedbysteaminjectionfromthelowpressuresteamdistributionheader,aswellaspreheatedmakeupwaterutilizingboilerblowdownheatrecovery.

    ThetopoftheschematicshowstheBoilerFeedwaterenteringthetwoboilers.Thetwoboilersareconnectedtothehighpressuresteamdistributionheader.

    Thesteamexitstwoboilersandentersthehighpressuresteamsystemdistributionheader,indicatedbyalinebelowtheboilers.

    Underthehighpressuresteamdistributionline,youwillseethreeconeshapedgraphics,thatrepresentthesteamturbines.Theonenearesttotheleftisahighpressuretocondensingturbine.Thisturbinedischargestothecondenserrepresentedbythebluecirclebelowtheturbine.Therectangulargraphictotherightoftheconeshapedgraphicindicatestheelectricalgenerationcomponentofthesteamturbine.Theturbineinthemiddlereceiveshighpressuresteamandexhaustslowpressuresteamtothelowpressuresteamdistributionsystem,aswellasgenerateselectricity.Thisturbineisdenotedasredconeandrectanglecombination.Thesteamturbinetothemostrightreceiveshighpressuresteam,drivesapump(denotedasacircle/squarecombination)andisalsocalledasteamturbinedrivenpump,thendischargestothelowpressuresteamdistributionsystemheader.Betweenthecondensingturbineandthehightolowpressureturbine,alightbluetriangulargraphicthatrepresentsapressurereducingvalve,whichdischargestothelowpressuresteamdistributionheader,identifiedbyaredlinebelowtheturbines.Atthefarrightofthehighpressuresteamdistributionsystem,thehighpressureendusercomponentloadsareidentifiedthrougharectangulargraphicandarrowsenteringandleavingtherectangle,indicatingheatexchangewiththecomponents.Theendusecomponentsdischargecondensatethroughasteamtrap,representedbyarectangulargraphic.Schematically,condensatepassesthroughthebottomofthetrapandrecoveredinacondensingtankwhichisalsoconnectedtothelowpressuresteamdistributionsystem.Underthelowpressuresteamdistributionline,youwillseethelowpressureendusercomponentloadsidentifiedasarectangulargraphicandarrowsenteringandleavingtherectangle,indicatingheatexchangewiththecomponents.Theendusecomponentsdischargecondensatethroughasteamtrap,representedbyanotherrectangulargraphic.Schematically,condensatepassesthroughthebottomofthetrapandrecoveredinacondensatetank,inwhichsteamisventedrepresentedbyaverticalarrowleavingthetopofthetank.Thelowpressureendusercondensatetankusesapump,whichisdenotedbyacircle/squarecombination,todeliverthecondensatetothemaincondensatereceiver,whichisalargerectanglewiththreeinputsdenotedbythreearrowsatthetopoftherectangle.Thecondensateentersthismaincondensatereceivertank,afteritpassesthroughacontrolvalve,denotedasanhourglassshapewithadomeontop.Thethirdcondensateinputcomesfromthecondensatefromtheheatexchangerthatutilizesthehighpressuresteamturbine.Thecondensateleavesthisheatexchangerandisdeliveredviaapump(denotedasacircle/squarecombination)tothemaincondensatereceiver.

  • DOEs BestPractices Steam End User Training

    IntroductionModule12June28,2010

    SteamEndUserTraining

    Themaincondensatereceiverthenpumps(denotedbyacircle/squarecombination)thehighpressurecondensate,lowpressurecondensate,andthecondensingsteamturbinecondensatetothedeaeratortankasdenotedbytworedrectangles,withthesmalleroneonthetop.Thetoprectanglealsoshowstwotriangles,eachpointedawayfromeachother,longestendsnearlytouching.Thebottomtriangleisconnectedtoacontrolvalverepresentedbyaredhourglassfigurewithadomeontheside,whichprovideslowpressuresteamtothedeaeratorfromthelowpressuresteamdistributionsystemtopreheatthecollectedcondensateandmakeupwater.Preheatedmakeupwateralsoschematicallyentersatthetopofthedeaeratorwiththecollectedcondensate.Themakeupwaterispreheatedfromtheboilerblowdownandlowpressuresteam.Boilerblowdownfromeachboilerisnotedasreddashedlinesleadingtoablowdownreceivertankdenotedasaredrectangleontherightofthescreen.Flashsteamisdivertedfromtheblowdownflashvesseltothelowpressuresteamdistributionline,alsodenotedinreddashedlines.Liquidfromtheblowdownflashtankthenschematicallyentersthetopofaheatexchanger(representedasawhiteandgreenstripedrectangle).Makeupwaterisshownenteringtheheatexchangerfromtheright,afteritpassesthroughthewatertreatmentequipment,denotedastworedrectanglesfurtherontheright.Theliquidexitingtheheatexchangerissenttothedeaerator.

    Slide15SteamSystemComplexThesteamsystemmayincludecondensingsteamturbinesandothermajorcomponents.However,nomatterhowcomplexorsimplethesteamsystemsare,themanagementandinvestigationactivitiesarebasicallythesameweneedthesametoolsandfundamentalknowledge.

    [SlideVisualSteamSystemImpactSchematic]

    Thisschematicrepresentsathreepressureheadersteamsystemwithmultipleboilersandallofthesystemcomponents.Feedwaterispreheatedbysteaminjectionfromthelowpressuresteamdistributionheader,aswellaspreheatedmakeupwaterutilizingboilerblowdownheatrecovery.

    ThetopoftheschematicshowstheBoilerFeedwaterenteringthetwoboilers.Thetwoboilersareconnectedtothehighpressuresteamdistributionheader.

    Thesteamexitstwoboilersandentersthehighpressuresteamsystemdistributionheader,indicatedbyalinebelowtheboilers.

    Underthehighpressuresteamdistributionline,youwillseethreeconeshapedgraphics,thatrepresentthesteamturbines.Theonenearesttotheleftisahighpressuretocondensingturbine.Thisturbinedischargestothecondenserrepresentedbythebluecirclebelowtheturbine.Therectangulargraphictotherightoftheconeshapedgraphicindicatestheelectricalgenerationcomponentofthesteamturbine.Theturbineinthemiddlereceiveshighpressuresteamandexhaustslowpressuresteamtothelowpressuresteamdistributionsystem,aswellasgenerateselectricity.Thisturbineisdenotedasredconeandrectanglecombination.Thesteamturbinetothemostrightreceiveshighpressuresteam,drivesapump(denotedasacircle/squarecombination)andisalsocalledasteamturbinedrivenpump,thendischargestothelowpressuresteamdistributionsystemheader.Betweenthecondensingturbineandthehightolowpressureturbine,alightbluetriangulargraphicthatrepresentsapressurereducingvalve,whichdischargestothelowpressuresteamdistributionheader,identifiedbyaredlinebelowtheturbines.

  • DOEs BestPractices Steam End User Training

    Atthefarrightofthehighpressuresteamdistributionsystem,thehighpressureendusercomponentloadsareidentifiedthrougharectangulargraphicandarrowsenteringandleavingtherectangle,indicatingheatexchangewiththecomponents.Theendusecomponentsdischargecondensatethroughasteamtrap,representedbyarectangulargraphic.Schematically,condensatepassesthroughthebottomofthetrapandrecoveredinacondensingtankwhichisalsoconnectedtothelowpressuresteamdistributionsystem.

    SteamEndUserTrainingIntroductionModule13

    June28,2010

    Underthelowpressuresteamdistributionline,youwillseethelowpressureendusercomponentloadsidentifiedasarectangulargraphicandarrowsenteringandleavingtherectangle,indicatingheatexchangewiththecomponents.Theendusecomponentsdischargecondensatethroughasteamtrap,representedbyanotherrectangulargraphic.Schematically,condensatepassesthroughthebottomofthetrapandrecoveredinacondensatetank,inwhichsteamisventedrepresentedbyaverticalarrowleavingthetopofthetank.Thelowpressureendusercondensatetankusesapump,whichisdenotedbyacircle/squarecombination,todeliverthecondensatetothemaincondensatereceiver,whichisalargerectanglewiththreeinputsdenotedbythreearrowsatthetopoftherectangle.Thecondensateentersthismaincondensatereceivertank,afteritpassesthroughacontrolvalve,denotedasanhourglassshapewithadomeontop.Thethirdcondensateinputcomesfromthecondensatefromtheheatexchangerthatutilizesthehighpressuresteamturbine.Thecondensateleavesthisheatexchangerandisdeliveredviaapump(denotedasacircle/squarecombination)tothemaincondensatereceiver.Themaincondensatereceiverthenpumps(denotedbyacircle/squarecombination)thehighpressurecondensate,lowpressurecondensate,andthecondensingsteamturbinecondensatetothedeaeratortankasdenotedbytworedrectangles,withthesmalleroneonthetop.Thetoprectanglealsoshowstwotriangles,eachpointedawayfromeachother,longestendsnearlytouching.Thebottomtriangleisconnectedtoacontrolvalverepresentedbyaredhourglassfigurewithadomeontheside,whichprovideslowpressuresteamtothedeaeratorfromthelowpressuresteamdistributionsystemtopreheatthecollectedcondensateandmakeupwater.Preheatedmakeupwateralsoschematicallyentersatthetopofthedeaeratorwiththecollectedcondensate.Themakeupwaterispreheatedfromtheboilerblowdownandlowpressuresteam.Boilerblowdownfromeachboilerisnotedasreddashedlinesleadingtoablowdownreceivertankdenotedasaredrectangleontherightofthescreen.Flashsteamisdivertedfromtheblowdownflashvesseltothelowpressuresteamdistributionline,alsodenotedinreddashedlines.Liquidfromtheblowdownflashtankthenschematicallyentersthetopofaheatexchanger(representedasawhiteandgreenstripedrectangle).Makeupwaterisshownenteringtheheatexchangerfromtheright,afteritpassesthroughthewatertreatmentequipment,denotedastworedrectanglesfurtherontheright.Theliquidexitingtheheatexchangerissenttothedeaerator.Theheatedboilerfeedwaterschematicallyexitsthedeaeratorfromthebottomandispumped(denotedasacircle/squarecombination)tothefeedwaterinletsofeachboiler,nearthetoptheschematic.

    Slide16FocusAreasWhenassessingoursteamsystem,wemustevaluatethesystemasawhole;but,wewillberequiredtoanalyzemanycomponentsindividuallythendeterminetheirimpactonthesystem.Therearemanydifferentcomponentsandsubsystemsassociatedwiththesteamsystem.Weaskquestionslike,howcanweimproveboilerefficiency?Howcanwereducesteamconsumption?Whatenergyresourcesareavailabletous?Howcanweloselessenergythroughoutthesystem?

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule14

    June28,2010

    [SlideVisualSteamSystemFocusAreas]SteamSystemFocusAreas SteamGenerationEfficiency ResourceUtilizationEffectiveness DistributionSystemlosses

    Slide17SteamGenerationEfficiencyForexample,wewillfocusourattentionontheboilerandaskquestionslike:

    Whataretheperformancecharacteristicsofourboiler? Whatarethecriticalmeasurementsrequiredtomanageboilerperformance? Howcanweimpactboilerefficiency?

    [SlideVisualSteamGenerationEfficiency]SteamGenerationEfficiency Boilerefficiencyisamajorfactordeterminingtheoperatingcostsofasteamsystem Severalmajorfactorsimpactboilerperformance Whataretheefficiencycontrolparameters? Aretheymaintainedatappropriatelevels?

    Slide18ResourceUtilizationWefocusourattentionontheenduseequipmentandtheenergyresourcesweemployinoursystems.Weinvestigateopportunitiestorecoverenergyfromprocessunits.Wetargetopportunitiestoreducesteamuse.Significantfocusisplacedonimprovingtheperformanceofourendusesystems.Cogenerationinvestigationsidentifypotentialstoconvertsteamenergyintopower.Weinvestigateopportunitiesusealternativeenergysources.

    [SlideVisualResourceUtilizationEffectiveness]ResourceUtilizationEffectiveness Steamisgeneratedformanypurposes Steamcanoftenbegeneratedfromdifferentprimaryenergysources Multipleenergyexportscanbedevelopedfromoneenergyresource Areresourcesbeingproperlyutilized? Isthesteamenduseappropriateorinappropriate?

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule15

    June28,2010

    Slide19SteamDistributionSystemLossesSteamsystemsareoftenverylarge,extendingintomanyprocessareas.Weexaminehowenergycanbelostfromthedistributionsystem?Wetrytoidentifyopportunitiestoreducethelosses?Wefocusattentiononrecoveringenergyfromthedistributionsystem.

    [SlideVisualSteamDistributionSystemLosses]SteamDistributionSystemLosses

    Thedistributionsystemcanexperiencesignificantlosses Whatarethemainavenuesofloss? Whatmethodsareavailabletoreducethelosses?

    Slide20DrivingForceQuestionInmoststeamsystemsthereareopportunitiesthatwillallowenergyconsumptiontobereduced.Ifatyourfacilityideasaredevelopedtoreduceenergyconsumption,whatwillbetheprimaryreasonthattheinitiativewillbeimplemented?

    [SlideVisualDrivingForce]Whatisthemaindrivingforceforchange??

    Slide21DrivingForceEconomicsEconomicimpactistheprimarydrivingforceforchange.Oneofourprimaryfocalpointsinthiscourseistoidentifyhowtoaccuratelyconnectarealworldsteamsystemchangetothetrueeconomicimpactitwillprovide.

    [SlideVisualDrivingForce]Whatisthemaindrivingforceforchange??

    Answer:$Slide22DrivingForceMoreEnergysavings,oftenfuelsavings,aredominantpointsoffocusresultingineconomicimpact.However,wedonotwanttolosesightofothereconomicfactors;suchas,maintenanceimpacts,reliabilityfactors,siteproductivity,productquality,environmentalimpact,andpotentiallyavoidingcostlysystemmodifications.Alloftheseissueshaveeconomicconnectionssometimesitisdifficulttoestablishthetrueeconomicimpactoftheseitems.Someoftheseimpactsmayresultinincreasedcost.Wemustattempttoaccuratelyandrealisticallyidentifythetrueeconomicimpactsandimplementationcostsassociatedwithanopportunity.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule16

    June28,2010

    [SlideVisualDrivingForce]

    Whatisthemaindrivingforceforchange??

    Answer:$ Energy Reliability Maintenance Productivity Quality Costavoidance Emissionsreductions

    Slide23MeasureManagementofanyresourcerequiresmeasurements.Throughoutthiscoursewewillidentifythecriticalmeasurementsthatallowustounderstandhowoursystemsareperformingandhowmuchimprovementhasbeenorcanbeaccomplished.

    [SlideVisualMeasure]Youarenotmanagingwhatyoudonotmeasure.

    Slide24StarttheInvestigationEvaluatingsteamsystemsrequiresabroadrangeofknowledgeandsignificantskillsset.Itcanbeverydifficulttodeterminewherebesttostartinvestigating.Oftenobtainingabroadoverviewofthesystemandtheoperatingpracticeswillleadtoimportantinvestigationstrategies.Slide25SSST1Investigatingsteamsystemsoftenbeginswithtakingabroadviewofthesystemandidentifyingareastoinvestigatethatmayyieldfruitfulresults.TheSteamSystemScopingTool(knownasSSST)isdesignedtohelpyouidentifythesepotentiallyfruitfulareas.

    [SlideVisualSteamSystemScopingTool]

    SteamSystemScopingTool(SSST)OrangeBannerwithindustrialplantgraphicinbackground

    OfficeofIndustrialTechnologiesBestPracticesEnergySmartTechnologyforTodaySteamSystemScopingToolVersion2.0.0December2002

  • DO

    UnitedStatesDepartmentofEnergy

    Es BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule17

    June28,2010

    Clickanywhereonthisframetobegintheassessment.

    Slide26ScopingTool2TheSteamSystemScopingToolisavailablefreeasanExcelbasedsoftwaretool.SSSTisnotacalculationtoolorasolutionevaluationtool;rather,itisatoolusedtohelptheusertobecomemoreawareofareasofthesteamsystemthatcanbeimproved.Thetoolisbasicallyaquestionnairethatasksgeneralquestionsaboutthemanagementpracticesofthesteamsystem.Questionsareprovidedforeachareaofthesteamsystem.Theresultsofapplyingthistoolarerelativescoresfortheperceivedperformanceofeachareaofthesystem.Thesescoresprompttheusertoinvestigatecertainareasofthesteamsystemfurther.Slide27SSSTProfilingForexampletheScopingToolasksquestionsabouttheintensityoffuelandsteammeasurements.Basedontheusersinputascoreisdevelopedforeachcategory.ThescoresshownhereareaveragescoresforasectorofU.S.industry.

    [SlideVisualSSSTScorecardSystemProfiling]

    SUMMARYRESULTS

    SCOPINGTOOLQUESTIONSPOSSIBLESCORE

    TYPICALSCORE

    1.STEAMSYSTEMPROFILING STEAMCOSTS SC1:MeasureFuelCostToGenerateSteam 10 7.5SC2:TrendFuelCostToGenerateSteam 10 6.9STEAM/PRODUCTBENCHMARKS BM1:MeasureSteam/ProductBenchmarks 10 5.6BM2:TrendSteam/ProductBenchmarks 10 5.7STEAMSYSTEMMEASUREMENTS MS1:Measure/RecordSteamSystemCriticalEnergyParameters

    30 22.5

    MS2:IntensityOfMeasuringSteamFlows 20 8.5STEAMSYSTEMPROFILINGSCORE 90 56.7STEAMSYSTEMPROFILINGSCORE 100% 63%

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule18

    June28,2010

    Slide28SSSTSystemOperationsQuestionstargetingsteamtrapmanagementandinsulationconditionprompttheusertoinvestigatethesevitalareasofsteamsystemmanagement.Again,thescoresnotedherearereflectiveofaveragescoresforasectorofU.S.industry.

    [SlideVisualSSSTScorecardSystemOperations]BM2:TrendSteam/ProductBenchmarks 10 5.7STEAMSYSTEMMEASUREMENTS MS1:Measure/RecordSteamSystemCriticalEnergyParameters

    30 22.5

    MS2:IntensityOfMeasuringSteamFlows 20 8.5STEAMSYSTEMPROFILINGSCORE 90 56.7STEAMSYSTEMPROFILINGSCORE 100% 63%

    SCOPINGTOOLQUESTIONSPOSSIBLESCORE

    TYPICALSCORE

    2.STEAMSYSTEMOPERATINGPRACTICES STEAMTRAPMAINTENANCE ST1:SteamTrapMaintenancePractices 40 23.9WATERTREATMENTPROGRAM WT1:WaterTreatmentEnsuringFunction 10 8.6WT2:CleaningBoilerFireside/WatersideDeposits 10 7.1WT3:MeasuringBoilerTDS,Top/BottomBlowdownRates

    10 7.7

    SYSTEMINSULATION IN1:InsulationBoilerPlant 10 8.6IN2:InsulationDistribution/EndUse/Recovery 20 14.0STEAMLEAKS

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule19

    June28,2010

    Slide29SSSTBoilerOperationsBoilerefficiencyandcontrolcomponentsareprimarypointsoffocusintheScopingTool.Boilerblowdownissuesarealsoofconcern.

    [SlideVisualSSSTScorecardBoilerOperations]

    SCOPINGTOOLQUESTIONSPOSSIBLESCORE

    TYPICALSCORE

    3.BOILERPLANTOPERATINGPRACTICES BOILEREFFICIENCY BE1:MeasuringBoilerEfficiencyHowOften 10 6.3BE2:FlueGasTemperature,O2,COMeasurement 15 9.4BE3:ControllingBoilerExcessAir 10 7.1HEATRECOVERYEQUIPMENT HR1:BoilerHeatRecoveryEquipment 15 8.5GENERATINGDRYSTEAM DS1:CheckingBoilerSteamQuality 10 4.2GENERALBOILEROPERATION GB1:AutomaticBoilerBlowdownControl 5 2.6GB2:FrequencyOfBoilerHigh/LowLevelAlarms 10 8.6GB3:FrequencyOfBoilerSteamPressureFluctuations 5 3.9

    BOILERPLANTOPERATINGPRACTICESSCORE 80 50.6BOILERPLANTOPERATINGPRACTICESSCORE 100% 63%

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule20

    June28,2010

    Slide30SSSTEndUseOfcoursecondensaterecoverypracticesareamajorpointofconcern.Thetoolfocusessomeattentiontothepotentialofusingbackpressuresteamturbines.

    [SlideVisualSSSTScorecardEndUse]

    SCOPINGTOOLQUESTIONSPOSSIBLESCORE

    TYPICALSCORE

    4.STEAMDISTRIBUTION,ENDUSE,RECOVERYOPERATINGPRACTICES

    MINIMIZESTEAMFLOWTHROUGHPRVs PR1:OptionsForReducingSteamPressure 10 7.4RECOVERANDUTILIZEAVAILABLECONDENSATE CR1:RecoveringAndUtilizingAvailableCondensate 10 6.4USEHIGHPRESSURECONDENSATETOMAKELOWPRESSURESTEAM

    FS1:RecoveringAndUtilizingAvailableFlashSteam 10 3.7DISTRIBUTION,ENDUSE,RECOVERYOP.PRACTICESSCORE 30 17.5DISTRIBUTION,ENDUSE,RECOVERYOP.PRACTICESSCORE 100% 58%

    Slide31SSSTResultsTheoutputofthetoolisanoverallscoreandindividualareascores.Solutionsarenotofferedsimplyalowscorepromptstheusertoinvestigatefurtherandpotentiallyidentifyimprovementopportunities.Inmoststeamsystemsthereareinterestinginvestigationopportunitiesinseveralareas.Typicaloverallscoresforindustrialplantsareinthe60%and70%ranges.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule21

    June28,2010

    [SlideVisualSSSTScorecardResults]

    SUMMARYOFRESULTS

    SCOPINGTOOLAREASPOSSIBLESCORE

    TYPICALSCORE

    STEAMSYSTEMPROFILING 90 63%STEAMSYSTEMOPERATINGPRACTICES 140 69%BOILERPLANTOPERATINGPRACTICES 80 63%DISTRIBUTION,ENDUSE,RECOVERYOP.PRACTICES 30 58%

    TOTALSCOPINGTOOLQUESTIONAIRESCORE 340 222.0TOTALSCOPINGTOOLQUESTIONAIRESCORE 100% 65%

    Slide32SSSTNextStepsThetoolprovidesguidanceintowheretofindadditionalinformationforaparticulararea.TheScopingToolwillpointtheusertoadditionalU.S.DOEresources.

    [SlideVisualNextStepsDirectedbySSST] Focusonareasrequiringattention Investigateresources

    ConsulttheU.S.DOEBestPracticeswebsite www1.eere.energy.gov/industry/bestpractices

    SteamSystemSurveyGuide U.S.DOESteamTipSheets

    ImprovingSteamSystemPerformance:ASourcebookforIndustry UsetheSteamSystemAssessmentTool(SSAT) UseInsulationTool(3EPlus)\

    Slide33GeneralToolsManytoolsarerequiredtoevaluatesteamsystems.TheSteamSystemScopingToolisoneofmanytoolsthatcanbeemployedtoinvestigatesteamsystems.TheothertoolsintheU.S.DOESteamToolsSuitewillbeintroducedinthiscourseaswellasthefundamentaltechniquesusedtoinvestigateandmanagesteamsystems.Themostimportanttoolsarethefundamentalprinciplesofphysicsandtherealsystemmeasurementsrequiredtoemploythem.TheU.S.DOESteamToolsareextensionsofthesevitalcomponents.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingIntroductionModule22

    June28,2010

    Slide34InformationAdditionaltechnicalresourcesareavailablefromtheDepartmentofEnergy.

    [SlideVisualAdditionalTechnicalResources]

    Information

    Programs IndustrialTechnologiesProgram(ITP) BestPracticesSteamProgram

    Softwaretools

    http://www1.eere.energy.gov/industry/bestpractices/steam.html

    (877)3373463 http://www1.eere.energy.gov/industry/bestpractices/software.html

    SteamPublications http://www1.eere.energy.gov/industry/bestpractices/techpubs_steam.html

    Training

    TechnicalAssistancehttp://www1.eere.energy.gov/industry/bestpractices/training.html

    http://www1.eere.energy.gov/industry/bestpractices/info_center.htmlSlide35IntroductionSummarySteamsystemsarecomplexarrangementsofinterconnectedcomponentsthatrequiretremendousamountsofenergyandeconomicexpenditure.Propermanagementofasteamsystemisvitaltoeffectivelyutilizeenergyresources.Toolsareavailabletohelpinthisinvestigationandmanagementprocess.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationModule

    BoilerEfficiency1June28,2010

    SteamEndUserTrainingSteamGenerationEfficiencyModule

    EfficiencyDefinitionSection

    Slide1SteamGenerationEfficiencyModule

    Thismodulewilldiscusssteamgenerationefficiencyandtheprimaryfactorsthataffectit..Thegeneralconceptsofboilerefficiencywillbediscussed.

    [SlideVisualEfficiencyDefinitionTitlePage]

    DOEsBestPracticesSteamEndUserTraining

    Steam iencyGenerationEffic

    EfficiencyDefinitionShellLosses

    BlowdownLossesStackLosses

    Slide2BoilerTypes

    Therearemanytypesofboilers,buttheprimaryboilerdesignationsarefiretubeboilersandwatertubeboilers.Afiretubeboilerisoneinwhichthecombustiongasesareinsidethetubes.Thisschematicdepictsa3passfiretubeboiler,inwhichwehaveacombustionzone,andsmallertubesthatallowmoreheattransferfromtheexhaustgases.Firetubeboilersservedasourfirstindustrialsteamgenerators.Thelargediameterpressurevesselholdsallofthestressofthehighpressuresteam.Asindustrialrequirementsnecessitatedhigherpressuresteamandgreatersteamflowrates,thevesselhadtobecomelargerandthewallofthevesselhadtogetthickertoaccommodatethestressofgreaterpressures.Thesefactorsmadeboilermanufacturingdifficultandexpensive.Asaresult,watertubeboilersweredeveloped.Theseboilerscontainhundredsoftubesthatholdthehighpressuresteamandwater.Theserelativelysmalldiametertubescanaccommodatethestressofmuchhigherpressuresthanthelargediametervessel.

    Watertubeboilersallowthecombustiongasestoprovideheattransfertothewater(andsteam)thatiscontainedinthetubesoftheboiler.Acommonwatertubeboilerarrangementwillincorporateanuppersteamdrumthatallowstheliquidwaterandsteamtoseparate.Alowerdrum,oftencalledamuddrum,willserveasthelowercollectionheaderforthetubes.Hundredsofrelativelysmalldiametertubeswillconnectthemuddrumtothesteamdrum.Asthewaterheatsandboilingoccursthefluidrisesinthetubestothesteamdrum.

  • DOEs BestPractices Steam End User Training

    eamEndUserTrainingSteamGenerationModule

    BoilerEfficiency2June28,2010

    St

    [SlideVisualBoilerTypes(FireTubeandWaterTube)]Thisschematicdepictsa3passfiretubeboiler,inwhichwehaveacombustionzone(atthebottom),andsmallertubesthatallowmoreheattransferfromtheexhaustgases.Thepressurevesselholdsallofthestressofthehighpressuresteam.

    Watertubeboilersallowthecombustiongasestoprovideheattransfertothewater(andsteam)thatiscontainedinthetubesoftheboiler.Atypicalwatertubeboilerarrangementwillincorporateanuppersteamdrumthatallowstheliquidwaterandsteamtoseparate.Alowerdrum,oftencalledamuddrum,willserveasthelowercollectionheaderforthetubes.Hundredsofrelativelysmalldiametertubeswillconnectthemuddrumtothesteamdrum.Asthewaterheatsandboilingoccursthefluidrisesinthetubestothesteamdrum.

    Slide3FireTubeBoiler

    Generally,firetubeboilersaredesignedforlowerpressureandlesscapacitythanwatertubeboilersbuttheiroperatingrangesoverlap.Atypicalfiretubeboilermighthaveasteamproductionrateof5,000poundsperhour,whileatypicalwatertubeboilermighthaveasteamproductionrateof200,000poundsperhour.Firetubeboilersproducesaturatedsteaminmostallcases.

    [SlideVisualaFireTubeBoiler]Thisschematicdepictsa3passfiretubeboiler,inwhichwehaveacombustionzone(atthebottom),andsmallertubesthatallowmoreheattransferfromtheexhaustgases.Thepressurevesselholdsallofthestressofthehighpressuresteam.

    Slide4WaterTubeBoiler

    Watertubeboilerscanproducesaturatedsteamortheycanbeequippedwithasuperheaterinternaltotheboiler.Fromthestandpointsofmanagement,investigation,andimprovement,knowingthedifferencesbetweenthetwoboilertypesisnotessentialbecausetheygenerallyworkthesame.Therearenosignificantefficiencyrelatedreasonstochooseonetypeofboilerortheother.Thereasonsforchoosingoneortheotherareusuallyrelatedtotherelativecostforthegivenpressureandsteamproductionrequirements.

    [SlideVisualaWaterTubeBoiler]Watertubeboilersallowthecombustiongasestoprovideheattransfertothewater(andsteam)thatiscontainedinthetubesoftheboiler.Atypicalwatertubeboilerarrangementwillincorporateanuppersteamdrumthatallowstheliquidwaterandsteamtoseparate.Alowerdrum,oftencalledamuddrum,willserveasthelowercollectionheaderforthetubes.Hundredsofrelativelysmalldiametertubeswillconnectthemuddrumtothesteamdrum.Asthewaterheatsandboilingoccursthefluidrisesinthetubestothesteamdrum.

  • DOEs BestPractices Steam End User Training

    eBoilerEfficiency3

    June28,2010

    SteamEndUserTraininSteamGenerationModul

    g

    Slide5CommonFuels

    ThistablecontainsinformationconcerningthemostcommonfuelsusedintheUnitedStatesandthroughouttheword.Naturalgasandnumber2fueloilaregenerallyconsideredveryeasyfuelstoutilize.Theheavierfueloils,likenumber6fueloilareverycommon;but,aremoredifficulttohandle.Number6fueloilisgenerallyasolidatroomtemperatureandisheatedtomorethan200Ftobepumpedtotheboilerburner.Solidfuelslikecoalandgreenwoodaremuchmoredifficulttohandleandstore.Solidfuelsgenerallycontainaportionofnoncombustiblematerialcalledashthatmustbedisposedofafterthecombustionprocess.

    Greenwoodisadominantfuelinthepulpandpaperindustrybecausetheygenerateasignificantamountofwastewoodmaterials.Itshouldbenotedthatgreenwoodistypicallybarkandtreecomponentsthatwererecentlyapartofalivetree.Thisfactisimportantbecauselivetreesareessentiallyhalfliquidwatergreenwoodasafuelisnominally50%liquidwater.

    TheunitcostsidentifiedinthistablearereflectiveoftheaverageU.S.fuelcostsfor2005.Thisinformationisunderstandablynotcurrent;but,itisreflectiveofthecommondifferencesinfuelprices.Itiscommonfortheenergybasedcostofnaturalgastobefourtimesgreaterthantheenergybasedcostofcoalorevenmore.Fueloilpricescanbeevenhigher.Thisisadominantreasonwhyweusecoal.

    Itshouldbenotedthatthereissignificantvolatilityinthefuelmarket.

    [SlideVisualCommonFueltable]

    TypicalFuelProperties Sales ExamplePrice HHV UnitPrice

    Fuel Unit [$/s nit]alesu [Btu/lbm] [$/ u]10BtNaturalGas 10stdft 7.00 23,311 7.00Number2FuelOil gallon 1.80 19,400 12.92Number6Oil(LS) gallon 1.20 18,742 7.82Number6Oil(HS) gallon 1.00 18,815 6.62EasternCoal ton 45.00 13,710 1.64WesternCoal ton 30.00 10,088 1.49GreenWood ton 11.00 5,250 1.05

    Slide6BoilerExample

    Throughoutthistrainingwewilluseanexamplesteamsystemthatreflectsasteamsystemwithrealworldcharacteristics.Thisexamplesystemwillhelpusillustratetheimportanceandusefulnessoftoolsandinvestigationspresentedinthistraining.Throughoutthiscoursewewilldiscussalltheaspectsofthissteamsystem;but,wewillstartbylookingatoneoftheboilersservingthisexamplesite.

    Forthisexampletheboilerisproducing100,000poundsperhour,of400PSIG,700degreeFahrenheitsteamfromthecombustionofnaturalgas.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationModule

    BoilerEfficiency4June28,2010

    Thisboilerisequippedwithafuelflowmeterandthecostofthefuelistakenas$10/106Btu.

    [SlideVisualWaterTubeBoiler]Watertubeboilersallowthecombustiongasestoprovideheattransfertothewater(andsteam)thatiscontainedinthetubesoftheboiler.Atypicalwatertubeboilerarrangementwillincorporateanuppersteamdrumthatallowstheliquidwaterandsteamtoseparate.Alowerdrum,oftencalledamuddrum,willserveasthelowercollectionheaderforthetubes.Hundredsofrelativelysmalldiametertubeswillconnectthemuddrumtothesteamdrum.Asthewaterheatsandboilingoccursthefluidrisesinthetubestothesteamdrum.

    Slide7CaseStudy

    Thisdatawillprovideenoughinformationtocalculatethefuelrelatedoperatingcostoftheboiler.

    [SlideVisualOperatingCost]

    Boilerfiredwithnaturalgaswhichhasahigherheatingvalueof23,311Btu/lbmHHVis1,000Btu/sftSteamconditions:400psig,700FOutput:100,000lbm/hr(steady)Rating:120,000lbm/hr(maximumcontinuous)Feedwater:600psig,242FFuelsupply:149,000sft/hr(2,480sft/min)Fuelcost:$10.00/10Btu($10.0/10sft)Determinetheoperatingcostoftheboiler

    Slide8BoilerOperatingCost

    Thefuelrelatedoperatingcostofthisexampleboileris$13,000,000/yr.Itshouldbenotedthatthisexampleboilercanbeconsideredatypicalindustrialboiler.Thefuelisnaturalgas,whichisoneofthesimplestfuelstoburn.Itisinterestingtonotethatthecharacteristicsofthisboilerarenotextreme;inotherwords,theboilerisproducingamoderateamountofsteamundertypicalconditions.Additionally,whilethefuelcostmaynotbeexactlyrepresentativeofthefuelcostsatagivenfacilitythisexamplecostisnotextraordinary.Thecharacteristicsofthisboilerareeasilyscalabletomostboilers.Itshouldalsobenotedthattheinvestigationandimprovementtechniquesrequiredtomanagethisexampleboilerarethesametechniquesavailabletoallboilers.Alongwiththisisthefactthatthisexampleboilerisarealboilerthatappropriatelyrepresentsthetypesofopportunitiespotentiallyavailabletomanyboilers.Boilersareextremelyexpensivecomponentsthisisthereasonweareinterestedinthem.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationModule

    BoilerEfficiency5June28,2010

    [Slide u al ion]Vis alC culat

    Kboiler=Vfuelxkfuelxoperation

    Boileroperatingcostsequalsthecostoffuelperhourperhourmultipliedbythecostofthefuelpercubicfootmultipliedbythehoursofoperation

    AbbreviationsK=BoilerOperatingCostsV=VolumeflowofFuelperHourk=CostofFuelperCubicFoot=Operatingperiod

    Slide9OperatingCost

    Thecostoffuelforatypicalboilerissolargethatevenverysmallchangesinefficiencycanrepresentsignificantcostimpact.A1%improvementinefficiencyfortheexampleboilerrepresentsapproximately$130,000/yroffuelsavings.

    Thereareothercostfactorsassociatedwithboileroperationswatertreatmentcosts,auxiliaryequipmentcosts,maintenancecosts,andoperationscosts;however,thesecoststypicallycombinetobesignificantlylessthanthecostoffuelfortheboiler.Eachcostfactorshouldbeinvestigated;but,fuelcosttypicallydominates.

    Inthisexampleboilerinvestigationwewillidentifyrealworldmethodsthatwillreducethefuelconsumptionofthisboilermorethan7%,whichrepresentsmorethan$1,000,000/yr.

    [SlideVisualSavingsCalculation1]

    0.01x$13,000,000/yr$130,000savings!

    Inthisequation,KequalsBoilerOperatingCost,VequalsCostoffuelperhour,KequalsCostoffuelpercubicfoot,andTequalsHoursofOperation.

    Calculationsareoftenthoughtofasacademicexercises;however,inthecaseofmanagingboilerperformanceandcost,evaluatingboilerefficiencyisoneofthemostimportantandpracticaltoolsavailabletous.Toillustratetheimportanceandusefulnessofboilerefficiency,wewillexaminetheefficiencyofanexampleboiler.Wewillalsoexplorethemajorfactorsthatimpacttheefficiencyandoperatingcostofaboiler.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationModule

    BoilerEfficiency6June28,2010

    [SlideVisualOperatingCost]

    Boilerfiredwithnaturalgaswhichhasahigherheatingvalueof23,311Btu/lbmHHVis1,000Btu/sftSteamconditions:400psig,700FOutput:100,000lbm/hr(steady)Rating:120,000lbm/hr(maximumcontinuous)Feedwater:600psig,242FFuelsupply:149,000sft/hr(2,480sft/min)Fuelcost:$10.00/10Btu($10.0/10sft)Operatingcost:13,000,000$/yrAsmallchangeinboilerefficiency(even1%)canrepresentasignificanteconomicimpactOtheroperatingcostsinclude:WatertreatmentBoilerfeedpumpsFluegasconditioningMaintenance(personnel,services,equipment)Typicallythesecostscombinetobemuchlessthanfuelcosts

    Slide10EfficiencyDefinition

    Calculationsareoftenthoughtofasacademicexercises;however,inthecaseofmanagingboilerperformanceandcost,evaluatingboilerefficiencyisoneofthemostimportantandpracticaltoolsavailabletous.Toillustratetheimportanceandusefulnessofboilerefficiency,wewillexaminetheefficiencyofanexampleboiler.Wewillalsoexplorethemajorfactorsthatimpacttheefficiencyandoperatingcostofaboiler.

    [SlideVisualEfficiencyDefinitionTitlePage]

    DOEsBestPracticesSteamEndUserTraining

    SteamGenerationEfficiency

    Effici tionencyDefiniShellLosses

    BlowdownLossesStackLosses

  • DOEs BestPractices Steam End User Training

    eamEndUserTrainingSteamGenerationModule

    BoilerEfficiency7June28,2010

    St

    Slide11DefineBoilerEfficiency

    Boilerefficiencyisawaytodeterminehowmuchfuelenergyaboilerconvertsintosteamenergy.Steamenergyisthedesiredcommodityandfuelenergyisthepurchasedcommodity.Theequationshownhereisasimplifieddescriptionoftheenergyefficiencyofaboilerexpressedintermsoffuelenergyintotheboilerandsteamenergyoutoftheboiler.

    Thefuelenergysuppliedtotheboilerisdeterminedbymultiplyingthefuelflowratebythefuelenergycontent.Fuelenergycontentisdescribedintermsoftheheatingvalueofthefuel,whichisanexpressionofthethermalenergythatisreleasedwhenthefuelisburned.ThemaximumthermalenergythatcanbereleasedwhenafuelisburnedisidentifiedasthefuelHigherHeatingValueorHHVofthefuel.Thefuelheatingvalueisdeterminedbylaboratoryanalysis.

    [SlideVisualEfficiencyEquation1]n =energydesiredboiler /x(100)energythatcostsTheboilerefficiencyisequaltotheenergydesireddividedbytheenergythatcosts.

    Theenergydesiredistheenergyaddedtothesteamasitpassesthroughtheboiler.Steamenergyisdeterminedbymultiplyingthesteamproduction(ormassflowrate)bythespecificenergyaddedtothesteamasitpassesthroughtheboiler.Wedescribetheenergycontentofthesteamastheenthalpyofthesteam(hintheequation)enthalpyisthethermodynamicpropertydescribingtheamountofenergyresidinginthematerial.Theenergyaddedtothesteamintheboileristhedifferenceinenthalpyofthesteamleavingtheboilerversusthefeedwaterenteringtheboiler.Enthalpyvaluesareobtainedfromthermophysicalpropertydatasetsandfieldmeasurementslikesteamtemperatureandpressure.

    [SlideVisualEfficiencyEquation2]n =mboiler steam(hsteamhfeedwater)/

    mfuelHHVfuelBoilerefficiencyisequaltothemassflowrateofthesteammultipliedbythedifferenceintheenthalpyofthesteamandtheenthalpyofthefeedwater;,dividedbythemassflowofthefuelmultipliedbythehigherheatingvalueofthefuel.

    Enthalpyenergyofasubstancethatcanbeconvertedintoheat,work,andotherformsofenergy.

    Fuelenergyisdeterminedbymultiplyingthefuelconsumptionratebythefuelenergycontent,alsoknownastheheatingvalue.

  • DOEs BestPractices Steam End User Training

    BoilerEfficiency8June28,2010

    SteamEndUserTrainingSteamGenerationModule

    Ab ationsbr vienboiler =Efficiencyoftheboiler,alsocalledcombustionefficiency,overallefficiency(dimensionless)mste =massflowrateofsteamgeneratedintheboiler(lbm/hr)ammfuel =massflowrateoffuelburned(lbm/hr)h =Enthalpyisenergycontentofasubstance(Btu/lbm)HHV =HigherHeatingValueoffuel(Btu/lbm)

    AnalternateexpressionfortheenergycontentofthefuelisidentifiedastheLowerHeatingValue(LHV).Mostcommonfuelsarecomposedprimarilyofcarbonandhydrogen.Theseelementsreactwithoxygeninthecombustionprocessandprimarilyformcarbondioxideandwater.Thewaterformedinthecombustionprocessisinitiallyvapor(steam).Ifthethiswatervaporisallowedtocoolbelowitscondensationtemperaturethevaporwillcondenseliberatingheat.Thisenergyreleasefromthewatervaporrepresentsadditionalenergyavailablefromthecombustionofthefuel.ThedifferencebetweentheHigherHeatingValueandtheLowerHeatingValueistheHigherHeatingValueaccountsforthisadditionalenergyliberationwhenthewatervaporcondenses.TheLowerHeatingValuemeasuresthefuelenergyreleasewithallthecombustionproductsremaininginthevaporphase.Slide12BoilerEfficiency1Itisinterestingtoidentifytypicalboilerefficiency.Thiswillallowustocompareourboilertotypicaloperation.Ifwecanidentifybestpracticeboilerefficiencythenwecancharacterizetheoperationofourboilerpossiblyidentifyingtheimprovementpotential.Slide13BoilerEfficiency2Ifweweretoexaminemanyboilerswewouldprobablyfindthatthetypicalboilerefficiencyisinthemid80%range.Wewouldalsoseethatmanyoftheboilerswouldhavehigherefficiencythanthisandmanywouldhavelowerefficiencythanthis.But,wewouldseeveryfewboilerswithefficienciesmuchgreaterthan90%andveryfewboilerswithefficienciesmuchlowerthan70%.Greenwoodisacommonfuelinmanyindustriesmostprominentlyinthepulpandpaperindustry.Thetermgreenwoodreferstowoodproductsthathavenotbeendried.Pulpandpaperplantsharvesttreestoprocessthemintopulpandpaperproducts.Paperisnotmadefromthebarkandlimbsofthetrees.Asthetreesareharvestedthelimbs,bark,andpoorqualitymaterialsareremovedalongwithotherpartsofthetreethatcannotbeconvertedintopaper.Thisgreenwoodisfreshfromtheforestandtypicallycontainsabout50%celluloseand50%liquidwater.Greenwoodisusedasamajorfuelsourcebecauseitisreadilyavailableandislowcost.However,afuelthatiscomposedof50%liquidwaterwillburninefficientlytheliquidwaterwillboilandcarryalargeamountofenergyoutoftheboiler.Asaresult,greenwoodfiredboilerswilloperatewithlowefficiency.Itisinterestingtonotethatatypicalindustrialcoalfiredboilerwilloperatewithrelativelyhighefficiency.Thisresultsfromthefactthathydrocarbonfuelsarecomposedprimarilyofhydrogenandcarbon.Carboncombustsandformscarbondioxide.HydrogencombustsandformsH2Owater.WaterisGodsgreatestchemicalforabsorbingandtransportingenergy.Mostofourboilersburninghydrocarbonfuelsreleasewatervapor(steam)asaproductofcombustion.Asaresult,asignificantportionoftheenergyavailableinthefueliscarriedoutoftheboilerinthewatervaporthatisformedin

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationModule

    BoilerEfficiency9June28,2010

    thecombustionprocess.Fuelscontaininglesshydrogenexhaustlesswatervaporinthefluegasesandgenerallyhavehigherefficiency.Coalsgenerallycontainsomeamountofliquidwater,someamountofash(rocks),butmostlycarbon.

    Fueloilsusuallycontainmorehydrogenthancoalsbuttheytypicallycontainverylittleashandalmostnoliquidwater.Asaresult,fueloilfiredboilerswilloperatewithrelativelyhighefficiency.

    Naturalgascontainsarelativelylargeamountofhydrogen.Therefore,naturalgasfiredboilerswilloperatewithefficiencieslowerthancomparablecoalandoilfiredboilers.

    Therearemanyfactorsthatimpactboilerefficiencyfueltypeisoneofthem,thewaywecontrolthecombustionprocessisanother,andenergyrecoveryequipmentinstalledontheboileronemoremajorfactoreffectingefficiency.

    Slide14SteamProperties

    Letsreturntoourexampleboilerbecausewehaveenoughinformationtoevaluateboilerefficiency.Inordertodeterminetheenergyaddedtothesteampassingthroughtheboilerwemustusesteampropertydataoftenknownassteamtables.Fromthetemperatureandpressuremeasurementsofthesteamandfeedwaterwecanidentifytheirenthalpiesagain,enthalpyisanindicationofenergycontent.Hereyoucanseefor700degreesFahrenheitand400poundspersquareinchgage,theenthalpyofthesteamis1,362Btuperpoundofsteam.Thefeedwaterisat242degreesFahrenheitand600poundspersquareinchgagetheenthalpyofthefeedwateris210Btu/lbasshowninthetable.

    Slide15Direct(Classic)EfficiencyCalculationThesteampropertydataalongwiththefuelconsumptiondatagivesusenoughinformationtocalculateboilerefficiency.Thisboilerisoperatingwithanefficiencyofabout77%.Weareexpectingatypicalnaturalgasfiredboilertooperatewithanefficiencyinthelow80%range.Thisboilerisoperatingwithanefficiencythatisbelowtheexpectedvalueweanticipatethattheremaybeopportunitiestoimprovetheperformanceofthisboiler.

    [SlideVisualEnthalpy]hsteam =1,361.88Btu/lbm

    hfeedwater=210.42Btu/lbmDirectEfficiencyCalculation1Enteringdataintothedirectefficiencyequation,weget77%boilerefficiency.

    [SlideVisualEquations]n =mboiler steam(hsteamhfeedwater)/x(100)

    m xHHVfuel fuel

  • DOEs BestPractices Steam End User Training

    BoilerEfficiency10June28,2010

    Theboilerefficiencyisequaltothemassflowofthesteammultipliedbythedifferenceintheenthalpyofthesteamandtheenthalpyofthefeedwater;dividedbythemassflowofthesteammultipliedbythehighheatingvalueofthefuel.

    SteamEndUserTrainingSteamGenerationModule

    n =(100,000lbm/hr)x(1,361.88Btu/lbm210.42Btu/lbm)x(100)boiler (149,000sft3/hr)x(1,000Btu/sft3) *basedonvolumetricflowrate(HHVunitsareBtu/sft3)Theboilerefficiencyisequalto100,000poundsperhour,multipliedby1,361.88BTUperpoundminus210.42Btuperpound;dividedbythe149,000standardcubicfeetperhourmultipliedby1,000Btuperstandardcubicfeet.Orusingfuelmassflowdata(p=0.043lbm/sft3)mfuel =(149,000sft3/hr)x(0.043lbm/sft3)=6,407lbm/hrn =(100,000lbm/hr)x(1,361.88Btu/lbm210.42Btu/lbm)x(100)boiler (6,407lbm/hr)x(23,311Btu/lbm)*basedonmassflowrate(HHVunitsareBtu/lbm)Theboilerefficiencyisequalto100,000poundsperhour,multipliedby1,361.88BTUperpoundminus210.42Btuperpound;dividedbythe6,407poundsperhourmultipliedby23,311Btuperpound.nboiler=77.1%A e ationsbbr vinboiler =Efficiencyoftheboiler,alsocalledcombustionefficiency,overallefficiency(dimensionless)mste =massflowrateofsteamgeneratedintheboiler(lbm/hr)ammfuel =massflowrateoffuelburned(lbm/hr)h =Enthalpyisenergycontentofasubstance(Btu/lbm)HHV =HigherHeatingValueoffuel(Btu/lbm)

    Slide16EfficiencyCalculation

    Inordertoidentifytheimprovementopportunitiesassociatedwiththisboilerweaskwhyistheefficiencynot100%?Inotherwords,ifboilerefficiencyindicatesthat77%ofthefuelenergywentintothesteam,wheredidtheother23%ofthefuelenergygo?Itwenttosupplythelossesoftheboiler.

  • DOEs BestPractices Steam End User Training

    BoilerEfficiency11June28,2010

    SteamEndUserTrainingSteamGenerationModule

    Slide17BoilerLosses1

    Whatarethetypicalboilerlosses?Wherecanfuelgootherthanintothesteam?

    [GraphicalDescriptionBoilerLosses]

    Thisschematicdepictsawatertubeboiler.Fuelandairentersatthelowerleftofthecombustionzone,feedwaterentersatthetopintothesteamdrumwhichconnectstothemuddrumthroughmanytubes.Themuddrumisatthebottomoftheboiler.Steamexitstheboilerfromthesteamdrumintothesuperheatersection,whichisshownatthetopoftheboiler.Thecombustiongasesleavingtheboilerthroughtheductingattheupperright.

    Slide18BoilerLosses2

    Eventhoughboilersareinsulatedtheiroutersurfacesarehot,indicatingtheyarenotperfectlyinsulatedandfuelenergyisbeinglost.Thisisidentifiedasthe alsoknownas .shellloss radiationandconvectionloss

    Anotherlossassociatedwithoperatingaboilerisidentifiedastheblowdownloss.Inordertomaintainproperboilerwaterchemistrysomeoftheboilerwatermustberemoved.Thisisanenergylossbecausethewaterthatisdischargedhasbeenheatedwithfuelenergy.

    Theexhaustgasesfromthecombustionprocessexittheboilerwithfuelenergy.Thisenergycanbeidentifiedbytheelevatedtemperatureofthegases.Buttherealsocanbeunreactedfuelorextraairintheexhaustgases.Theseexhaustgasrelatedlossesareidentifiedasthe .stackloss

    Manyotherlossescanbeidentifiedforboilers;suchas,theenergycarriedfromtheboilerwithashinacoalfiredboiler.However,thethreelossesidentifiedshell,blowdown,andstackarepresentonallfiredboilersandtheyrepresentthefundamentalpointsofconcernformanagingboilerefficiency.

    Slide19IndirectEfficiency

    Generallymanagingboilerperformancefocusesonidentifyingandmanagingthelosses.Infact,oneofourmostimportanttoolsistoidentify,quantify,andreducetheboilerlosses.Thisisaccomplishedthroughanindirectefficiencyevaluationtechnique,whichisthetoolmostoftenusedinthefield.

    Boilerefficiencyisdeterminedinanindirectmannerbyassumingtheboilerefficiencyis100percentminusallofthelosses.Eachlossisidentifiedandquantifiedinthisanalysis.

    Inthenextsectionsofourtrainingwewillfocusoneachoftheselosses.Wewillexploreeachlossindetailidentifyinghowtoevaluateeachoneforourboilers.Additionallywewillidentifythefuelimpactassociatedwitheachlossandtherealworldimprovementopportunitiesthatcanbetargetedineacharea.Therealbenefitassociatedwithevaluatingboilerperformancewiththeindirectefficiencytoolisthatasboilerefficiencyisdeterminedtheroadmapforimprovementisestablished.Evaluatingtheindividuallossesnotonlycharacterizeseachlossbutitalsoaffordsustheopportunitytoidentifytheimprovementpotentialassociatedwitheach.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationModule

    BoilerEfficiency12June28,2010

    [ sualBoilerLosSlideVi sIndirectEfficiencyEquations]

    nindirect =100percentElossesIndirectBoilerEfficiencyisequalto100%minusthesumofallboilerlosses.

    nindirect =100percentshellblowdownstackmiscIndirectBoilerEfficiencyisequalto100%minustheshelllosses,minustheblowdownlosses,minusthestacklosses,minusthemiscellaneouslosses.

    Abbreviationsnindirect=IndirectefficiencyElosses=SumofallLosses

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationEfficiencyModule

    ShellLosses1June28,2010

    SteamEndUserTrainingSteamGenerationEfficiencyModule

    ShellLossesSection

    Slide1ShellLossesModuleNext,wewillidentifythemethodsusedtoinvestigate,quantify,andcontroltheseindividuallosses.Wewillstartwithshelllosses.

    [SlideVisualShellLossesTitlePage]

    SteamGenerationEfficiency

    EfficiencyDefinition

    ShellLossesBlowdownLosses

    StackLosses

    Slide2ShellLossMagnitudeShelllossisthefuelenergythatleavestheboilerfromitsoutersurface.Inotherwords,theoutersurfaceoftheboilerishot,whichindicatesitislosingheat.Itisdifficulttoaccuratelymeasurethethermalenergylossfromtheoutershellofaboiler.Asaresult,shelllossisgenerallyestimatedfromsomelimitedfieldmeasurements.AnexcellentandrelativelyeasyestimatingtechniqueisidentifiedintheAmericanSocietyofMechanicalEngineersPerformanceTestCode4(ASMEPTC4).

    [SlideVisualShellLossesEstimationTechnique]ASMEPTC4AmericanSocietyofMechanicalEngineersPerformanceTestCode4

    Inthistechniquethetemperatureofeachsurfaceoftheboilerismeasured.Typicallythismeasurementisobtainedwithaninfraredsurfacethermometer.Surfacetemperaturestypicallyrangefrom120to180degreesFahrenheit,buthotspotsgreaterthanthisrangecanexist.Hotspotscandevelopfromdamagedinsulationontheboilerordamagedrefractoryinsidetheboiler.

    Theshelllossestimatingtechniqueutilizesthecharacteristictemperatureofaboilersurfaceorareaandanestimatedambientsurfaceairflowvelocity.Theseestimatesareusedtocompleteaheattransferanalysisforallofthesurfacesoftheboileryieldinganestimatefortheboilershellloss.Thistechniqueissimple;however,theresultsmustbeconsideredageneralestimate.Thetotalshelllossestimateiscomparedtothetotalfuelenergyinputtodeterminethemagnitudeoftheloss.

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationEfficiencyModule

    ShellLosses2June28,2010

    Slide3ShellLossItisinterestingtonotethatformostboilersthetotalenergylostfromtheshellremainsessentiallyconstantwithrespecttoboilerload.Inotherwords,theshelllossenergyflowisbasicallyconstant.Thisisnottosaythatthefractionoffuelinputenergylostfromtheboilershellremainsconstantrathertheenergyflow(Btu/hr)remainsessentiallyconstantwithrespecttoboilerload.Thisbeingthecase,theshelllossexpressedasafractionoffuelinputenergywoulddoubleastheboilertransitionsfromfullloadtohalfload.Formostwellmaintainedboilers,thefullloadshelllosswillbebetween0.1%to2%offuelinputenergy.Usually,shelllossesareminimalandthebestwaytomanageshelllossistomonitorforhotspots,damagedinsulation,andothersurfaceproblems.Typically,shelllossissuesdonottranslateintosignificantenergylossesbutsignifyinsulationorrefractoryissuesthatneedtoberepairedtoincreasethelongevityoftheboiler.Slide4ExampleBoilerSavingsForourexampleboileranASMEtypeshelllossinvestigationindicatesapproximately0.5%ofthefuelinputenergyislostthroughtheshelloftheboiler.Thisrepresentsapproximately$65,000/yroffuelenergy.Thisisarelativelysmallfractionofthefuelinputenergyandthereisverylittlethatcanbedonetosignificantlyreduceit.

    OurExampleBoiler:

    FromanASMEtypeinvestigationtheradiationandconvectionlossoftheexampleboilerisapproximately0.5%ofthetotalfuelenergyinputtotheboiler.

    Thisrepresentsalossofapproximately$65,000/yr. Surfacetemperaturemeasurementsdidnotindicateanyhotspotsontheexampleboiler.Theinsulation,cladding,andrefractoryarein

    goodcondition.Asaresult,wewilljustacceptthatthislosswilloccurandcontinueourinvestigationintootherareasofboilerefficiency.

    RadiationandConvectionLoss=$13,000,000/hrx(0.5%/100)=$65,000/yr

  • DOEs BestPractices Steam End User Training

    SteamEndUserTrainingSteamGenerationEfficiencyModule

    ShellLosses3June28,2010

    Slide5ShellLossSummaryInsummary,shelllossisgenerallyaminorcontributortotheoverallfuelenergyloss.Directmeasurementsofboilershelllossaredifficulttocomplete;but,simplifiedestimatingtechniquesprovideexcellentinsightintothemagnitudeofboilershellloss.Shelllossshouldnotbeignoredhotspotsintheboilershellindicateproblemsthatshouldbecorrected.

    [SlideVisualShellLossSummary]

    ASMEPTC4AmericanSocietyofMechanicalEngineersPerformanceTestCode4 Searchforhotspots

    o Damagedinsulationo Damagedrefractoryo

    MeasureboilersurfacetemperatureMonitorsurfacecladdingintegrity

    o

    Infrared Typicalsurfacetemperatureshouldrangebetween120oFand180oF Repairrefractory Monitorsurfacecladdingintegrity Reduceboilerloadcanpresentanopportunity

  • DOEs BestPractices Steam End User Training

    BlowdownLosses1June28,2010

    SteamEndUserTrainingSteamGenerationModule

    SteamEndUserTrainingSteamGenerationEfficiencyModule

    BlowdownLossesSection

    Slide1BlowdownLossesModuleThissectionwilldiscussblowdownlossanditsaffectonboilerefficiency.

    [SlideVisualBlowdownLossesTitlePage]

    SteamGenerationEfficiency

    EfficiencyDefinitionRadiationandConvectionLossesShellLosses

    Blo eswdownLossStackLosses

    Slide2Blowdown

    Thenexttypeoflossinvestigatedisblowdownloss.Boilerfeedwaterisverycleanwater.However,infeedwatertherearesomedissolvedchemicals.Essentiallypuresteamexitstheboilerthemajorityofthechemicalsenteringtheboilerwithfeedwaterarenotsolubleinthesteamandwillnotleavetheboilerwiththesteam.Asaresult,theconcentrationofthesechemicalsincreasesintheboiler.Elevatedconcentrationsofchemicalsresultsinmanyseriousboilerproblemsincludingfoamingresultinginliquidcarryover,scalingonthewatersideofthetubes,andloosesludgeintheboilerwater.Blowdownistheprimarymechanismthatallowsustocontrolchemicalconcentrationsintheboilerwater.Blowdownallowsustomaintainanacceptableconcentrationofdissolvedandprecipitatedchemicalsintheboiler.

    Thereisanenergylossassociatedwithblowdown,becausethewaterhasbeenheatedtotheboilingpointfromfeedwaterconditions.

    Slide3BoilerBlowdown

    Therearetwogeneraltypesofboilerblowdown.Oneistypicallyfromthelowersectionsoftheboilercalledbottomblowdown.Theothertypeofblowdownistypicallyfromtheuppersectionsoftheboilerandiscalledsurfaceblowdown.

    Bottomblowdownisactuatedbecausesomesolidswillprecipitatefromthechemicalsdissolvedinthefeedwater.Thesesolidstendtobeheavierthanwater,andthereforetendtocongregateinlowersectionsoftheboiler.Bottomblowdownisusedtoflushthesesolidsout.Bottomblowdownistypicallyasignificantflowofwaterforaveryshortperiodoftime.Theintentistosweepawayanysolidprecipitatesformedinthewater.Even

  • DOEs BestPractices Steam End User Training

    oduleBlowdownLosses2

    June28,2010

    thoughwhileitisoccurringitisalargeflowrate,itcontinuesforashortperiodoftime.Asaresult,thetotalflowofbottomblowdownisusuallymuchlessthanthetotalflowsurfaceblowdown.

    SteamEndUserTrainingSteamGenerationM

    Surfaceblowdownistypicallyamuchsmallerflowratethanbottomblowdown;however,itcontinuesforamuchlongerperiodoftimeoftencontinuously.Surfaceblowdownistheprimarymechanismusedtocontrolthedissolvedchemicalconcentrationsintheboiler.Surfaceblowdownendsupremovingmostoftheblowdownwater.

    [SlideVisualBoilerBlowdown]

    Thisschematicdepictsawatertubeboiler.Fuelandairentersatthelowerleftofthecombustionzone,feedwaterentersatthetopintothesteamdrumwhichconnectstothemuddrumthroughmanytubes.Themuddrumisatthebottomoftheboiler.Steamexitstheboilerfromthesteamdrumintothesuperheatersection,whichisshownatthetopoftheboiler.Thecombustiongasesleavingtheboilerthroughtheductingattheupperright.Thebottomblowdownisshownfromthebottommuddrum.Thesurfaceblowdownisshownatthetopfromthesteamdrum.

    Slide4BlowdownControl

    Generally,surfaceblowdowniscontrolledbasedonboilerwaterconductivity.Conductivityisadirectmeasurementthatcancontinuouslyprovideanindicationofboilerwaterquality.However,conductivitymustbecorrelatedtoindividualchemicalcontaminantsthroughperiodicwateranalysis.Conductivityandtheresultsofspecificboilerwatertestingaidinadjustingtheblowdownrate.

    [SlideVisualConductivitySensor]

    Thisschematicdepictsawatertubeboiler.Fuelandairentersatthelowerleftofthecombustionzone,feedwaterentersatthetopintothesteamdrumwhichconnectstothemuddrumthroughmanytubes.Themuddrumisatthebottomoftheboiler.Steamexitstheboilerfromthesteamdrumintothesuperheatersection,whichisshownatthetopoftheboiler.Thecombustiongasesleavingtheboilerthroughtheductingattheupperright.Thesurfaceblowdownisshownatthetopfromthesteamdrumwithaconductivitysensorcontrollingtheblowdownvalveposition.Theblowdownisdischargedtothesewer.

    Slide5BlowdownLossEstimate

    Fromtheviewoftheboiler,feedwaterenters,steamandblowdownexit.Theboileraddsfuelenergytothesteamandblowdownthatexittheboiler.Blowdownisanenergystreamthatisdischargedfromtheboiler.Blowdownistypicallyexpressedasafractionoffeedwatermassflowandcanrangefromlessthan1%tomuchgreaterthan10%dependingonwaterchemistry,boileroperatingpressure,andotherfactors.However,itshouldbenotedthat10%blowdownratedoesnotmean10%energylossblowdowndischargedfromtheboilerisnothighenergysteam,itismoderateenergywater.Fromtheperspectiveoftheboiler,theenergyaddedtotheblowdownstreamisblowdownflowratetimesthedifferenceintheenthalpyoftheblowdownandthefeedwater.Therefore,10%blowdownratecantranslateinto5%fuelenergyinput.Itshouldbenotedthattherelationshipbetweenblowdownmassfractionandblowdownenergyfractionisdependentonmanyfactorsincludingboileroperatingpressureandfeedwatertemperature.

  • DOEs BestPractices Steam End User Training

    BlowdownLosses3June28,2010

    SteamEndUserTrainingSteamGenerationModule

    [ isua ler ow BoilerCalcSlideV lBoi Blowd nLoss ulation]

    L =mblowdown blowdown(hblowdownhfeedwater)/x(100)

    mfuel fuelxHHV

    AbbreviationsLblowdown =Lossduetoblowdown(%)mblowdown =massflowrateofblowdown(lbm/lbm)h eed ater massflowrateoffeedwater(lbm/lbm)f w =mfuel =massflowrateofsteamgeneratedperpoundoffuelburned(lbm/lbm)h =Enthalpyisheatcontentorusefulenergyofasubstance(Btu/lbmorkJ/kg)HHV =HigherHeatingValueoffuel(Btu/lbm)

    Slide6SystemLoss

    Again,fromtheperspectiveoftheboiler,theenergyaddedtotheblowdownstreamisblowdownflowratetimesthedifferenceintheenthalpyoftheblowdownandthefeedwater.However,everypoundofblowdowndischargedfromthesystemismadeupwithcoldmakeupwaterasaresult;aportionofthesteamgeneratedintheboilerisusedtoheatthemakeupwatertofeedwaterconditionsinthedeaerator.Therefore,fromasystemperspective,theenergyassociatedwiththeblowdownstreamisevenlargerthanthatidentifiedfromtheboilerperspective.

    [VisualDescriptionSteamSystemImpactSchematic]

    Thisschematicrepresentsathreepressureheadersteamsystemwithmultipleboilersandallofthesystemcomponents.Feedwaterispreheatedbysteaminjectionfromthelowpressuresteamdistributionheader,aswellaspreheatedmakeupwaterutilizingboilerblowdownheatrecovery.ThetopoftheschematicshowstheBoilerFeedwaterenteringthetwoboilers.Thetwoboilersareconnectedtothehighpressuresteamdistributionheader.Thesteamexitstwoboilersandentersthehighpressuresteamsystemdistributionheader,indicatedbyalinebelowtheboilers.Underthehighpressuresteamdistributionline,youwillseethreeconeshapedgraphics,thatrepresentthesteamturbines.Theonenearesttotheleftisahighpressuretocondensingturbine.Thisturbinedischargestothecondenserrepresentedbythebluecirclebelowtheturbine.Therectangulargraphictotherightoftheconeshapedgraphicindicatestheelectricalgenerationcomponentofthesteamturbine.Theturbineinthemiddlere