11
Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Embed Size (px)

Citation preview

Page 1: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Status of integrated preamplifiers for GERDA

Status of integrated preamplifiers for GERDA

GERDA meeting – MPI Heidelberg, Feb 20-22, 2006GERDA meeting – MPI Heidelberg, Feb 20-22, 2006

F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Page 2: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Proposed circuit structure (from J. Gal*)Proposed circuit structure (from J. Gal*)

*J. Gal et al. “Realization of charge sensitive preamplifiers using current feedback operational amplifier”, Nucl. Instrum. And Meth., Vol. A366, pp. 145-147, 1995

RD CF

BF862

Cdet

detector

Vout

G

new output stage (low impedance &

swinging to negative-rail)

RF 2.5 V

-3.5 V VD

discrete components

ASI C (CMOS 0.8um 5V)

12 V

A = gm RD × G

Page 3: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Test chipTest chip3.

3 m

m

3.3 mm

MOSFETs

resistors

MOSFETs

MOSFETs

MOSFETs

PREAMP 2pMOS + ext RF + int biasVmax = 550mV (50 Ohm)

PREAMP 1pMOS + ext RF + ext biasVmax = 550mV (50 Ohm)

PREAMP 1PREAMP 2

PREAMP 3pMOS + reset pMOS + shaper

PREAMP 3

PREAMP 4

PREAMP 4pMOS + ext RF + ext biasVmax = 2V (1 kOhm)HIGH VOLTAGE comp’s

TEST struct

TEST struct

CSP+OS simple CC=0pF

CSP+OS simple CC=0.2pF

CSP+OS simple CC=0.6pF

CSP+OS simple CC=1pF

CSP+OS simple CC=1.4pF

CSP+OS cplx CC=0pF

CSP+OS cplx CC=2pF

CSP+OS cplx CC=0.4pF

CSP+OS cplx CC=1.4pF

CSP+OS cplx CC=1pF

OPAMP OPAMP OPAMP OPAMP

CSP + OS simpleCSP with new rail-to-rail output stage. Various comp cap’s

CSP + OS cplxCSP with new rail-to-rail output stage. Various comp cap’s

Tested preamp

Page 4: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Test chip with wire bondings Test chip with wire bondings in 68LCC packagein 68LCC package

Setup for cryogenic testSetup for cryogenic test

Page 5: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

The output stage must be able to drive a coax/twisted pair cable (or a 100 to 200 load) and must provide the largest negative voltage swing (hole signals)

Output stage & dynamic rangeOutput stage & dynamic range

At T=300°K, with a negative power supply VEE = - 3V, the circuit can drive a 10m coaxial cable of 50 still providing a negative voltage swing of ~ 2.5V

At T=77°K the negative swing reached is of ~ 2.4V

CF = ~ 0.15 pF, Ctest = 1 pF

Cdet = 15 pF

Energy sensitivity (in Ge) at the preamp output = ~ 370 mV/MeV (~185 mV/MeV if 50 terminated)

Input dynamic range = ~ 6.5 MeV

Page 6: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Rise timeRise timeat T = 300 °K

driving a 50 coaxial cable of different

lengths

~ 13 ns with ~1m cable

~ 15 ns with ~10m cable

Page 7: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Rise timeRise timeat T = 77 °K

driving a ~2m coaxial cable (50)

A fast rise time of ~ 8 ns to ~ 13 ns has been obtained but a little overshoot has still to be eliminated by a low-pass filter or by reducing the preamp bandwidth a little bit

7.8 ns with no BW limit

13 ns with BW limit (equivalent to Anti-Aliasing filter)

Page 8: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Decay time constant Decay time constant ~ 200 s both at room temperature and in liquid nitrogen

T = 300 °K

T = 77 °K

~200s

~200s

CF = ~ 0.15 pF

RF = 1.2 G

Page 9: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Shaping time

T=300°K

ENC (el. r.m.s.)

T=77 °KENC (el. r.m.s.)

0.5 s 178 325

1 s 148 252

2 s 126 191

3 s 118 166

6 s 110 128

10 s 111 112

Noise measurementsNoise measurementsCdet = 15 pF

At T =77 °K the substantial increase of the white series noise is mainly due to the decrease of the JFET tranconductance

Page 10: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

T = 300 °K T = 77 °K

Energy sensitivity

(CF = 0.15pF)~ 370 mV/MeV at preamp output

~ 185 mV/MeV after 50 termination

Negative output voltage swing

~ 2.5 V ~ 2.4 V

Input dynamic range ~ 6.7 MeV ~ 6.5 MeV

Rise time~ 13 ns with 1m coaxial cable

~ 15 ns with 10m coaxial cable

~ 13 ns with 2m coaxial cable (with little overshoot)

~ 15 ns with 10m coaxial cable (with little overshoot)

Loop gain ~ 500 > 500

Minimum ENC (el. r.m.s.) with

Cdet = 15pF110 el. at = 6s 112 el. at = 10s

Power required

~ 177 mW

(VFET = +12V ID = 14mA

VCC= +2.5V VEE = -3V)

~ 22 mW

(VFET = +4V ID = 3mA

VCC= +3V VEE = -3V)

Tested preamp specsTested preamp specs

Page 11: Status of integrated preamplifiers for GERDA GERDA meeting – MPI Heidelberg, Feb 20-22, 2006 F. Zocca, A. Pullia, S.Riboldi, C. Cattadori

Future developmentsFuture developments

• Optimization of tested preamplifier

• Tests with different values of Cdet and with values of CF ranging from 0.2 to 1 pF

• Tests of more preamplifiers (with different values of compensation capacitance)

• Design and test of a miniaturized setup

• Tests with different cable types and lengths

Activity scheduleActivity schedule• March-June 2006: tests/optimization of existing chip. Design/realization of miniaturized PCB. Design of improved new chip.

• June-September 2006: realization of new chip / tests of old chip (continued)

• September-December 2006: tests of new chip