39
LMH Laboratory for Hydraulic Machines Stations de transfert d’énergie: technologie des groupes de pompageturbinage Prof. François Avellan, Dr. Eng., EPFL School of Engineering Institute of Mechanical Engineering Entretiens Jacques Cartier, Grenoble 21 novembre 2012 Computing Domain of the HYDRODYNA Pump-Turbine

Stations de transfertd’énergie: technologie des groupesde pompage · PDF fileStations de transfert d’énergie: techno logie des groupes de pompage-turbinage. LMH Laboratory for

Embed Size (px)

Citation preview

LMH Laboratory for Hydraulic Machines

Stations de transfert d’énergie: technologie des groupes de pompage‐turbinage

Prof. François Avellan, Dr. Eng.,EPFL School of Engineering

Institute of Mechanical Engineering

Entretiens Jacques Cartier, Grenoble 21 novembre 2012

Computing Domain of the HYDRODYNA Pump-Turbine

LMH Laboratory for Hydraulic Machines

Integration of New Renewable Energy Sources in Europe

Needs of Storage & Grid Primary and Secondary Control

NREs Generation in Germany, Mid of June 2012 : 10 GW Storage Capacity? 2

0

5'000

10'000

15'000

20'000

25'000

30'000

15.06 16.06 17.06 18.06 19.06 20.06 21.06 22.06 23.06 24.06 25.06 26.06 27.06 28.06 29.06 30.06

MWStorage

WindPV

LMH Laboratory for Hydraulic Machines

Scope Facts & Figures

Pumped Storage Technology

Swiss Case

Scientific Challenges

Collaborative Research Program

Stations de transfert d’énergie: technologie des groupes de pompage-turbinage

LMH Laboratory for Hydraulic Machines

Challenges Electricity cannot be directly stored in a practical manner 

on a large scale.

Fluctuation of Demand 

NRE Development

Electricity Market Deregulation

Sustainability

Hydropower Plants vs. Combined Cycle Gas Fire Power Plant

CO2

LMH Laboratory for Hydraulic Machines

0

2'000

4'000

6'000

8'000

10'000

12'000

14'000

16'000

18'000

20'000

1980 1985 1990 1995 2000 2005 2010

Nuclear

World

Conventional thermal

Hydro

TWh

Wind

Biomass & Waste

Power Generation Mix

20'225 TWh generated in 2010, 16.8 % Hydro, Source US Energy Information Administration www.eia.gov

Coa

l!

LMH Laboratory for Hydraulic Machines

0

1'000

2'000

3'000

4'000

5'000

6'000

1980 1985 1990 1995 2000 2005 2010

Nuclear

World

Conventional Thermal

Hydro

GW

NRE

Hydroelectric Pumped Storage

Installed Capacity

5’067 GW installed capacity in 2010, 918 GW Hydro, 121 GW Pumped Storage

~1’000 GW

Installed

LMH Laboratory for Hydraulic Machines

0

50

100

150

1980 1985 1990 1995 2000 2005

WorldTotal Conventional Thermal

Nuclear

Total Non-HydroelectricRenewablesHydroelectric

GW

Capacity Installation

Market Development by type of fuels, Hydro over 10 GW/year since 2000

LMH Laboratory for Hydraulic Machines

0

100

200

300

400

500

600

700

800

900

1'000

1990 1995 2000 2005 2010

Asia & Oceania

Europe

Eurasia

North America

Latin America

Africa Middle East

GW

Hydro Capacity Installation

Geographical breakdown of the worldwide hydro installed capacity, 2’000 GW expected in 2050!

Great

Future

LMH Laboratory for Hydraulic Machines

Pelton8%

Francis61%

Kaplan17%

Bulb2%

Pump-Turbine

12%

Hydro Turbines Market Outlook

New Projects

1’000 GW to be build up to 2050

Modernization

1’038 GW Installed

Capacity breakdown by types of hydraulic turbines: 1’038 GW in 2010 

LMH Laboratory for Hydraulic Machines

Domestic Power Generation MixSwiss Electricity Data: 2010 Survey

Switzerland to be Proud of a Nearly CO2‐Free Power Generation Mix ! 10

 ‐

 10'000

 20'000

 30'000

 40'000

 50'000

 60'000

 70'000

1970 1975 1980 1985 1990 1995 2000 2005 2010

[GWh]

Run‐off Hydropower Plants

Pumped Storage Hydropower Plants 

Storage Hydropower Plants

Annual PowerConsumption

Annual PowerGeneration

Nuclear Power Plants

Fossil Fuel Power Plants

LMH Laboratory for Hydraulic Machines

Power Generation Mix in Switzerland

2009: 11’734 MW Hydropower Generating Capacity ; 1’699 MW Pumping Power Capacity 

63’758 GWh Power Generation in 2010 :

Storage Hydropower

Plants 32.9 %

Run-off Hydropower

Plants25.2 %

Nuclear Power Plants

40.8 %

Fossil Fuel Power Plants

5.1 %Pumped Storage

Power Plants 3.9 %

LMH Laboratory for Hydraulic Machines

Integration ofNew Renewable Energy Sources

Storage Hydropower Plants

Mainly Pelton Turbines in Switzerland;

Pumped Storage Power Plants (1'400 MW)

3'540 MW Capacity in 2016FMHL+, 240 MW; Nant de Drance, 900 MW; Linthal, 1 GW;

Projects : Grimsel 3, 295 MW; RhôDix, 900 MW; Lago Bianco, 1 GW.

Gas Fired Combined Cycles Power Plants ?

Phasing out the Nuclear Power Plants;Chavalon and/or Cornaux, 400 MW.

Swiss Case Study 12

LMH Laboratory for Hydraulic Machines

New Pumped Storage Power Plants in Switzerland

PSP in Construction

FMHL+

Nant de Drance

Linthal

PSP Scheduled

Lago Bianco

Grimsel 3

Rhôdix

LMH Laboratory for Hydraulic Machines

Hongrin‐Léman PSP

Historical Landmark: Veytaux Pumped Storage Plant (FMHL sa)

Hongrin Lake (1969) :52 millions m3 Capacity

Veytaux Power Station (1972)

4 Horizontal Compound Units 256 MW Pumping Power240 MW Generating Power

850 mWC Head 600 min‐1

Hongrin Lake

Léman Lake

14

LMH Laboratory for Hydraulic Machines

Vertical Compound Units:Pelton‐M/G‐Pump

Matching both Pumping and Generating Modes Length of the Rotating Train; Speed; Required Submergence.

High Grade Control  Pelton Turbine  Hydraulic By‐Pass

Turbine Drive for Starting Up 1 Direction of Rotation

Efficient Cooling Safe Transients!

Technology of Compound Units

2 Compounds Units~850 mCE 120 MW @ 500 min-1

FMHL+

15

LMH Laboratory for Hydraulic Machines

FMHL+ Project: 5 Injectors Pelton Turbine 16

LMH Laboratory for Hydraulic Machines

FMHL+ Projct:  5 Stages Storage Pump 17

LMH Laboratory for Hydraulic Machines

Hydraulic Bypass

M G T PP P P Enabling Technology for Grid  Primary Control 18

LMH Laboratory for Hydraulic Machines

Grid Primary Controlthru Hydraulic Bypass

250 MW Hydraulic Bypass

http://simsen.epfl.ch/

200 MW Wind Farm Safety Tripp off SIMSEN Numerical Simulation

Advanced Numerical Simulation of Fast Grid Control 19

LMH Laboratory for Hydraulic Machines

Reversible Pump‐Turbine UnitsTechnology Challenges

Start‐Up Procedures Static Frequency Converter of Limited 

Power Back to Back arrangement Turbine or Pony Motor Drive Dewatering/Watering Process

Bidirectional Motor‐Generator Speed Air Cooling vs. Water Cooling

Pumping & Generating Operating Ranges Matching Efficiency Cavitation Transients: Start‐up & Load Rejection

Grid Primary Control Variable speed Double Regulated Stages 

Reversible Pump‐Turbine Technology

Yang Yang (ALSTOM Hydro)- 800 mWC- 4 x 258 MW @ 600 min-1

- Double Regulated Stages (nq 38)

20

LMH Laboratory for Hydraulic Machines

Yang Yang Start‐Up Sequence

Houdeline et al. : 2006, "Double Stage Regulated and Reversible Pump Turbines of Yang Yang Power Station in Korea", 23rd IAHR Symposium on Hydraulic Machineryand Systems, Yokohama, Japan.

LMH Laboratory for Hydraulic Machines

900 MW Nant de Drance PSP Project (VS)Commissioning in 2015

Emosson Lake 210 106 m3 Capacity Vieil Emosson Lake    11 106 m3 Capacity & 25.5 m Dam Height Increase 250 mWC to 390 mWC Head Range 6 x 155 MW Single Stage Pump‐Turbines 428.6 min‐1 ± 7 % Variable Speed Drive

VARSPEED Technology Enabling Pumping Power Control   22

LMH Laboratory for Hydraulic Machines

1 GW Linthal PSP Project (GL)Commissioning in 2015

Limmern 92 106 m3 Capacity Mutt 25 106 m3 Capacity 560 mWC to 724 mWC Head Range 4 x 250 MW Single Stage Pump‐Turbines 500 rpm ± 6 % Variable Speed Drive

VARSPEED Technology Enabling Pumping Power Control   23

LMH Laboratory for Hydraulic Machines

VARSPEED Technology Static Frequency 

Converter Voltage Source Inverter

Double Feed Asynchronous MachinesCylindrical Rotor with Three Phases Winding

Slip Rings for Excitation

ReversiblePump‐Turbine

VARSPEED Technology Enabling Pumping Power Control   24

LMH Laboratory for Hydraulic Machines

Numerical Simulation of the Very Fast Change of the Power Set Point

Yves Pannatier : "Optimisation des stratégies de réglage d'une installation de pompage‐turbinage à vitesse variable", Thèse EPFL N° 4789, 2010.

VARSPEED Technology Enabling Pumping Power Control  

http://simsen.epfl.ch/

Varspeed

Synchronous Machine

25

LMH Laboratory for Hydraulic Machines

ExperimentalInfrastructure

Complying IEC 60193 StandardsEfficiency Uncertainty <2 ‰

PF 1 PF 2 PF 3Max Head: 100 mCE 120 mCE 100 mCEMax Discharge: 1.4 m3/s 1.4 m3/s 1.4 m3/sGenerating Power: < 300 kW < 300 kW < 300 kWMax Speed: 1'500 rpm 2'500 rpm 2'500 rpmPumping Power: 900 kW 1000 kW 2 x 400 kW

EPFL Testing Facilities

World Class Research Facilities: 3 Test Rigs for Hydraulic Turbines, Pumps and Pump‐Turbines

• Research• Education• Experimental

Validation

LMH Laboratory for Hydraulic Machines

IEC 60193 Pump‐TurbineModel Testing

Pumped Storage Power Plant Country Owner/Manufacturer Capacity Year

NIU LAN GIANG China ‐ /HARBIN Electrical Machinery Ltd 3 x 22 MW 2012

LI YANG China ‐/HARBIN Electrical Machinery Ltd 6 x 255 MW 2012

FRADES 2 Portugal EDP Produção/VOITH 2 x 420 MW 2011

QINGYUAN China ‐ /TOSHIBA 4 x 320 MW 2011

BAIXO SABOR Jus. Portugal EDP Produção/ANDRITZ Hydro 2 x   18 MW 2011

BAIXO SABOR Mont. Portugal EDP Produção/ANDRITZ Hydro 2 x  77 MW 2011

LUDINGTON MI, USA Consumers Energy/TOSHIBA 6 x 312 MW 2010

XIANYOU China ‐ /DONGFANG Electrical Machinery Ltd 1'200 MW 2009

XIAN SHUI JAN China ‐ /HARBIN Electrical Machinery Ltd. 4 x 370 MW 2009

Very High Head R&D ‐ /ALSTOM Hydro ‐ 2007‐8

EPFL: a Key Research Center for Hydropower Development 27

LMH Laboratory for Hydraulic Machines

IEC 60193 Pump‐TurbineModel Testing (contd.)

Pumped Storage Power Plant Country Owner/Manufacturer Capacity Year

ROCKY MOUNTAIN GA, USA Oglethorpe Power/American Hydro (WEIR) 3 x 370 MW 2005‐6

BLENHEIM GILBOA NY, USA Rev. Eng. & Impeller Model NYPA/HITACHI 4 x 260 MW 2003

CHEONSONG South Korea Korea Western Power Co /GE Hydro 2 x 350 MW 2003

Nq 45 R&D ‐ ‐ /ALSTOM Hydro ‐ 2002

VENDA NOVE II Portugal EDP/VOITH Hydro 2 x 98 MW 2001

ALQUEVA Portugal EDIA operated by EDP/ALSTOM Hydro 2 x 130 MW 1999

TAUM SAUK* MO, USA Union Electric Co./AMERICAN Hydro (WEIR)  2 x 220 MW 1997

28EPFL: a Key Research Center for Hydropower Development

LMH Laboratory for Hydraulic Machines

Scientific ChallengesTechnology Breakthrough

Integrity, Reliability and Flexibility

Meeting DemandGrid Primary Control Frequent Mode Changes Extended Operating Range 

Knowledge Development in Hydrodynamics 29

Power Surge

LMH Laboratory for Hydraulic Machines

Pompe‐turbine HYDRODYNA zo = 20, zb = 9

Research Project Pump‐Turbine Hydrodynamics

Investigating, Modeling and Harnessing Unsteady Flows;

Fluid Structure Coupling;

Rotor‐Stator Interactions;

Performance Curve Stability;

Off‐Design Conditions.

Scientific Challenges and  Technology Breakthrough

HYDR DYNA

30

N° 4150

Hydro

LMH Laboratory for Hydraulic Machines

Rotor‐Stator Interactionsin Generating Mode

HYDRODYNACase Studyzo = 20, zb = 9

Discovery ExperimentsValidation of Unsteady Numerical Simulations 

"Dynamic" Behavior of Pump‐Turbines

Unsteady Pressure Field in Generating ModeMax Discharge

HYDR DYNA

31

LMH Laboratory for Hydraulic Machines

Structure DynamicsModal Analysis

32UPC Barcelona Tech:  Centre for Industrial Diagnostics and Fluid Dynamics

LMH Laboratory for Hydraulic Machines

Off‐Design Conditions

S Shape Characteristics Survey: Wall Pressure Fluctuations 33

Runaway

BEP

Low Q

LMH Laboratory for Hydraulic Machines

Rotating Stall Numerical Simulation

Advanced RANS Simulations 34

LMH Laboratory for Hydraulic Machines

Conclusions Pumped Storage Plants (PSP) are the key component for 

enabling the development and the optimum use of primary renewable energy.

The development of PSP’s is driven by the energy spot market, the services to the grid and public regulatory policy . 

The pump‐turbine technology needs to be further developed to meet the market needs and to ensure and enhance the reliability, availability, maintainability and safety of the power plants. Risk analysis must be performed when utilizing existing hydraulic infrastructure.

The on‐going projects of PSP are an opportunity for further investigations in the field of enabling energy technology.

EPFL School of Engineering 35

LMH Laboratory for Hydraulic Machines

Merci 

36

Hydro

LMH Laboratory for Hydraulic Machines

EPFL Doctoral Thesis Steven Roth: “Fluid‐Structure Coupling Effects on the Dynamic Response of 

Pump‐Turbine Guide Vanes”, EPFL Doctoral Thesis N° 5455, 2012.

Vlad Hasmatuchi: “Hydrodynamics of a Pump‐Turbine Operating at Off‐Design Conditions in Generating Mode”,EPFL Doctoral Thesis N° 5373, 2012.

Amirezza Zobeiri: "Effect of Hydrofoil Trailing Edge Geometry on Vortex Shedding", EPFL Doctoral Thesis N° 5218, 2011.

Stefan Berten : “Hydrodynamics of High Specific Power Pumps at Off‐Design Operating Conditions”, EPFL Doctoral Thesis N°4642, 2010

Advanced Education in Hydrodynamics of Turbomachinery

LMH Laboratory for Hydraulic Machines

EPFL Doctoral Theses

Philippe Ausoni : " Turbulent Vortex Shedding from a Blunt Trailing Edge Hydrofoil", EPFL Doctoral Thesis N°4475, 2009.

Olivier Braun : "Part load flow in radial centrifugal pumps", EPFL Doctoral Thesis N°4422, 2009.

Alireza Zobeiri : "Investigations of time dependent flow phenomena in a turbine and a pump‐turbine of Francis type : rotor‐stator interactions and precessing vortex rope", EPFL Doctoral Thesis N°4272, 2009.

Christophe Nicolet : "Hydro‐acoustic modeling and numerical simulation of the unsteady operation of hydroelectric system", EPFL Doctoral Thesis N°3751, 2007.

Advanced Education in Hydrodynamics of Pumps and Pump-Turbines 38

LMH Laboratory for Hydraulic Machines

EPFL Doctoral Theses (contd.) Youcef Ait Bouziad: "Physical modeling of leading edge cavitation: 

computational methodologies and application to hydraulic machinery", EPFL Doctoral Thesis N° 3353, 2006.

Michael Kaye: "Cavitation monitoring of hydraulic machines by vibration analysis", EPFL Thesis N°2112, 1999

Roland Hirschi: "Prediction of Partial Sheet Cavitation in Hydraulic Machines through Numerical Modeling", EPFL Thesis N° 1777. 1998

Francisco Pereira: "Prediction of Cavitation Erosion: An Energetic Approach", EPFL Thesis N° 1592, 1997.

Mohamed Farhat: "Contribution to Cavitation Erosion: Hydrodynamic Mechanisms and Prediction", EPFL Thesis N° 1273. 1994.

Advanced Education in Hydrodynamics of Pumps and Pump-Turbines 39