32
1 News from eRHIC Matt Lamont, Thomas Ullrich, William Foreman, Anders Kirleis, Michael Savastio, Peter Schnatz Elke Aschenauer and the CAD-eRHIC Team E.C. Aschenauer

STAR

  • Upload
    margie

  • View
    54

  • Download
    0

Embed Size (px)

DESCRIPTION

News from eRHIC Matt Lamont, Thomas Ullrich , William Foreman, Anders Kirleis , Michael Savastio , Peter Schnatz Elke Aschenauer and the CAD- eRHIC Team. ERL-based eRHIC Design. 5 mm. 5 mm. 5 mm. 5 mm. 20 GeV e -beam. 16 GeV e -beam. Common vacuum chamber. 12 GeV e -beam. - PowerPoint PPT Presentation

Citation preview

Page 1: STAR

1

News from eRHIC

Matt Lamont,Thomas Ullrich,

William Foreman,Anders Kirleis,

Michael Savastio,Peter Schnatz

Elke Aschenauerand the CAD-eRHIC Team

E.C. Aschenauer

Page 2: STAR

E.C. Aschenauer

2

STAR

PHENIX

2 x 200 m SRF linac4 (5) GeV per pass5 (4) passes

Polarized e-gun

Beamdump

4 to 5 vertically separatedrecirculating passes

Cohe

rent

e-

cool

er

5 mm

5 mm

5 mm

5 mm

20 GeV e-beam16 GeV e-beam

12 GeV e-beam

8 GeV e-beam

Com

mon

vac

uum

ch

ambe

r

Gap 5 mm total0.3 T for 30 GeV

eRHICdetector

MeRHIC

detector

10-20 GeV e x 325 GeV p 130 GeV/u Au

possibility of 30 GeV @low current operation

ERL-based eRHIC Design

Page 3: STAR

Medium Energy eRHIC Concept

E.C. Aschenauer

3

Geometrical constraints: If it is possible use the existing interaction region at RHIC 2 o’clock and wider tunnel to place the superconducting linac inside it. Minimize civil construction cost and re-use for eRHIC already built and installed linac.

Page 4: STAR

4

IR-Design for MeRHIC IP-2

E.C. Aschenauer

no synchrotron shielding included allows p and heavy ion decay product tagging IP-2 height beam-pipe floor 5’-8” (with digging ~10’)

Page 5: STAR

5

Zeus @ HERA I

E.C. Aschenauer

Page 6: STAR

6

Zeus @ HERA II

E.C. Aschenauer

Page 7: STAR

7

Hera I vs Hera II

E.C. Aschenauer

Page 8: STAR

8

The Alan Caldwell detector

E.C. Aschenauer

e

p

HadronicCalorimeter

EM CalorimeterSi tracking stations

Compact – fits in dipole magnet with inner radius of 80 cm.Long - |z|5 m

Page 9: STAR

9

The Alan Caldwell detector

E.C. Aschenauer

2x14 Si tracking stations

Page 10: STAR

10

First ideas for a detector concept

E.C. Aschenauer

/ TRD

Dipol3Tm

Dipol3Tm

Solenoid (4T)

ZDC

FPDFED

// //

r: 5 ft / 1.5m

~15m

Page 11: STAR

11

Drift Chambers central trackingala BaBar

E.C. Aschenauer

Page 12: STAR

12E.C. Aschenauer

Page 13: STAR

13E.C. Aschenauer

Page 14: STAR

14E.C. Aschenauer

Page 15: STAR

15E.C. Aschenauer

Page 16: STAR

16E.C. Aschenauer

Page 17: STAR

17E.C. Aschenauer

Page 18: STAR

18E.C. Aschenauer

Page 19: STAR

19E.C. Aschenauer

Page 20: STAR

20E.C. Aschenauer

Page 21: STAR

21E.C. Aschenauer

Page 22: STAR

22E.C. Aschenauer

Page 23: STAR

23E.C. Aschenauer

Page 24: STAR

24E.C. Aschenauer

Page 25: STAR

25E.C. Aschenauer

Page 26: STAR

26

ToDo listoptimize magnetic fields

do we need 4T for solenoid and 3Tm for dipole what radiation length can we tolerate low Q2

optimize distance Dipole to Solenoidimpact of beam lines through the detector on physicsneed to optimize acceptance at low scattering angle

need acceptance down to 1o

finalize code to write root-trees

E.C. Aschenauer

Page 27: STAR

Start immediately at 12o’clock

Page 28: STAR
Page 29: STAR
Page 30: STAR

12:00 experimental area

Page 31: STAR
Page 32: STAR