Staphylococcus Epidermidis Accidental Pathogen

Embed Size (px)

Citation preview

  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    1/13

  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    2/13

    Quorum sensing

    A mthod o cll

    dnsity-dpndnt gn

    rgulation in bactria. Quorum

    snsing systms in

    Gram-positiv bactria

    commonly contain

    pptid-basd scrtd signalsand a mmbran-locatd

    snsor. Th staphylococcal

    quorum snsing systm is

    trmd agrand controls a

    sris o gns involvd in

    mtabolism and virulnc.

    Antimicrobial peptide

    A pptid such as a dnsin or

    cathlicidin, which hav

    antimicrobial activity.

    Antimicrobial pptids ar

    scrtd by th host, or

    xampl, by pithlial clls or

    into nutrophil phagosoms.

    (Ref. 10) an th bifim-psiti cinica isat S. epi-dermidis rP62A9. Ntaby, n gnm squnc is ytaaiab f any isat f ST2, th mst fqunty

    fun an ptntiay mst inasi ST.

    An opportunistic pathogen

    As pat f th human pithia micfa, S. epider-midis usuay has a bnign atinship ith its hst.Futhm, it has bn pps that S. epidermidismay ha a pbitic functin by pnting cnizatinf th hst by m s pathgns, such as S. aureus20.H, th is n ca inc inicating that S. epi-dermidis scts facts that ha an impact n thcnizatin f th micganisms in vivo.

    Th is itt infmatin n th nn-infctius,cnizing ifsty fS. epidermidis. H, S. epi-dermidis infctins an th mchanisms by hichS. epidermidis pmts isas ha bcm incas-ingy stui. Amng th CNS, S. epidermidis caussth gatst numb f infctins2,5. In cinica mic-bigy, th CNS a ftn ft unchaactiz, asth main ga is t istinguish btn S. aureus anth staphyccci. H, fm th stuis in hichspcis intificatin has bn pfm1,5, it can bassum that mst nn-spcifi CNS infctins au t S. epidermidis. In paticua, S. epidermidis p-snts th mst fqunt causati agnt f infctins fining mica ics, such as pipha cntaintanus cathts (CvCs)5. Ths infctins usu-ay cmmnc ith th intuctin f bactia fm

    th skin f th patint that f hath ca psnnuing ic instin an ha incas in numb,pbaby ing t th incas us f such ics1,21.Bstam infctins ccu in at ast 45 ut f y1,000 CvC instins pfm n patints in intnsica in th Unit Stats; at ast 22% f ths infctinsa caus byS. epidermidis1,21. In aitin t th abun-anc fS. epidermidis n th skin, this high fquncyf infctin is pbaby u t th abat mchanismsus t cniz catht sufacs (iscuss b).Futhm, S. epidermidis may b in in ps-thtic jint, ascua gaft, sugica sit, cnta nussystm shunt an caiac ic infctins5. Ntaby,

    an scn ny t S. aureus,S. epidermidis causs ~13%f psthtic a ncaitis (Pve) infctins, ith ahigh at f intacaiac abscsss (38%) an 24% m-

    taity22. H, Pve an th sius cmpicatinsa a amng S. epidermidis infctins, hich can bchaactiz as pminanty subacut an chnic.

    Th fact that S. epidermidis s nt usuay causs infctins aiss th intsting qustin f hyit is aantagus f this spcis t maintain a f iunc. Massyet al. ha p a mathmati-ca m utining h f a spcis ith a high f asymptmatic tansmissin, such as S. epidermidis,aiunt stains ut-cmpt iunt stains, hasf spcis in hich asymptmatic tansmissin is ,such as S. aureus, iunt stains ut-cmpt aiu-nt stains23. This m is bas n th assumptinthat S. epidermidis is m aiy tansmissib thanS. aureus. Th auths xpain that this assumptin is

    ai bcaus f th ispa cnizatin fS. epider-midis n human pithia (S. aureus amst xcusiycnizs th nas), th cnizatin f a humans ithS. epidermidis (S. aureus is ny fun in sm iniiu-as) an th spcific gntic facts in in cniza-tin an bactia intfnc, such as css-inhibitingquorum snsing signas (BOX 1). H, athugh qu-um snsing intfnc faus at ast n subtypfS. epidermidis S. aureusin vitro24,25, th is ninc that it has a in vivo20.

    In accanc ith th iunc ptntia fS. epidermidis an th Massyet al. m, S. epider-

    midis is quipp ith tminants that pmtpsistnc, such as immun asin mcus, aththan ths that aggssiy attack th hst, such astxins (iscuss b).

    Evasion of host defences

    Pathgns must a hst fncs t sui inth human by. Athugh ny a imit subst fhst fnc mchanisms, such as th puctinfantimicrobial pptids (AMPs), a psnt n humanskin26, S. epidermidis has t cp ith aius ai-tina mchanisms f hst fnc aft pntatin fth pithia bai. Th innat immun systm is th

    Box 1 | Cross-inhibition of the agrquorum sensing system

    Quorum sensing in staphylococci is accomplished by the agrsystem, which consists of an auto-inducing peptide (AIP)

    precursor peptide maturation and export enzyme (AgrB) and a two-component signal transduction system (AgrC and

    AgrA)146. Quorum sensing-controlled target genes ofagrare regulated directly by the DNA-binding protein AgrA or

    through the regulatory RNAIII147,148. AIPs (or pheromones) are 7 to 9 amino acids in length and have a conserved cysteine

    residue, the sulphhydryl group of which reacts with the carboxy-terminal carboxy group to form a thiolactone that is

    essential for activity149,150. Binding of the AIP to AgrC stimulates AgrC to autophosphorylate, which in turn leads to

    phosphorylation and activation of AgrA. AgrA activates the P2 promoter, which controls expression ofagrB, agrD, agrCandagrA, thereby closing the quorum sensing circuit. It also activates the P3 promoter, which drives expression of

    RNAIII and the embedded phenol-soluble modulin-toxin (encoded by hld).In general, AIPs of self activate the agrresponse, whereas AIPs of non-self (different species or subgroups) inhibit the

    agrresponse, unless the groups are closely related (for example, Staphyolococcus aureus agrtypes I and IV)146,151.

    Staphylococcus epidermidis agrtype I is the type that is by far most frequently isolated from infections. The AIP of

    S. epidermidis agrtype I inhibits all S. aureus agrtypes except for the rare type IV, whereas only S. aureus type IV

    inhibits S. epidermidis type I152. Interference by quorum sensing cross-inhibition between S. aureus and S. epidermidis

    therefore seems to be in favour ofS. epidermidis, but it is not known whether this has a role during colonization in vivo.

    R E V I E W S

    556 | AUGUST 2009 | volUMe 7 www.atu.m/vw/m

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176279%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176279%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176279%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3240443&ordinalpos=10&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3240443&ordinalpos=10&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176279%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176279%5borgn%5d
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    3/13

    |

    Attachment to thepolymer surface

    Attachment to hostmatrix proteins

    Host matrix proteins:SdrF, SdrG, SdrH,Ebp, AtlE and Aae

    Polymer surface:hydrophobicity, AtlE,Aae and teichoic acids

    PNAG,teichoic acids,Bap andAap

    PSMs?Proteases?

    Cellcell adhesionand proliferation

    Maturation

    agrexpressionin exposed layers

    Detachment

    Innate host defence

    A part o th immun systm

    that provids th irst lin o

    dnc, a ast rspons to

    invading microorganisms, basd

    on rcognition o pathogn-

    associatd molcular pattrns.

    Th innat immun systm

    consists mainly o phagocyts,

    platlts and scrtdantimicrobial pptids.

    Neutrophil

    Th most abundant lukocyt

    in human blood. Nutrophils

    ar th main clls that

    liminat invading

    microorganisms by uptak and

    subsqunt killing through

    ractiv oxygn spcis and

    antimicrobial protins and

    pptids.

    Acquired host defence

    A part o th immun systm

    that dpnds on

    antign-dpndnt clonal

    xpansion o T and B clls atr

    antign prsntation by

    prossional antign-prsnting

    clls. Th acquird rspons

    provids long-trm humoral

    (antibody-basd) and

    cll-mdiatd immunity, but is

    dlayd.

    Sortase

    An nzym that covalntly

    links scrtd bactrial surac

    protins to pptidoglycan.

    Most o ths protins ar

    substrats o sortas A and ar

    charactrizd by an LPXTGamino acid moti at th

    carboxyl trminus.

    Teichoic acid

    An anionic cll nvlop

    glycopolymr producd by

    Gram-positiv bactria,

    composd o many idntical

    sugarphosphat-rpating

    units. Tichoic acids can b

    linkd to pptidoglycan (wall

    tichoic acids) or to th

    cytoplasmic mmbran

    through a lipid anchor

    (lipotichoic acids).

    fist in f fnc against an inaing micganismsuch as S. epidermidis an acts in a nn-spcific ay. Fxamp, as a ky pat finnat host dnc, nutrophilsingst bactia an ki thm using acti xygn sp-cis an AMPs27. S. epidermidis has sa mchanismst a bing ingst an ki by nutphis, asutin b.

    Th f th spcific, acqui immun spns tS. epidermidis infctin is ss unst. Th factthat u immun systm has ifficutis caing ng-asting S. epidermidis infctins, spit th puctin fantibis against S. epidermidis ptins28, inicats thatth acquird host dnc systm might nt b fficintagainst S. epidermidis. This may b u, in pat, t S. epi-dermidis xpyms that ptct th cs fm anti-by cgnitin. Futhm, u immun systm mayha t act ss stngy t pant cnizingbactia.

    Biofilm formation. Bifims a muticua, sufac-attach aggmatins f micganisms. Thyha a chaactistic physigy an achitctu thatfm th basis f bifim sistanc t many antibiticsan mchanisms f hst fnc6. In accanc ith

    this gna ntin, S. epidermidis shs substantia,gnm-i aaptatin t th bifim m f gth,incuing nguatin f basic c pcsss suchas nucic aci, ptin an c a bisynthss29.Ths gn-guaty changs may xpain th imitactiity f many antibitics that tagt actiy gingcs (f xamp, pniciins30, amingycsis31 anquinns32) against S. epidermidis bifims.

    Bifim fmatin pcs by th initia ahsin fcs t a sufac an thi subsqunt agggatin intmuticua stuctus (fIG. 1). Thf, th p-mnt f a bifim quis ahsi fcs f bth thcnizatin f sufacs an th cc intactins.

    Disupti fcs a n f th fmatin f fui-fi channs that a imptant f nutint iyt a bifim cs an gi th matu bifim its typicath-imnsina stuctu. Disupti fcs a asin in th tachmnt f c custs fm th bi-fim, hich imits bifim xpansin an may a t thissminatin f infctin33.

    Ahsin t abitic sufacs such as cathts ismainy gn by bactia c sufac hyph-bicity34. Spcific ptins that affct sufac ahsinin S. epidermidis, such as th abunant sufac ptinAte35, a bifunctina ahsin an autysin, an th Bapptin (as knn as Bhp)36, a iky t cntibut tth hyphbic chaact f th c sufac.

    In vivo, matix ptins quicky c abitic su-facs such as ths f ining mica ics.S. epidermidis has a ast aay f sufac ptins caMSCrAMMs (micbia sufac cmpnnts cgniz-ing ahsi matix mcus) (TABLe 1), hich ha thptntia t intact ith matix ptins. MSCrAMMscan b canty bun t th bactia sufac bysortas A37 thugh as yt incmpty unst,nn-cant intactins ith sufac pyms suchas tichoic acids38(fIG. 2). Bining t fibingn an c-

    agn has bn mnstat f th canty anchptins SG (as knn as Fb) an SF39,40, spc-tiy, has th nn-canty bun autysins Atean Aa sh a ss-spcific intactin an can bin tfibingn, fibnctin an itnctin35,41.

    Th mst intnsiy stui MSCrAMM fS. epider-midis is SG, a fibingn-bining ptin that bngs tth sin/aspatat pat famiy. Th mmbs f thisfamiy, SF, SG an SH, a psnt in mst stainsfS. epidermidis42. SG has bn scib as ncs-say an sufficint t pmt S. epidermidis ahsint fibingn in vitro40,43 an pmts CvC-assciatinfctin in vivo44. SG bins t th thmbin caag

    Figure 1 bfm vpmt Staphylococcus epidermidis. Attachment to uncoated material is mainly dependent

    on cell surface hydrophobicity, whereas dedicated surface proteins mediate adhesion to host matrix-covered devices.

    After adhesion to the surface, exopolysaccharide (for example, poly-N-acetylglucosamine (PNAG), also known as PIA),

    specific proteins (Bap (also known as Bhp) and Aap) and accessory macromolecules (such as teichoic acids) aid

    intercellular aggregation. Mechanisms of biofilm maturation, structuring and detachment are poorly understood but

    possibly involve quorum sensing-controlled expression of detergent-like peptides and proteolytic activity in exposed

    layers of the biofilm. The gene expression profile is markedly different in the biofilm compared with in the planktonic

    mode of growth and includes downregulation of basic cell processes. PSM, phenol-soluble modulin.

    R E V I E W S

    NATUre revIewS |Microbiology volUMe 7 | AUGUST 2009 |557

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.uniprot.org/uniprot/O33635http://www.uniprot.org/uniprot/Q9KI13http://www.uniprot.org/uniprot/Q9KI14http://www.uniprot.org/uniprot/Q9KI12http://www.uniprot.org/uniprot/Q9KI12http://www.uniprot.org/uniprot/Q9KI14http://www.uniprot.org/uniprot/Q9KI13http://www.uniprot.org/uniprot/O33635
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    4/13

    Table 1 | Virulence factors ofStaphylococcus epidermidis

    Vu fat g Fut rf

    Biofilm formation through primary attachment to abiotic surfaces

    AtlE atlE An abundant bifunctional autolysin and

    adhesin that affects surface hydrophobicity

    35

    Aae aae A bifunctional autolysin and adhesin 41

    Teichoic acids Multiple biosynthetic genes In Staphylococcus aureus, teichoic acids

    affect attachment (through the binding of

    autolysins?)

    49

    Biofilm formation through primary attachment to matrix proteins

    SdrF sdrF Binds to collagen 39,47

    SdrG (also known as Fbe) sdrG (alsoknown as fbe) Binds to fibrinogen 43

    SdrH sdrH Putative binding function only 42

    Ebp ebp Binds to elastin (in S. aureus) 161

    AtlE and Aae atlE andaae Bind to various matrix proteins 35,41

    Intercellular aggregation

    PNAG (also known as PIA) icaA, icaD, icaB and icaC An intercellular polysaccharide adhesin 52,56

    Biofilm-associated protein Bap (also

    known as Bhp)

    bap (also known as bhp) An intercellular protein adhesin 36

    Accumulation-associated protein Aap aap An intercellular protein adhesin precursor that

    requires proteolytic processing for its activation

    75,76

    Teichoic acids Multiple biosynthetic genes Components of the biofilm matrix 50

    Protective exopolymers

    PNAG icaA, icaD, icaB and icaC Protects from IgG, AMPs, phagocytosis and

    complement

    97,98

    PGA capA, capB, capC andcapD Protects from AMPs and phagocytosis 94

    Resistance to AMPs

    SepA protease sepA Involved in AMP degradation 122

    Dlt, MprF, VraF and VraG dltA, dtlB, dtlC, dtlD, mprF, vraFandvraG Analogous to S. aureus, these proteins functionin thed-alanylation of teichoic acids (Dlt),

    lysylation of phospholipids (MprF) and putative

    AMP export (VraF and VraG)

    111113

    Aps system apsR (also known as graR),apsS (also known

    as graS) and apsX

    This system senses AMPs and regulates AMP

    resistance mechanisms

    110

    Toxins

    PSMs psm, psm, psm, hld, psm1 andpsm2 Pro-inflammatory cytolysins 29,92,106

    Exoenzymes

    Cysteine protease (SspB and Ecp);

    S. aureus staphopain homologue

    sspB Unknown: tissue damage? 87

    Metalloprotease or elastase (SepA);

    S. aureus aureolysin homologue

    sepA Involved in lipase maturation, AMP resistance

    and, potentially, tissue damage

    86,122,153

    Glutamylendopeptidase and serine

    protease (GluSE, SspA and Esp);

    S. aureus V8 protease homologue

    sspA Degradation of fibrinogen and complement

    factor C5

    87,88

    Lipases GehC and GehD gehC andgehD Persistence in fatty acid secretions? 154156

    Other factors

    Staphyloferrins sfna locus (S. aureus staphyloferrin A) Siderophores (iron acquisition) 157,158

    SitA, SitB and SitC sitA, sitB andsitC An iron importer 159

    FAME Unidentified Detoxification of bactericidal fatty acids 160

    AMP, antimicrobial protein; FAME, fatty acid modifying enzyme; IgG, immunoglobulin G; PGA, poly--glutamic acid; PNAG, poly-N-acetylglucosamine;PSM, phenol-soluble modulin.

    R E V I E W S

    558 | AUGUST 2009 | volUMe 7 www.atu.m/vw/m

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    5/13

    |

    Peptidoglycan

    Aap

    G5domains

    A repeats/domain

    Proteolyticprocessing

    LPXTG

    Lipoprotein

    LPXTG

    SD

    LTA

    WTA

    AtIE

    PGA

    SdrG

    PNAG

    Brepeat

    Ca2+Ca2+

    Zn2+

    Cytoplasmic membrane

    A

    sit in th B-chain f fibingn using a ck, ck anatch mchanism45. This mchanism is thught t a ta stabiiz MSCrAMMigan intactin. expssinf SG incass in an in vivo ninmnt46 an anti-bis t SG a psnt in human b42, mphasiz-ing th imptanc f SG f S. epidermidis infctin.rcnty, an imptant has as bn mnstatf SF uing nticua assist ic iin-atinfctin47. Sa aitina S. epidermidis MSCrAMMsha bn pict an ha ungn piminaychaactizatin48, athugh thi in matix ptinbining an iunc is nt yt unst.

    Aft initia ahsin, bifims p thugh

    intcua agggatin that is miat by many if-fnt sufac macmcus. Ths incu xp-ysacchai an ctain ptins, hich sm t bpminanty icat t th fmatin f th xta-cua bifim matix. In aitin, tichic acis49,50 anxtacua DNA iginating fm ys cs51 can haaccssy functins in agggatin, hich a iky t bpnnt n thi pyaninic chaact (fIG. 1).

    Many S. epidermidis stains puc a py-N-actygucsamin (PNAG) hmpym, asnam PIA, that suuns an cnncts S. epider-midis cs in a bifim52(fIG. 3). This pym, hichiffs fm th PNAG pyms fun in natu

    (such as chitin) by its 16 inkag52, has cnty asbn tct in many th micganisms, incuingYersinia pestis an Escherichia coli 53,54. Puctin fPNAG is cucia f bifim fmatin in vitro55,56 anhas a substantia impact n S. epidermidis bifim-ass-ciat infctin in mst anima ms5761. Th bisyn-thsis f PNAG is accmpish by th gn pucts fth ica (intcua ahsin) cus56. IcaA an IcaDpuc a chain fm actiat N-actygucsamin(GcNAc) mnms, th ngatin f hich ispnnt n th IcaC ptin, pbaby ing tth pict xpt functin f IcaC62. Patia -actyatin f th GcNAc sius is accmpish

    by th c sufac-cat nzym IcaB aft xpt63.D-actyatin intucs psiti chags int th th-is-nuta pym that a imptant f sufacbining f PNAG an its aius bigica functinsin bifim fmatin an immun asin, hich aiscuss b63. Puctin f PNAG is subjct t aang f guaty infuncs64, incuing many g-ba iunc guats6571 but xcuing th quumsnsing guat agr72. It is ss unst hichninmnta signas cnt PNAG xpssin, pa-ticuayin vivo, but th cmpxity f this guatinhighights th imptanc f PNAG f S. epidermidispathphysigy.

    Figure 2 | TStaphylococcusepidermidis ufa. Proteins such as SdrG and Aap can be attached to the cell

    surface through sortase-catalysed covalent anchoring. These proteins harbour a characteristic LPXTG motif at the

    carboxyl terminus, the threonine residue of which is linked to peptidoglycan. Many autolysins, such as AtlE, are anchored

    non-covalently, probably through interactions with teichoic acids. Furthermore, lipoproteins are attached to the surface

    through a fatty acid anchor that penetrates the cytoplasmic membrane. AtlE is a bifunctional adhesin and autolysin that

    contributes to biofilm formation through its surface hydrophobicity and by binding to host matrix proteins. SdrG is an

    example of the Sdr protein family of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules).

    Its serine/aspartate (SD) repeat region spans the peptidoglycan layer and its A region binds fibrinogen. The B repeats

    harbour a Ca2+ binding EF-hand domain. Aap proteins aggregate through Zn2+-dependent G5 domains and form fibrils

    that are likely to connect cells in the biofilm matrix. G5 domains also bind N-acetylglucosamine and can therefore interact

    with poly-N-acetylglucosamine (PNAG, also known as PIA). In a step that is crucial for the function of Aap in intercellular

    aggregation, the amino terminal region of the protein, comprising A repeats and the globular/domain, is

    proteolytically removed. PNAG is cationic and probably interacts with negatively charged surface polymers such as

    lipoteichoic acids (LTAs), wall teichoic acids (WTAs) and poly--glutamic acid (PGA). Green shading represents negative

    charge and blue shading represents positive charge.

    R E V I E W S

    NATUre revIewS |Microbiology volUMe 7 | AUGUST 2009 |559

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12303http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12319http://www.uniprot.org/uniprot/Q8GLC5http://www.uniprot.org/uniprot/P69519http://www.uniprot.org/uniprot/P69518http://www.uniprot.org/uniprot/Q6TYB1http://www.uniprot.org/uniprot/Q6TYB1http://www.uniprot.org/uniprot/P69518http://www.uniprot.org/uniprot/P69519http://www.uniprot.org/uniprot/Q8GLC5http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12319http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12303
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    6/13

    |

    N

    ActivatedGlcNAc

    NCC

    C

    PeptidoglycanTeichoic acids

    IcaB

    IcaC

    icaR

    sigB, sarAand luxS

    icaA icaD icaB icaC

    IcaDIcaA

    GlcNAc-transferase

    Export

    N

    a

    b

    1

    2

    3 De-acetylation

    Pseudopeptide

    A pptid that is ormd by

    pptid bonds through

    carboxyl groups othr than th

    -carboxyl group.

    M cnty, it as cgniz that PNAG is ntssntia f bifim fmatin in a S. epidermidisstains: stains that ack th ica gns can fm bi-fims73 an ica-ngati S. epidermidis stains habn isat fm bifim-assciat infctins74. Insm stains, bifim fmatin may b aitinay xcusiy miat by spcific sufac ptins,

    namy Bap36 an Aap75. Th Aap ptin quisptytic actiatin76 an zinc ins77 f its bifim-pmting ffct. Zn2+ is cucia f th muaassciatin f s-ca G5 tanm pats77, hichmay uni th fmatin f Aap-bas fibi-ikstuctus n th bactia sufac78(fIG. 2). Th sammains a knn t intact ith GcNAc ancan thf ptntiay bin t PNAG, fming aptinpysacchai bifim ntk79. Bcausin vitro bifim fmatin can b pnt by achating agnt in th stng bifim-fming stainS. epidermidis rP62A, it has bn suggst that bi-fim fmatin in this stain is sy pnnt n

    Aap77. In suppt f this bsatin, mncna anti-bis against Aap pnt bifim fmatin in thisstain80. H, this hypthsis is incnsistnt ithth pts that suppt pnnc n PNAG81an i nt fin ptin-miat bifim fmatint b imptant in th sam stain82. Thf, thcntibutin f ptins t S. epidermidis bifim f-matin an t th mchanisms in i quiintnsi futh instigatin. In aitin, th fin-ing that bifims cat sy ith ptins a ntas bust as ths cat ith PNAG74 inicats thatbth ptins an xpysacchai paticipat infficint S. epidermidis bifim fmatin.

    Biofilm detachment. In cntast t intcua agg-gatin, bifim stuctuing an tachmnt a pyunst in S. epidermidis. w kn that bifimtachmnt in S. epidermidis is cnt by th qu-um snsing systm agr, bcaus bifims that a ys-functina in th agrsystm a thick an ha anbius fct in tachmnt72,83. In S. aureus, a m

    has bn pps that ins agrxpssin in thxps ays f a bifim an pmts th tach-mnt f c custs fm th bifim sufac, thbycnting bifim xpansin84. likis, S. epidermidisagractiity is imit t th bifim sufac83, inicatingthat th is a cmmn staphyccca mchanism fquum snsing-cnt bifim tachmnt. Ttachmnt mchanisms ha bn pps: nzymaticgaatin f bifim xpyms an isuptin fnn-cant intactins by tgnt-ik mcus(fIG. 1). enzymatic gaatin f ptinacus bifimfacts has bn suggst as a mchanism fbifim tachmnt in S. aureus85, but inc f sucha functin f ptass in S. epidermidis has nt bnbtain. H, S. epidermidis s puc a sisf xptass ith substat spcificity that mays t ga sufac ptins8688. As f gaa-tin f bifim xpysacchai, staphyccci ntsm t ha a icat nzym f PNAG hyy-sis, in cntast t sa th bactia that pucPNAG89,90. Atnatiy, tgnt-ik mcus canisupt nn-cant (such as ctstatic an hy-phbic) intactins that ccu, f xamp, btnth catinic PNAG an aninic sufac pyms btn hyphbic gins f th bactia sufac.Th sht amphipathic phn-sub muins (PSMs)(f xamp, th S. epidermidis-txin; fIG. 4)ha bn

    pps t ha such a functin91. S. epidermidis PSMsan xptass a stictyagr-guat92,93, ningsuppt t th ia that thy may b in in bifimstuctuing.

    Protective exopolymers.S. epidermidis pucs xp-yms, namy py--gutamic aci (PGA) an PNAG,that ptct th bactium fm imptant mchanismsf innat hst fnc. Th psudopptid pym PGA,hich is synthsiz by th gn pucts f th capcus, is cucia f S. epidermidis sistanc t nutphiphagcytsis an AMPs, spit its s f puc-tin94. excpt fBacillus anthracis95, S. epidermidis is th

    Figure 3 | T xpaa p-N-atuam. a | The

    exopolysaccharide poly-N-acetylglucosamine (PNAG; also known as PIA), a partially

    de-acetylated 1-6-linked N-acetylglucosamine (GlcNAc) homopolymer involved inimmune evasion and biofilm aggregation, is synthesized by the membrane-located

    GlcNAc transferase IcaA, which needs the accessory IcaD membrane protein for

    activity (step 1). The growing PNAG chain is probably exported by the IcaC membrane

    protein (step 2). After export, IcaB de-acetylase, located on the cell surface, removes

    some of the N-acetyl groups, giving the polymer a cationic character that is essential for

    surface attachment (step 3). |The Ica proteins are encoded by the icagene locus

    containing the icaADBCoperon and the icaR gene, which encodes a regulatory protein.

    Expression of the icaADBC operon is regulated either directly at the icaA promoter orthrough expression of IcaR, both of which are controlled by a series of global regulatory

    proteins (SigB, SarA and LuxS). Furthermore, insertion and excision of the IS256element

    can turn PNAG expression off and on. Green shading represents negative charge and blue

    shading represents positive charge. C, carboxyl; N, amino.

    R E V I E W S

    560 | AUGUST 2009 | volUMe 7 www.atu.m/vw/m

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.uniprot.org/uniprot/Q9L470http://www.uniprot.org/uniprot/Q2FWM8http://www.uniprot.org/uniprot/Q2FWM8http://www.uniprot.org/uniprot/Q2FWM8http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12333http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12333http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12333http://www.uniprot.org/uniprot/Q2FWM8http://www.uniprot.org/uniprot/Q9L470
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    7/13

    |

    0$,9*7,,.,,.$,,',)$.

    0$4',,67,*'/9.:,,'791.)7..

    0$$',,67,*'/9.:,,'791.)..

    06,967,,(99.7,9',9..)..

    0*,,$*,,.9,.6/,(4)7*.

    0*,,$*,,.),.*/,(.)7*.

    0$'9,$.,9(,9.*/,'4)74.

    0()9$./).)).'//*.)/*11

    0),,1/9..9,6),.*/)*11(1(

    0(*/)1$,.'797$$,11'*$./*76,96,9(1*9*//*./)*)

    07*/$($,$1794$$44+'69./*76,9',9$1*9*//*./)*)

    06./$($,$179.$$4'4':7./*76,9',9(6*969/*.,)*)

    0(4/)'$,5699'$*,14':64/$6*,$*,9(1*,69,6.//*4

    0./)1$).',/($$,71'*74/*$6,91,,(669'0915)/*1

    S. aureusPSM4S. aureus-toxin

    S. epidermidis-toxinS. epidermidisPSMS. aureusPSM1

    S. aureusPSM2S. epidermidisPSMS. aureusPSM3

    S. epidermidisPSMS. aureusPSM1

    S. aureusPSM2S. epidermidisPSM1

    S. epidermidisPSM2S. epidermidisPSM3

    -type

    -type

    Amphipathic -helix

    Pathogen-associated

    molecular pattern

    A surac structur on

    pathogns that is rcognizd

    by th innat immun systm

    as non-sl and triggrs

    activation o innat host

    dnc, usually by binding to

    Toll-lik rcptors.

    ny knn ganism in hich PGA has a functin inpathgnsis. Futhm, PGA pmts th gth fS. epidermidis at high sat cncntatins an is inucun ths cnitins94. This is miniscnt f PGApuctin in many haphiic bactia, in hich PGA isthught t cntibut t smtanc96, an inicats a f PGA uing S. epidermidis cnizatin. Finay,xpssin f th cap gns sms t b incas u-ing th bifim m f gth29. Intstingy, PGA ispsnt in many CNS but is absnt fm S. aureus9.

    In aitin t its as pat f th xtacua bifimmatix, PNAG has bn fun t ptct S. epidermidisfm nutphi kiing, cmpmnt psitin, immu-ngbuins an AMPs97,98, an as fm Caenorhabditiselegans immun fncs in a nmat infctinm99. Th catinic PNAG ptcts cs fm AMPs fcatinic an aninic chag, inicating that its mchanismf actin may nt b imit t ctstatic pusin fAMPs f th sam chag98. It may thf as k bysqusting ppsity chag AMPs in a simia ay tth pps mchanism f ptctin fm tbamycinbyPseudomonas aeruginosa aginat100.

    Pathogen-associated molecular patterns.Pathogn-associatd molcular pattrns (PAMPs) a stuctus nth bactia sufac that th innat immun systm c-gnizs as nn-sf thugh icat pathgn cg-nitin cpts (Prrs), such as th T-ik cpts(Tlrs)52. PAMPs such as ipptins an iptichicacis a cmmn in Gam-psiti bactia. rcgnitinf PAMPs actiats hst fnc mchanisms that incuphagcytsis an cytkin as101. Futhm, tha pts suggsting that sa aitina mcusthat a spcific t S. epidermidis may stimuat th innathst fnc spns. F xamp, PNAG as ptt stimuat Tlr2(Ref. 102). rcgnitin f PNAG by th

    human immun systm u b an intsting xam-p f th hi-an-sk intpay btn pathgnan hst, as this u man that a substanc us byS. epidermidis f immun asin can tigg innat hstfnc mchanisms. H, this has nt bn cn-fim using gntic tin mutants, hich u bimptant t u ut th pssibiity that cntaminatingp-infammaty substancs (f xamp, ipptins) th basis f th bs ffct; such cntamina-tin has t fqunt misintificatin f agTlr2 stimuats103105. Simiay, th p-infammatycapacitis fS. epidermidis PSMs106 ha nt yt bncnfim using synthtic pptis gn tinmutants. H, S. epidermidis PSMs a simia tS. aureus PSMs, f hich hst fnc tigging actiityhas bn cnfim107, hich inicats that th scibp-infammaty ffct fS. epidermidis PSMs is gnu-in, athugh th actiatin f Tlr2 by PSMs108 hasnt bn ifi. Finay, an unusua sht-chain p-infammaty iptichic aci has bn scib inS. epidermidis109. H, chmica chaactizatin fth puifi mcu i nt inicat that this mcuis a tichic aci-at pym, an thus th intity f

    this mcu an its p-infammaty actiity mainsunknn. Thf, th is a ca n f futhchaactizatin fS. epidermidis mcus that actiathst fncs.

    Sensing antimicrobial peptides. Just as th humanimmun systm cgnizs S. epidermidis PAMPs, S. epi-dermidis has mchanisms t sns th psnc f hamfumcus puc by th hst. An AMP-snsing sys-tm tm aps has bn intifi that is actiat by aang f AMPs an tiggs upguatin f staphycc-ca AMP-fnsi mchanisms110(fIG. 5). Ths mcha-nisms incu th d-aanyatin f tichic acis111 an

    Figure 4 | P-u mu. A sequence alignment ofStaphylococcus epidermidis and Staphylococcus aureus

    phenol-soluble modulins (PSMs) is shown. PSMs serve as immune evasion molecules to their bacterial producer and as

    pathogen-associated molecular patterns (PAMPs) for pathogen recognition to the host. All PSMs contain an amphipathic

    -helix and amino-terminal N-formyl methionine, as they are secreted without post-translational processing, in an

    unknown manner. PSMs of the -type are short, containing approximately 2025 amino acids. The S. aureus PSM

    peptides 1 4 are strongly cytolytic. PSMs of the -type are longer (~45 amino acids) and do not have any substantial

    cytolytic activity. Only the-toxin, an-type PSM with moderate cytolytic activity, and the -type PSMs are secreted by

    S. epidermidis in large amounts. Despite being part of the psmoperon, the PSM3 peptide is not found in S. epidermidisculture filtrates, for unknown reasons. The psm1 gene is duplicated in some strains ofS. epidermidis.

    R E V I E W S

    NATUre revIewS |Microbiology volUMe 7 | AUGUST 2009 |561

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9548http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9548http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12339http://www.uniprot.org/uniprot/O60603http://www.uniprot.org/uniprot/O60603http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12339http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9548http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9548
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    8/13

    + ++ +

    |

    Repulsion

    Repulsion

    Anionic cell surface

    MprF

    ApsX

    ApsR

    ApsS

    Teichoicacid

    Cationic AMP

    D-alanylation ofteichoic acids

    Lysylation ofphosphatidylglycerol Export by VraFG

    DItA

    DItC

    DItB

    DItD

    D-Ala

    VraFG

    Activation ofaps-controlledresistance mechanisms

    D-Ala

    D-Ala D-Ala

    D-Ala

    +

    +

    +

    +

    Two-component system

    A bactrial snsory systmcomposd o a mmbran-

    locatd snsor (histidin

    kinas) and a cytoplasmic

    DNA-binding rgulatory

    protin (rspons rgulator).

    Th autophosphorylation-

    dpndnt activation o

    two-componnt systms is

    triggrd by an xtracllular

    signal.

    Enterotoxin

    A protin toxin rlasd by

    a microorganism into th

    intstin o its host.

    th ysyatin f phsphipis by th MpF nzym112,bth f hich cas th aninic chag f th bactiasufac, thby pnting fficint attactin f catinicAMPs. Aitinay, th vaF an vaG ptins113 pssi-by functin as an AMP xpt by ming AMPs fmth cytpasmic mmban. Thf, th apssystm thfist xamp f an AMP sns in Gam-psiti bactia has a simia functin t th PhPPhQ AMP snsfun in Gam-ngati bactia114, but is nt utin-aiy at. Imptanty, th actiatin an ptctispns f th aps systm is imit t catinic AMPs.Futhm, th apssystm psnts a uniqu xampf a th-cmpnnt sns guat that cntains anssntia cmpnnt f unknn functin, ApsX, in ai-tin t th cassica cmpnnts f a two-componnt systm,

    th histiin kinas ApsS (as knn as GaS) an thspns guat ptin, Apsr (as knn as Gar).

    Toxins

    In S. aureus, an many th bactia, txins a th mstimptant cntibuts t aggssi iunc. In cntastt th ast txin pti fS. aureus, S. epidermidis txinpuctin is msty imit t PSMs. Athugh stain-spcific puctin fntrotoxins has bn scib115,116,S. epidermidis is nt gnay accpt as an nttxinpuc. By cntast, in an auatin f ~200 S. epi-dermidis stains, a fun t puc PSMs xcptths stains that natuayagr-ysfunctina72,92,117

    (fIG. 4). PSMs a chaactisticay sht, amphipathic,-hica pptis an ha p-infammaty an sm-tims cytytic functins. Th S. epidermidis-txin (asca PSM), a 24-amin aci ppti that iffs fmits S. aureus hmgu in ny n amin aci psitin,has bn suggst t b in in nctizing nt-citis in nnats118. Sm S. epidermidis PSMs aat t S. aureus PSMs that ha a pnunc capacityt ys human nutphis107. H, th PSM puc-tin pattn in S. epidermidis shs stng puctin fny th maty cytytic -txin an nn-cytytic-typ PSMs29. Thf, th PSM puctin pattn inS. epidermidis, in aitin t th gna absnc f highyaggssi txins in this spcis, is in cntast ith th highcytytic ptntia fS. aureus. This unpins th Massy

    et al.23 m, hich ppss an utinay aantagf th aggssinss fS. epidermidis.

    Colonization and pathogenesis

    Sa stuis ha attmpt t intify th tmi-nants that istinguish S. epidermidis stains hich cancaus infctin fm ths that i n th skin. Thsstuis ith fcus n putati iunc tminants us gnm-i appachs such as cmpaatignmic hybiizatin1719,119. T main putati t-minants fS. epidermidis inasinss intifi inths stuis: th ica gns, hich guat th puc-tin f PNAG, an th instin mnt IS256. IS256is

    Figure 5 | T atma ppt a uat Ap. Cationic antimicrobial peptides (AMPs) attach to the

    negatively charged bacterial surface and membrane by electrostatic interactions, a prerequisite for AMP antimicrobial

    activity that is often based on pore formation in the bacterial cytoplasmic membrane. The Staphylococcus epidermidis ApsS

    AMP sensor has one short extracellular loop with a high density of negatively charged amino acid residues that interact with

    cationic AMPs. Transduction of this interaction signal through ApsS and the essential accessory ApsX, which has an unknown

    function, triggers the expression of key AMP resistance mechanisms. The d-alanylation of teichoic acids, which is carried out

    by the products of the dltoperon, and lysylation of phosphatidylglycerol, which is catalysed by the MprF enzyme, result in the

    decreased negative charge of the cell surface and membrane, respectively, leading to decreased attraction or repulsion of

    cationic AMPs. The VraF and VraG ABC transporter also promotes resistance to AMPs and probably functions as an AMP

    exporter. Green shading represents negative charge and blue shading represents positive charge.

    R E V I E W S

    562 | AUGUST 2009 | volUMe 7 www.atu.m/vw/m

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.uniprot.org/uniprot/Q5HPI1http://www.uniprot.org/uniprot/Q8CTL4http://www.uniprot.org/uniprot/Q5HR81http://www.uniprot.org/uniprot/Q5HR81http://www.uniprot.org/uniprot/Q8CTL4http://www.uniprot.org/uniprot/Q5HPI1
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    9/13

    |

    Colonization

    Mechanical resistance (biofilm)

    Immune evasion and AMPs

    Immune evasion and AMPs

    Immune evasion and AMPs

    Osmoprotection

    Adhesion to tissue

    Pathogenesis

    Mechanical resistance (biofilm)

    Immune evasion, AMPs,immunoglobulins,

    complement and phagocytosis

    Immune evasion, AMPsand phagocytosis

    Immune evasion and AMPs

    Adhesion to tissue

    PNAG

    Biofilmproteins

    (Aap and Bhp)

    Protease(SepA)

    PGA

    MSCRAMMs

    Methicillin

    A pnicillin drivativ that is

    rsistant to pnicillinas (an

    nzym widsprad in

    staphylococci that provids

    rsistanc to pnicillin).

    Mobile genetic element

    DNA such as a plasmid or

    transposon that can b

    xchangd btwn bactria

    by horizontal gn transr.

    Mobil gntic lmnts otn

    carry virulnc or antibiotic

    rsistanc gns.

    thught t cntibut t th gntic aaptatin that mayha a uing infctin65. F xamp, it may st abish th puctin f PNAG th functin f thagrgba iunc guat by insting int th ica agrci, spctiy83,120. Th catin f th ps-nc f PNAG ith th inasinss f th bactia mayb u t th s f this xpym in bifim fmatinan immun asin. In aitin, suts fm a humancnizatin m inicat that ica-ngati stains cann ha a scti aantag th ica-psiti stainsn th skin121. H, th inc suggsts that hncct f cna atnss, th a n iffncsbtn cmmnsa an infctius stains119.

    Sa ins f inc inicat that mst iuncfacts fS. epidermidis iginay ha s in th cm-mnsa ifsty f this spcis (fIG. 6). Th pats payby PNAG, PGA an th SpA ptas in ptctingth bactium fm AMPs inicat that ths pymsas ha a ky uing if n th skin63,94,122, h

    AMPs a a maj tminant f innat hst fnc.Futhm, intcua ahsin by PNAG anbifim-at ptins can b assum t b ita inan ninmnt such as th skin, h th bactiumxpincs cnsiab mchanica stss. Aitinay,th f PGA in smtanc94 suggsts an iginafunctin f this pym in th nn-infctius ifstyfS. epidermidis. M, n ca iffncs habn bs in th numb f MSCrAMMS fminfctius an cmmnsa stains fS. epidermidis, ini-cating that ths ptins a auab uing bth infc-tin an cnizatin. This maks sns, as ahsin thst tissu is cnsi t b impati uing bth

    ifstys. S. epidermidis shu thf b gaas an accinta pathgn, th cinica imptanc fhich stms ss fm a icat infctius ifstyan m fm th fquncy f cntaminatin nts anth xistnc f mchanisms, such as ahsinan immun asin, that a bnficia f th bactiauing bth cnizatin an chnic infctin.

    Antibiotic resistance and prophylaxis

    Spcific antibitic sistanc gns a ispa inS. epidermidis. In many cuntis, incuing th UnitStats, 7590% f a hspita isats fS. epidermidis asistant t mthicillin, a fist-chic antibitic against sta-phyccca infctins; this is n high than th c-spning at f S. aureus (4060%)123. In sm cuntis,such as Th Nthans, fficint sach-an-stypgamms an stict hygin masus ha suc-c in kping th panc f mthiciin-sistantS. aureus in hspitas at a 124, has this haspn much ss succssfu f mthiciin-sistantS. epidermidis125. rsistanc t mthiciin is nc

    n mobil gntic lmnts (MGes), namy th sta-phyccca casstt chmsm mec (SCCmec).This casstt chmsm cntains th mecA gn,hich ncs a pniciin-bining ptin, PBP2a,ith cas affinity f mthiciin cmpa ithth affinitis f th PBPs126. In S. epidermidis, 10 if-fnt SCCmec stuctus intifi; th shtSCCmec typ Iv mnt127 as th mst abunant(36%)128. SCCmec typ Iv pss a paticua pbm,as it s nt imps a fitnss cst t its hst an canthf spa in th absnc f scti antibiticpssu129. Intstingy, csy at stains can cayiffnt SCCmec typs, inicating that S. epidermidisfqunty ss an acquis SCCmec mnts128.

    In aitin t mthiciin sistanc, S. epidermidisstains ha acqui sistanc t sa th antibit-ics, incuing ifamycin, fuquinns, gntamycin,ttacycin, champhnic, ythmycin, cinamy-cin an suphnamis5. rsistanc t stptgamins,inzi an tigcycin as ccus, athugh ay.Mst antibitic sistanc gns a pasmi-ncan a m ftn fun in mthiciin-sistant thanmthiciin-suscptib stains130. This is pbaby ut th fact that sistanc t mthiciin an th anti-bitics is fqunt amng nmic nscmia stains.Dspit ispa sistanc t mthiciin an thantibitics, 80% f cathts infct ith S. epidermidis

    can sti b tat ith antibitics such as ancmycin,ithut catht ma131. H, intmiatsistanc t ancmycin has as bn scib132 anstaphyccca bifim fmatin significanty cassth actiity f ancmycin an th antibitics133135.

    Th fquncy f antibitic sistanc in S. epider-midis fcts th us f antibitics. Futhm,th ubiquity fS. epidermidis as a human cmmnsamicganism ns this bactium an ptima caian si f antibitic sistanc gns, paticuayths that nt infict a maj fitnss cst t th bac-tium, such as SCCmec mnts. Accingy, th isinc suggsting that mthiciin sistanc casstts

    Figure 6 |Staphylococcus epidermidis a a mma a ftu

    mam. Determinants that are thought to contribute to both the colonization

    and the pathogenesis ofS. epidermidis are shown, along with their functions. In animal

    models, only the roles of poly-N-acetylglucosamine (PNAG; also known as PIA),

    poly--glutamic acid (PGA) and the MSCRAMM (microbial surface componentrecognizing adhesive matrix molecule) SdrG in infection have been determined. Other

    roles are based on in vitro experiments and environmental challenges during

    colonization and infection. Regulators such as agror sigB are not shown; these control

    many of the determinants shown and may therefore also have important functions

    during both S. epidermidis lifestyles. AMP, antimicrobial peptide.

    R E V I E W S

    NATUre revIewS |Microbiology volUMe 7 | AUGUST 2009 |563

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242263&ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242263&ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    10/13

    tansf fm S. epidermidis t S. aureus128,136.Th acquisitin f SCCmec typ Iv by cmmunity-assciat mthiciin-sistant S. aureus (CA-MrSA)127may ha ha an nmus impact n pubic hath: itcat a stain ith bth mthiciin sistanc, at ncst t fitnss, an xcptina iunc, hich asth mcua basis bhin th pimic caus byCA-MrSA137. CA-MrSA as acqui th MGes thatmay b imptant f fficint cnizatin by hizntagn tansf fm S. epidermidis138. Ths finings shthat S. epidermidis pis a si functin f thtansf f gntic mnts t nhanc th pathgnicsuccss fS. aureus, an thf has an imptant in human isas.

    Ths cnsiatins highight th n f p-phyactic masus against S. epidermidis infc-tins. vaccinatin an cnizatin, masus thata ftn iscuss f th pathgns incuingS. aureus, nt sm t b apppiat f S. epider-midis. Fist, th is n anti-staphyccca accinan sa ins f inc inicat that it may b

    ifficut t us taitina acti immunizatin fstaphyccci 139,140. Scn, aicatin fS. epider-midis as a cmmn pat f th human micfa maynt ny b ifficut t achi, ing t th fact that-cnizatin fm th iniiuas is fast, but itmay as tun ut t b cuntpucti, as it maya ptntiay m hamfu micganisms ttak th pac fS. epidermidis. Thf, it is cm-mny ag that th bst ay t a ith S. epi-dermidis infctins is by pntin, hich incusstiizatin f mica quipmnt an f by patsf patints an ths hath ca psnn h ain cntact ith ining mica ics uingsugy5.

    Unidirectional horizontal gene transfer?

    Intstingy, athugh th is inc t suggstthat S. epidermidis can fqunty tansf MGes tS. aureus136,138, this tansf sms t b n ay: S. epi-dermidis s nt cntain txin gns, spit th factthat acquisitin f such gns f m S. aureus usinga simia mchanism u sm asy. Th cntinstigatin f cust guay intspac sht

    painmic pat (CrISPr)squncs, sht patsthat ain in pnting th uptak f cnju-gati mnts such as phags an cnjugati pas-mis, may xpain hy th tansf f MGes btnS. epidermidis an S. aureus is uniictina141. Thssquncs ha bn fun in S. epidermidis, in nf th t gnm-squnc stains9, but nt inany f th many knn S. aureus gnms. CrISPr-miat pntin f MGe uptak in S. epidermidiscay ns t b futh auat, as this mcha-nism may psnt a mcua basis f th absncf a highy is txin pti an th sutingack f aggssi iunc in S. epidermidis.

    Outlook

    Kng abut th mcua mchanisms f bi-fim fmatin an thi guatin in S. epidermidisis amst xcusiy bas n in vitro sach. Thcntibutin f sm tminants such as PNAG5761,Ate142, SG44, SF47 an th guats agr83, luxS71an sigB143 t pathgnsis has bn mnstat

    using anima ms. Futhm, th is incinicating that imptant bifim facts a xpssin vivo61,144. Nthss, th is an ugnt n fm tai in vivo sach that cu pi mch-anistic insight int S. epidermidis bifim-assciatinfctin. A cnty cnstuct biuminscnt stainf a bifim-fming cinica isat fS. epidermidismay b hpfu in ths naus145.

    T auat ptntia n statgis t cmbatS. epidermidis infctins, n t btt un-stan th atinship btn th cmmnsa aninfctius ifstys f this bactium. T that n, shu m thughy instigat th tminantsthat nsu th suia fS. epidermidis in its natuahabitat; th pmnt f skin cnizatin msu b paticuay auab.

    Finay, th intactin fS. epidermidis ith thbactia an its si functin f gns that canb tansf t S. aureus i n t b uciat inm tai. F sa f ths tasks, it u b hpfut tmin th gnm squncs f aitina S. epi-dermidis stains (paticuay ths f ST2) that sm tb mst iy istibut amng infctius isats15.

    1. CDC. National Nosocomial Infections Surveillance

    (NNIS) system report, data summary from January

    1992 through June 2004, issued October 2004.Am.

    J. Infect. Control32, 470485 (2004).2. Uckay, I. et al. Foreign body infections due to

    Staphylococcus epidermidis.Ann. Med.41, 109119

    (2009).

    3. Dimick, J. B. et al. Increased resource use associated

    with catheter-related bloodstream infection in the

    surgical intensive care unit.Arch. Surg.136,

    229234 (2001).

    4. Rello, J. et al. Evaluation of outcome of intravenous

    catheter-related infections in critically ill patients.Am.

    J. Respir. Crit. Care Med.162, 10271030 (2000).

    5. Rogers, K. L., Fey, P. D. & Rupp, M. E. Coagulase-

    negative staphylococcal infections. Infect. Dis. Clin.

    North Am.23, 7398 (2009).

    This provides an excellent review on clinical aspects

    of S. epidermidis infections.6. Costerton, J. W., Stewart, P. S. & Greenberg, E. P.

    Bacterial biofilms: a common cause of persistent

    infections. Science284, 13181322 (1999).

    7. Kloos, W. & Schleifer, K. H. in Bergeys Manual of

    Systematic Bacteriology (eds Sneath, P. H. A., Mair, N.,

    Sharpe, M. E. & Holt, J. G.) 10131035 (Williams &

    Wilkins, Baltimore, 1986).8. Kloos, W. E. & Musselwhite, M. S. Distribution and

    persistence ofStaphylococcus and Micrococcus

    species and other aerobic bacteria on human skin.

    Appl. Microbiol.30, 381385 (1975).

    9. Gill, S. R. et al. Insights on evolution of virulence

    and resistance from the complete genome

    analysis of an early methicillin-resistant

    Staphylococcus aureus strain and a biofilm-

    producing methicillin-resistant Staphylococcus

    epidermidis strain.J. Bacter iol. 187,

    24262438 (2005).

    This article describes the sequencing and

    comparison of the genomes of biofilm-forming

    S. epidermidis and S. aureus.

    10. Zhang, Y. Q. et al. Genome-based analysis of virulence

    genes in a non-biofilm-forming Staphylococcus

    epidermidis strain (ATCC 12228). Mol. Microbiol.49,

    15771593 (2003).

    11. Wang, X. M. et al. Evaluation of a multilocus sequence

    typing system for Staphylococcus epidermidis.

    J. Med. Microbiol.52, 989998 (2003).

    12. Wisplinghoff, H. et al. Related clones containing SCCmectype IV predominate among clinically significant

    Staphylococcus epidermidis isolates.Antimicrob. Agents

    Chemother.47, 35743579 (2003).

    13. Thomas, J. C. et al. Improved multilocus sequence

    typing scheme for Staphylococcus epidermidis.J. Clin.

    Microbiol.45, 616619 (2007).

    14. Miragaia, M., Thomas, J. C., Couto, I., Enright, M. C.

    & de Lencastre, H. Inferring a population structure

    for Staphylococcus epidermidis from multilocus

    sequence typing data.J. Bacteriol.189, 25402552

    (2007).

    This article details an investigation of the

    population structure of S. epidermidis.

    15. Li, M., Wang, X., Gao, Q. & Lu, Y. Molecular

    characterization ofStaphylococcus epidermidis

    strains isolated from a teaching hospital in

    Shanghai, China.J. Med. Microbiol.58, 456461

    (2009).

    R E V I E W S

    564 | AUGUST 2009 | volUMe 7 www.atu.m/vw/m

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242738&ordinalpos=12&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242738&ordinalpos=12&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    11/13

    16. Galdbart, J. O., Allignet, J., Tung, H. S., Ryden, C. & El

    Solh, N. Screening for Staphylococcus epidermidis

    markers discriminating between skin-flora strains and

    those responsible for infections of joint prostheses.

    J. Infect. Dis.182, 351355 (2000).

    17. Gu, J. et al. Bacterial insertion sequence IS256as a

    potential molecular marker to discriminate invasive

    strains from commensal strains ofStaphylococcus

    epidermidis.J. Hosp. Infect.61, 342348 (2005).18. Kozitskaya, S. et al. The bacterial insertion sequence

    element IS256occurs preferentially in nosocomial

    Staphylococcus epidermidis isolates: association withbiofilm formation and resistance to aminoglycosides.

    Infect. Immun.72, 12101215 (2004).

    19. Yao, Y. et al. Factors characterizing Staphylococcus

    epidermidis invasiveness determined by comparative

    genomics. Infect. Immun.73, 18561860 (2005).

    20. Lina, G. et al. Bacterial competition for human nasal

    cavity colonization: role of staphylococcal agralleles.

    Appl. Environ. Microbiol.69, 1823 (2003).

    21. OGrady, N. P. et al. Guidelines for the prevention of

    intravascular catheter-related infections. MMWR

    Recomm. Rep.51, 126 (2002).

    22. Chu, V. H. et al. Coagulase-negative staphylococcal

    prosthetic valve endocarditis a contemporary

    update based on the International Collaboration on

    Endocarditis: prospective cohort study. Heart95,

    570576 (2009).

    23. Massey, R. C., Horsburgh, M. J., Lina, G., Hook, M. &

    Recker, M. The evolution and maintenance of virulence in

    Staphylococcus aureus: a role for host-to-host

    transmission? Nature Rev. Microbiol.4, 953958

    (2006).

    This article reviews the mathematical model that

    explains the evolution of lifestyle differences

    between S. epidermidis and S. aureus.

    24. Otto, M., Sussmuth, R., Vuong, C., Jung, G. & Gotz, F.

    Inhibition of virulence factor expression in

    Staphylococcus aureus by the Staphylococcus

    epidermidisagrpheromone and derivatives. FEBS

    Lett.450, 257262 (1999).

    25. Carmody, A. B. & Otto, M. Specificity grouping of the

    accessory gene regulator quorum-sensing system of

    Staphylococcus epidermidis is linked to infection.

    Arch. Microbiol.181, 250253 (2004).

    26. Harder, J. & Schroder, J. M. Antimicrobial peptides in

    human skin. Chem. Immunol. Allergy86, 2241 (2005).27. Faurschou, M. & Borregaard, N. Neutrophil granules

    and secretory vesicles in inflammation. Microbes

    Infect.5, 13171327 (2003).

    28. Pourmand, M. R., Clarke, S. R., Schuman, R. F., Mond,

    J. J. & Foster, S. J. Identification of antigenic

    components ofStaphylococcus epidermidis expressedduring human infection. Infect. Immun.74,

    46444654 (2006).

    29. Yao, Y., Sturdevant, D. E. & Otto, M. Genomewide

    analysis of gene expression in Staphylococcus

    epidermidisbiofilms: insights into the pathophysiology

    of S. epidermidisbiofilms and the role of phenol-

    soluble modulins in formation of biofilms.J. Infect.

    Dis.191, 289298 (2005).

    An investigation of genome-wide gene regulatory

    changes that occur in S. epidermidis biofilms.

    30. Khardori, N., Yassien, M. & Wilson, K. Tolerance of

    Staphylococcus epidermidis grown from indwelling

    vascular catheters to antimicrobial agents.J. Ind.

    Microbiol.15, 148151 (1995).

    31. Duguid, I. G., Evans, E., Brown, M. R. & Gilbert, P.

    Effect of biofilm culture upon the susceptibility of

    Staphylococcus epidermidis to tobramycin.

    J. Antimicrobiol. Chemother.30, 803810 (1992).32. Duguid, I. G., Evans, E., Brown, M. R. & Gilbert, P.

    Growth-rate-independent killing by ciprofloxacin ofbiofilm-derived Staphylococcus epidermidis; evidence

    for cell-cycle dependency.J. Antimicrobiol. Chemother.

    30, 791802 (1992).

    33. OToole, G., Kaplan, H. B. & Kolter, R. Biofilm

    formation as microbial development.Annu. Rev.

    Microbiol.54, 4979 (2000).

    34. Vacheethasanee, K. et al. Bacterial surface properties

    of clinically isolated Staphylococcus epidermidis

    strains determine adhesion on polyethylene.

    J. Biomed. Mater. Res.42, 425432 (1998).

    35. Heilmann, C., Hussain, M., Peters, G. & Gotz, F.

    Evidence for autolysin-mediated primary attachment

    ofStaphylococcus epidermidis to a polystyrene

    surface. Mol. Microbiol.24, 10131024 (1997).

    36. Tormo, M. A., Knecht, E., Gotz, F., Lasa, I. & Penades,

    J. R. Bap-dependent biofilm formation by pathogenic

    species ofStaphylococcus: evidence of horizontal gene

    transfer? Microbiology151, 24652475 (2005).

    37. Mazmanian, S. K., Liu, G., Ton-That, H. &

    Schneewind, O. Staphylococcus aureus sortase, an

    enzyme that anchors surface proteins to the cell wall.

    Science285, 760763 (1999).

    38. Navarre, W. W. & Schneewind, O. Surface proteins of

    Gram-positive bacteria and mechanisms of their

    targeting to the cell wall envelope. Microbiol. Mol.

    Biol. Rev.63, 174229 (1999).

    39. Arrecubieta, C., Lee, M. H., Macey, A., Foster, T. J. &

    Lowy, F. D. SdrF, a Staphylococcus epidermidis

    surface protein, binds type I collagen.J. Biol. Chem.

    282, 1876718776 (2007).40. Hartford, O., OBrien, L., Schofield, K., Wells, J. &

    Foster, T. J. The Fbe (SdrG) protein of

    Staphylococcus epidermidis HB promotes bacterial

    adherence to fibrinogen. Microbiology147,

    25452552 (2001).

    41. Heilmann, C. et al. Identification and characterization

    of a novel autolysin (Aae) with adhesive properties

    from Staphylococcus epidermidis. Microbiology149,

    27692778 (2003).

    42. McCrea, K. W. et al. The serine-aspartate repeat

    (Sdr) protein family in Staphylococcus epidermidis.

    Microbiology146, 15351546 (2000).

    43. Nilsson, M. et al. A fibrinogen-binding protein of

    Staphylococcus epidermidis. Infect. Immun.66,

    26662673 (1998).

    44. Guo, B., Zhao, X., Shi, Y., Zhu, D. & Zhang, Y.

    Pathogenic implication of a fibrinogen-binding

    protein ofStaphylococcus epidermidis in a rat model

    of intravascular-catheter-associated infection. Infect.

    Immun.75, 29912995 (2007).

    45. Ponnuraj, K. et al. A dock, lock, and latch

    structural model for a staphylococcal adhesin

    binding to fibrinogen. Cell115, 217228 (2003).

    This work elucidated the mechanism by which

    SdrG binds to fibrinogen.46. Sellman, B. R. et al. Expression ofStaphylococcus

    epidermidis SdrG increases following exposure to an

    in vivo environment. Infect. Immun.76, 29502957

    (2008).

    47. Arrecubieta, C. et al. SdrF, a Staphylococcus

    epidermidis surface protein, contributes to the

    initiation of ventricular assist device driveline-related

    infections. PLoS Pathog.5, e1000411 (2009).

    48. Bowden, M. G. et al. Identification and preliminary

    characterization of cell-wall-anchored proteins of

    Staphylococcus epidermidis. Microbiology151,

    14531464 (2005).

    49. Gross, M., Cramton, S. E., Gotz, F. & Peschel, A. Key

    role of teichoic acid net charge in Staphylococcus

    aureus colonization of artificial surfaces. Infect.

    Immun.69, 34233426 (2001).50. Sadovskaya, I., Vinogradov, E., Flahaut, S., Kogan, G.

    & Jabbouri, S. Extracellular carbohydrate-containing

    polymers of a model biofilm-producing strain,

    Staphylococcus epidermidis RP62A. Infect. Immun.

    73, 30073017 (2005).

    51. Rice, K. C. et al. The cidA murein hydrolase regulator

    contributes to DNA release and biofilm development

    in Staphylococcus aureus. Proc. Natl Acad. Sci. USA

    104, 81138118 (2007).

    52. Mack, D. et al. The intercellular adhesin involved in

    biofilm accumulation ofStaphylococcus epidermidis

    is a linear -1,6-linked glucosaminoglycan:

    purification and structural analysis.J. Bacteriol.

    178, 175183 (1996).

    This article details the structural characterization

    of the exopolysaccharide PNAG.

    53. Darby, C., Hsu, J. W., Ghori, N. & Falkow, S.

    Caenorhabditis elegans: plague bacteria biofilm

    blocks food intake. Nature417, 243244 (2002).

    54. Wang, X., Preston, J. F. I. & Romeo, T. The pgaABCDlocus ofEscherichia colipromotes the synthesis of a

    polysaccharide adhesin required for biofilm

    formation.J. Bacteriol.186, 27242734 (2004).

    55. Heilmann, C., Gerke, C., Perdreau-Remington, F. &

    Gotz, F. Characterization of Tn917insertion mutants

    ofStaphylococcus epidermidis affected in biofilm

    formation. Infect. Immun.64, 277282 (1996).

    56. Heilmann, C. et al. Molecular basis of intercellular

    adhesion in the biofilm-forming Staphylococcus

    epidermidis. Mol. Microbiol.20, 10831091

    (1996).

    This work identified the genetic locus that

    governs PNAG biosynthesis.

    57. Francois, P. et al. Lack of biofilm contribution to

    bacterial colonisation in an experimental model of

    foreign body infection by Staphylococcus aureus and

    Staphylococcus epidermidis. FEMS Immunol. Med.

    Microbiol.35, 135140 (2003).

    58. Rupp, M. E., Ulphani, J . S., Fey, P. D., Bartscht, K. &

    Mack, D. Characterization of the importance of

    polysaccharide intercellular adhesin/hemagglutinin

    ofStaphylococcus epidermidis in the pathogenesis

    of biomaterial-based infection in a mouse foreign

    body infection model. Infect. Immun.67,

    26272632 (1999).

    This was the firstin vivo analysis of an

    S. epidermidis virulence determinant (PNAG)

    using an isogenic mutant.

    59. Rupp, M. E., Ulphani, J . S., Fey, P. D. & Mack, D.

    Characterization ofStaphylococcus epidermidispolysaccharide intercellular adhesin/hemagglutinin

    in the pathogenesis of intravascular catheter-

    associated infection in a rat model. Infect. Immun.

    67, 26562659 (1999).60. Chokr, A., Leterme, D., Watier, D. & Jabbouri, S.

    Neither the presence ofica locus, nor in vitro-biofilm

    formation ability is a crucial parameter for some

    Staphylococcus epidermidis strains to maintain an

    infection in a guinea pig tissue cage model. Microb.

    Pathog.42, 9497 (2007).

    61. Fluckiger, U. et al. Biofilm formation, icaADBC

    transcription, and polysaccharide intercellular

    adhesin synthesis by staphylococci in a device-

    related infection model. Infect. Immun.73,

    18111819 (2005).

    62. Gerke, C., Kraft, A., Sussmuth, R., Schweitzer, O. &

    Gotz, F. Characterization of the

    N-acetylglucosaminyltransferase activity involved in

    the biosynthesis of the Staphylococcus epidermidis

    polysaccharide intercellular adhesin.J. Biol. Chem.

    273, 1858618593 (1998).

    This article describes the identification of the

    biochemical function of the IcaA and IcaD

    proteins.

    63. Vuong, C. et al. A crucial role for exopolysaccharide

    modification in bacterial biofilm formation, immune

    evasion, and virulence.J. Biol. Chem.279,

    5488154886 (2004).

    This study identified the biochemical function of

    the IcaB PNAG de-acetylase and showed its role

    in vitro andin vivo.

    64. OGara, J. P. ica and beyond: biofilm mechanisms

    and regulation in Staphylococcus epidermidis and

    Staphylococcus aureus. FEMS Microbiol. Lett.270,

    179188 (2007).

    65. Ziebuhr, W. et al. A novel mechanism of phase

    variation of virulence in Staphylococcus epidermidis:

    evidence for control of the polysaccharide

    intercellular adhesin synthesis by alternating

    insertion and excision of the insertion sequence

    element IS256. Mol. Microbiol.32, 345356(1999).

    66. Knobloch, J. K. et al. Biofilm formation by

    Staphylococcus epidermidis depends on functional

    RsbU, an activator of the sigB operon: differential

    activation mechanisms due to ethanol and salt

    stress.J. Bacteriol.183, 26242633

    (2001).

    67. Mack, D. et al. Identification of three essential

    regulatory gene loci governing expression of

    Staphylococcus epidermidis polysaccharide

    intercellular adhesin and biofilm formation. Infect.

    Immun.68, 37993807 (2000).

    68. Tormo, M. A. et al. SarA is an essential positive

    regulator ofStaphylococcus epidermidis biofilm

    development.J. Bacteriol.187, 23482356

    (2005).

    69. Handke, L. D. et al.B and SarA independently

    regulate polysaccharide intercellular adhesin

    production in Staphylococcus epidermidis. Can.

    J. Microbiol.53, 8291 (2007).70. Al Laham, N. et al. Augmented expression of

    polysaccharide intercellular adhesin in a defined

    Staphylococcus epidermidis mutant with the

    small-colony-variant phenotype.J. Bacteriol.189,

    44944501 (2007).71. Xu, L. et al. Role of the luxSquorum-sensing system

    in biofilm formation and virulence of

    Staphylococcus epidermidis. Infect. Immun.74,

    488496 (2006).

    72. Vuong, C., Gerke, C., Somerville, G. A., Fischer, E. R.

    & Otto, M. Quorum-sensing control of biofilm factors

    in Staphylococcus epidermidis.J. Infect. Dis.188,

    706718 (2003).

    73. Kogan, G., Sadovskaya, I., Chaignon, P., Chokr, A. &

    Jabbouri, S. Biofilms of clinical strains of

    Staphylococcus that do not contain polysaccharide

    intercellular adhesin. FEMS Microbiol. Lett.255,

    1116 (2006).

    R E V I E W S

    NATUre revIewS |Microbiology volUMe 7 | AUGUST 2009 |565

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    12/13

    74. Rohde, H. et al. Polysaccharide intercellular adhesin

    or protein factors in biofilm accumulation of

    Staphylococcus epidermidis and Staphylococcus

    aureus isolated from prosthetic hip and knee joint

    infections. Biomaterials28, 17111720 (2007).

    This article gives an exceptionally balanced view

    of the roles of proteins versus exopolysaccharide

    in S. epidermis biofilm formation, in contrast to

    several reports that point to the importance of

    protein-mediated biofilm formation.75. Hussain, M., Herrmann, M., von Eiff, C., Perdreau-

    Remington, F. & Peters, G. A 140-kilodaltonextracellular protein is essential for the accumulation

    ofStaphylococcus epidermidis strains on surfaces.

    Infect. Immun.65, 519524 (1997).

    76. Rohde, H. et al. Induction ofStaphylococcus

    epidermidisbiofilm formation via proteolytic

    processing of the accumulation-associated protein by

    staphylococcal and host proteases. Mol. Microbiol.

    55, 18831895 (2005).

    77. Conrady, D. G. et al. A zinc-dependent adhesion

    module is responsible for intercellular adhesion in

    staphylococcal biofilms. Proc. Natl Acad. Sci. USA

    105, 1945619461 (2008).

    This work shed light on the mechanism of Aap

    self-aggregation.

    78. Banner, M. A. et al. Localized tufts of fibrils on

    Staphylococcus epidermidis NCTC 11047 are

    comprised of the accumulation-associated protein.

    J. Bacteriol.189, 27932804 (2007).79. Bateman, A., Holden, M. T. & Yeats, C. The G5

    domain: a potential N-acetylglucosamine recognition

    domain involved in biofilm formation. Bioinformatics

    21, 13011303 (2005).

    80. Sun, D., Accavitti, M. A. & Bryers, J. D. Inhibition of

    biofilm formation by monoclonal antibodies against

    Staphylococcus epidermidis RP62A accumulation-

    associated protein. Clin. Diagn. Lab. Immunol.12,

    93100 (2005).

    81. Conlon, K. M., Humphreys, H. & OGara, J. P.

    Inactivations ofrsbUand sarA by IS256represent

    novel mechanisms of biofilm phenotypic variation in

    Staphylococcus epidermidis.J. Bacteriol.186,

    62086219 (2004).

    82. Chaignon, P. et al. Susceptibility of staphylococcal

    biofilms to enzymatic treatments depends on their

    chemical composition.Appl. Microbiol. Biotechnol.

    75, 125132 (2007).

    83. Vuong, C., Kocianova, S., Yao, Y., Carmody, A. B. &

    Otto, M. Increased colonization of indwelling medical

    devices by quorum-sensing mutants ofStaphylococcus

    epidermidisin vivo.J. Infect. Dis.190, 14981505

    (2004).This manuscript shows the role of the S. epidermidis

    agrquorum sensing regulatorin vivo.

    84. Yarwood, J. M., Bartels, D. J., Volper, E. M. &

    Greenberg, E. P. Quorum sensing in Staphylococcus

    aureus biofilms.J. Bacteriol.186, 18381850

    (2004).

    85. Boles, B. R. & Horswill, A. R. Agr-mediated dispersal

    ofStaphylococcus aureus biofilms. PLoS Pathog.4,

    e1000052 (2008).

    86. Teufel, P. & Gotz, F. Characterization of an extracellular

    metalloprotease with elastase activity from

    Staphylococcus epidermidis.J. Bacteriol.175,

    42184224 (1993).

    87. Dubin, G. et al. Molecular cloning and biochemical

    characterisation of proteases from Staphylococcus

    epidermidis. Biol. Chem.382, 15751582 (2001).

    88. Ohara-Nemoto, Y. et al. Characterization and

    molecular cloning of a glutamyl endopeptidase from

    Staphylococcus epidermidis. Microb. Pathog.33,

    3341 (2002).89. Kaplan, J. B. et al. Genes involved in the synthesis and

    degradation of matrix polysaccharide inActinobacillus

    actinomycetemcomitans andActinobacillus

    pleuropneumoniae biofilms.J. Bacteriol.186,

    82138220 (2004).90. Kaplan, J. B., Ragunath, C., Ramasubbu, N. & Fine,

    D. H. Detachment ofActinobacillus

    actinomycetemcomitans biofilm cells by an

    endogenous -hexosaminidase activity.J. Bacteriol.

    185, 46934698 (2003).

    91. Kong, K. F., Vuong, C. & Otto, M. Staphylococcus

    quorum sensing in biofilm formation and infection. Int.

    J. Med. Microbiol.296, 133139 (2006).

    92. Vuong, C. et al. Regulated expression of pathogen-

    associated molecular pattern molecules in

    Staphylococcus epidermidis: quorum-sensing determines

    pro-inflammatory capacity and production of phenol-

    soluble modulins. Cell. Microbiol.6, 753759 (2004).

    93. Yao, Y. et al. Characterization of the Staphylococcus

    epidermidis accessory-gene regulator response:

    quorum-sensing regulation of resistance to human

    innate host defence.J. Infect. Dis.193, 841848

    (2006).

    94. Kocianova, S. et al. Key role of poly--dl-glutamic acid

    in immune evasion and virulence ofStaphylococcus

    epidermidis.J. Clin. Invest.115, 688694 (2005).

    This article investigates the role of

    poly--dl-glutamic acid in S. epidermidis.

    95. Little, S. F. & Ivins, B. E. Molecular pathogenesis of

    Bacillus anthracis infection. Microbes Infect.1,131139 (1999).

    96. Oppermann-Sanio, F. B. & Steinbuchel, A. Occurrence,

    functions and biosynthesis of polyamides in

    microorganisms and biotechnological production.

    Naturwissenschaften 89, 1122 (2002).

    97. Kristian, S. A. et al. Biofilm formation induces C3a

    release and protects Staphylococcus epidermidis from

    IgG and complement deposition and from neutrophil-

    dependent killing.J. Infect. Dis.197, 10281035

    (2008).

    98. Vuong, C. et al. Polysaccharide intercellular adhesin

    (PIA) protects Staphylococcus epidermidis against

    major components of the human innate immune

    system. Cell. Microbiol.6, 269275 (2004).

    This study shows the important role of PNAG in

    immune evasion.

    99. Begun, J. et al. Staphylococcal biofilm

    exopolysaccharide protects against Caenorhabditis

    elegans immune defences. PLoS Pathog.3, e57

    (2007).

    100. Mah, T. F. et al. A genetic basis for Pseudomonas

    aeruginosa biofilm antibiotic resistance. Nature426,

    306310 (2003).

    101. Heine, H. & Ulmer, A. J. Recognition of bacterial

    products by Toll-like receptors. Chem. Immunol.

    Allergy86, 99119 (2005).

    102. Stevens, N. T. et al.Staphylococcus epidermidis

    polysaccharide intercellular adhesin induces IL-8

    expression in human astrocytes via a mechanism

    involving TLR2. Cell. Microbiol.11, 421432 (2008).

    103. Henneke, P. et al. Lipoproteins are critical TLR2

    activating toxins in group B streptococcal sepsis.

    J. Immunol.180, 61496158 (2008).

    104. Li, H., Nooh, M. M., Kotb, M. & Re, F. Commercial

    peptidoglycan preparations are contaminated with

    superantigen-like activity that stimulates IL-17

    production.J. Leukoc. Biol.83, 409418 (2008).

    105. Hashimoto, M. et al. Not lipoteichoic acid but

    lipoproteins appear to be the dominant

    immunobiologically active compounds in

    Staphylococcus aureus.J. Immunol.177,31623169 (2006).

    106. Mehlin, C., Headley, C. M. & Klebanoff, S. J.

    An inflammatory polypeptide complex from

    Staphylococcus epidermidis: isolation and

    characterization.J. Exp. Med.189, 907918 (1999).

    This article describes the identification and

    pro-inflammatory properties of the main

    S. epidermidis PSMs.107. Wang, R. et al. Identification of novel cytolytic peptides

    as key virulence determinants for community-

    associated MRSA. Nature Med.13, 15101514

    (2007).

    108. Hajjar, A. M. et al. Cutting edge: functional

    interactions between Toll-like receptor (TLR) 2 and

    TLR1 or TLR6 in response to phenol-soluble modulin.

    J. Immunol.166, 1519 (2001).

    109. Lambert, P. A., Worthington, T., Tebbs, S. E. & El liott,

    T. S. Lipid S, a novel Staphylococcus epidermidis

    exocellular antigen with potential for the serodiagnosis

    of infections. FEMS Immunol. Med. Microbiol.29,195202 (2000).

    110. Li, M. et al. Gram-positive three-component

    antimicrobial peptide-sensing system. Proc. Natl

    Acad. Sci. USA104, 94699474 (2007).

    This work identified and characterized the first

    Gram-positive AMP sensor in S. epidermidis.

    111. Peschel, A. et al. Inactivation of the dltoperon in

    Staphylococcus aureus confers sensitivity to

    defensins, protegrins, and other antimicrobial

    peptides.J. Biol. Chem.274, 84058410 (1999).

    112. Peschel, A. et al.Staphylococcus aureus resistance to

    human defensins and evasion of neutrophil killing via

    the novel virulence factor MprF is based on

    modification of membrane lipids with l-lysine.J. Exp.

    Med.193, 10671076 (2001).

    113. Li, M. et al. The antimicrobial peptide-sensing system

    aps ofStaphylococcus aureus. Mol. Microbiol.66,

    11361147 (2007).

    114. Bader, M. W. et al. Recognition of antimicrobial

    peptides by a bacterial sensor kinase. Cell122,

    461472 (2005).

    115. Marin, M. E., de la Rosa, M. C. & Cornejo, I.

    Enterotoxigenicity ofStaphylococcus strains isolated

    from Spanish dry-cured hams.Appl. Environ.

    Microbiol.58, 10671069 (1992).

    116. Bautista, L., Gaya, P., Medina, M. & Nunez, M.

    A quantitative study of enterotoxin production by

    sheep milk staphylococci.Appl. Environ. Microbiol.

    54, 566569 (1988).

    117. Klingenberg, C. et al. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care

    unit: virulence factors and invasiveness. Clin.

    Microbiol. Infect.13, 11001111 (2007).

    118. Scheifele, D. W., Bjornson, G. L., Dyer, R. A. &

    Dimmick, J. E. Delta-like toxin produced by coagulase-

    negative staphylococci is associated with neonatal

    necrotizing enterocolitis. Infect. Immun.55,

    22682273 (1987).

    119. Rohde, H. et al. Detection of virulence-associated

    genes not useful for discriminating between invasive

    and commensal Staphylococcus epidermidis strains

    from a bone marrow transplant unit.J. Clin. Microbiol.

    42, 56145619 (2004).

    120. Ziebuhr, W. et al. Modulation of the polysaccharide

    intercellular adhesin (PIA) expression in biofilm

    forming Staphylococcus epidermidis. Analysis of

    genetic mechanisms.Adv. Exp. Med. Biol.485,

    151157 (2000).

    121. Rogers, K. L., Rupp, M. E. & Fey, P. D. The presence of

    icaADBCis detrimental to the colonization of human

    skin by Staphylococcus epidermidis.Appl. Environ.

    Microbiol.74, 61556157 (2008).

    122. Lai, Y. et al. The human anionic antimicrobial peptide

    dermcidin induces proteolytic defence mechanisms in

    staphylococci. Mol. Microbiol.63, 497506 (2007).

    123. Diekema, D. J. et al. Survey of infections due to

    Staphylococcus species: frequency of occurrence and

    antimicrobial susceptibility of isolates collected in the

    United States, Canada, Latin America, Europe, and the

    Western Pacific region for the SENTRY Antimicrobial

    Surveillance Program, 19971999. Clin. Infect. Dis.

    32 , S114S132 (2001).

    124.Vos, M. C., Ott, A. & Verbrugh, H. A. Successful

    search-and-destroy policy for methicillin-resistant

    Staphylococcus aureus in The Netherlands.J. Clin.

    Microbiol.43, 2034; author reply 20342035

    (2005).

    125. van Pelt, C. et al. Strict infection control measures do

    not prevent clonal spread of coagulase negative

    staphylococci colonizing central venous catheters in

    neutropenic hemato-oncologic patients. FEMSImmunol. Med. Microbiol.38, 153158 (2003).

    126. Chambers, H. F., Hartman, B. J. & Tomasz, A.

    Increased amounts of a novel penicillin-binding protein

    in a strain of methicillin-resistant Staphylococcus

    aureus exposed to nafcillin.J. Clin. Invest.76,

    325331 (1985).

    127. Ma, X. X. et al. Novel type of staphylococcal cassette

    chromosome mec identified in community-acquired

    methicillin-resistant Staphylococcus aureus strains.

    Antimicrob. Agents Chemother.46, 11471152

    (2002).128. Miragaia, M., Couto, I. & de Lencastre, H. Genetic

    diversity among methicillin-resistant Staphylococcus

    epidermidis (MRSE). Microb. Drug Resist.11, 8393

    (2005).

    129. Diep, B. A. et al. The arginine catabolic mobile

    element and staphylococcal chromosomal cassette

    mec linkage: convergence of virulence and resistance

    in the USA300 clone of methicillin-resistant

    Staphylococcus aureus.J. Infect. Dis.197,15231530 (2008).

    130. Miragaia, M. et al. Molecular characterization of

    methicillin-resistant Staphylococcus epidermidis

    clones: evidence of geographic dissemination.J. Clin.

    Microbiol.40, 430438 (2002).

    131. Raad, I., Hanna, H. & Maki, D. Intravascular catheter-

    related infections: advances in diagnosis, prevention,

    and management. Lancet Infect. Dis.7, 645657

    (2007).

    132. Schwalbe, R. S., Stapleton, J. T. & Gilligan, P. H.

    Emergence of vancomycin resistance in coagulase-

    negative staphylococci. N. Engl. J. Med.316,

    927931 (1987).

    133. Gagnon, R. F., Richards, G. K. & Subang, R.

    Vancomycin therapy of experimental peritoneal

    catheter-associated infection (Staphylococcus

    epidermidis) in a mouse model. Perit. Dial. Int.13

    (Suppl. 2), 310312 (1993).

    R E V I E W S

    566 | AUGUST 2009 | volUMe 7 www.atu.m/vw/m

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/28/2019 Staphylococcus Epidermidis Accidental Pathogen

    13/13

    134. Richards, G. K., Prentis, J. & Gagnon, R. F. Antibiotic

    activity against Staphylococcus epidermidis biofilms in

    dialysis fluids.Adv. Perit. Dial.5, 133137

    (1989).

    135. Raad, I. et al. Comparative activities of daptomycin,

    linezolid, and tigecycline against catheter-related

    methicillin-resistant Staphylococcus bacteremic

    isolates embedded in biofilm.Antimicrob. Agents

    Chemother.51, 16561660 (2007).136. Hanssen, A. M., Kjeldsen, G. & Sollid, J. U. Local

    variants of staphylococcal cassette chromosome mec

    in sporadic methicillin-resistant Staphylococcusaureus and methicillin-resistant coagulase-negative

    staphylococci: evidence of horizontal gene transfer?

    Antimicrob. Agents Chemother.48, 285296 (2004).

    137. Chambers, H. F. The changing epidemiology of

    Staphylococcus aureus? Emerg. Infect. Dis.7,

    178182 (2001).

    138. Diep, B. A. et al. Complete genome sequence of

    USA300, an epidemic clone of community-acquired

    meticillin-resistant Staphylococcus aureus. Lancet

    367, 731739 (2006).

    139. DeLeo, F. R. & Otto, M. An antidote for

    Staphylococcus aureus pneumonia?J. Exp. Med.

    205, 271274 (2008).

    140. Otto, M. Targeted immunotherapy for staphylococcal

    infections: focus on anti-MSCRAMM antibodies.

    BioDrugs22, 2736 (2008).

    141. Marraffini, L. A. & Sontheimer, E. J. CRISPR

    interference limits horizontal gene transfer in

    staphylococci by targeting DNA. Science322,

    18431845 (2008).

    This article describes the functional characterization

    of CRISPR sequences in S. epidermidis.

    142. Rupp, M. E., Fey, P. D., Heilmann, C. & Gotz, F.

    Characterization of the importance ofStaphylococcus

    epidermidisautolysin and polysaccharide intercellular

    adhesin in the pathogenesis of intravascular catheter-

    associated infection in a rat model.J. Infect. Dis.183,

    10381042 (2001).143. Pintens, V. et al. The role ofB in persistence of

    Staphylococcus epidermidis foreign body infection.

    Microbiology154, 28272836 (2008).

    144.Vandecasteele, S. J., Peetermans, W. E., Merckx, R. &

    Van Eldere, J. Expression of biofilm-associated genes

    in Staphylococcus epidermidis during in vitro and

    in vivo foreign body infections.J. Infect. Dis.188,

    730737 (2003).

    145.Vuong, C., Kocianova, S., Yu, J., Kadurugamuwa, J. L.

    & Otto, M. Development of real-time in vivo imaging

    of device-related Staphylococcus epidermidis infection

    in mice and influence of animal immune status on

    susceptibility to infection.J. Infect. Dis.198,

    258261 (2008).

    146. Novick, R. P. & Geisinger, E. Quorum sensing in

    staphylococci.Annu. Rev. Genet.42, 541564

    (2008).147. Novick, R. P. et al. Synthesis of staphylococcal

    virulence factors is controlled by a regulatory RNA

    molecule. EMBO J.12, 39673975 (1993).148. Queck, S. Y. et al. RNAIII-independent target gene

    control by the agrquorum-sensing system: insight into

    the evolution of virulence regulation in Staphylococcus

    aureus. Mol. Cell32, 150158 (2008).149. Mayville, P. et al. Structureactivity analysis of

    synthetic autoinducing thiolactone peptides from

    Staphylococcus aureus responsible for virulence. Proc.

    Natl Acad. Sci. USA96, 12181223 (1999).

    150. Otto, M., Sussmuth, R., Jung, G. & Gotz, F. Structure

    of the pheromone peptide of the Staphylococcus

    epidermidisagrsystem. FEBS Lett.424, 8994

    (1998).

    151. Otto, M. Staphylococcus aureus and Staphylococcus

    epidermidis peptide pheromones produced by the

    accessory gene regulator agrsystem. Peptides22,

    16031608 (2001).

    152. Otto, M., Echner, H., Voelter, W. & Gotz, F. Pheromone

    cross-inhibition between Staphylococcus aureus and

    Staphylococcus epidermidis. Infect. Immun.69,

    19571960 (2001).

    153.Vuong, C., Gotz, F. & Otto, M. Construction and

    characterization of an agrdeletion mutant of

    Staphylococcus epidermidis. Infect. Immun.68,

    10481053 (2000).

    154. Simons, J. W. et al. Cloning, purification and

    characterisation of the lipase from Staphylococcus

    epidermidis comparison of the substrate selectivity

    with those of other microbial lipases. Eur. J. Biochem.

    253, 675683 (1998).

    155. Farrell, A. M., Foster, T. J. & Holland, K. T. Molecular

    analysis and expression of the lipase of

    Staphylococcus epidermidis.J. Gen. Microbiol.139,

    267277 (1993).

    156. Longshaw, C. M., Farrell, A. M., Wright, J. D. &

    Holland, K. T. Identification of a second lipase gene,

    gehD, in Staphylococcus epidermidis: comparison of

    sequence with those of other staphylococcal lipases.

    Microbiology146, 14191427 (2000).157. Lindsay, J. A., Riley, T. V. & Mee, B. J. Production of

    siderophore by coagulase-negative staphylococci and

    its relation to virulence. Eur. J. Clin. Microbiol. Infect.

    Dis.13, 10631066 (1994).

    158. Cotton, J. L., Tao, J. & Balibar, C. J. Identi fication and

    characterization of the Staphylococcus aureus gene

    cluster coding for staphyloferrin A. Biochemistry48,

    10251035 (2009).

    159. Cockayne, A. et al. Molecular cloning of a

    32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC

    transporter. Infect. Immun.66, 37673774 (1998).

    160. Chamberlain, N. R. & Brueggemann, S. A.

    Characterisation and expression of fatty acid modifying

    enzyme produced by Staphylococcus epidermidis.

    J. Med. Microbiol.46, 693697 (1997).

    161. Park, P. W., Rosenbloom, J., Abrams, W. R.,

    Rosenbloom, J. & Mecham, R. P. Molecular cloning

    and expression of the gene for elastin-binding protein

    (ebpS) in Staphylococcus aureus.J. Biol. Chem.271,

    1580315809 (1996).

    AcknowledgementsThis work was supported by the intramural research pro-

    gramme of the National Institute of Allergy and Infectious

    Diseases.

    DATABASESEntrez Gene:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehld |luxS|mecA

    Entrez Genome Project:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj

    Bacillus anthracis | Caenorhabditis elegans | Escherichia coli |

    Pseudomonas aeruginosa|Staphylococcus aureus |

    S. epidermidis ATCC 12228 | S. epidermidis RP62A |Yersinia

    pestis

    UniProtKB:http://www.uniprot.org

    -toxin | Aap | AtlE | GraR | GraS|IcaA | IcaB |IcaC|IcaD |MprF| SdrF | SdrG | SdrH | TLR2

    FURTHER INFORMATIONMichael Ottos homepage:http://www3.niaid.nih.gov/labs/

    aboutlabs/lhbp/pathogenMolecularGeneticsSection/otto.htm

    All links Are AcTiVe in The online PdF

    R E V I E W S

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3240443&ordinalpos=10&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242738&ordinalpos=12&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242738&ordinalpos=12&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242738&ordinalpos=12&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242263&ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3242263&ordinalpos=2&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprjhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprjhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12333http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9548http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12319http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12339http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12339http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12304http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12304http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176280%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176280%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176279%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=search&term=txid176279%5borgn%5dhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12303http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12303http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=12303http://www.uniprot.org/http://www.uniprot.org/http://www.uniprot.org/uniprot/Q2FWM8http://www.uniprot.org/uniprot/Q2FWM8http://www.uniprot.org/uniprot/Q9L470http://www.uniprot.org/uniprot/O33635http://www.uniprot.org/uniprot/Q5HR81http://www.uniprot.org/uniprot/Q8CTL4http://www.uniprot.org/uniprot/Q8CTL4http://www.uniprot.org/uniprot/Q8GLC5http://www.uniprot.org/uniprot/Q8GLC5http://www.uniprot.org/uniprot/Q6TYB1http://www.uniprot.org/uniprot/P69518http://www.uniprot.org/uniprot/P69518http://www.uniprot.org/uniprot/P69518http://www.uniprot.org/uniprot/P69519http://www.uniprot.org/uniprot/P6