27
stacking simulations for CR & CERL schemes Frank Zimmermann Thanks to: Robert Chehab, Masao Kuriki, Tsunehiko Omori, Louis Rinolfi, Junji Urakawa, Alessandro Variola, Alessandro Vivoli , Vitaly Yakimenko POSIPOL 2008, June 2008

stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

stacking simulationsfor CR & C‐ERL schemes

Frank Zimmermann

Thanks to:  Robert Chehab, Masao Kuriki, TsunehikoOmori, Louis Rinolfi, Junji Urakawa, Alessandro Variola, 

Alessandro Vivoli , Vitaly Yakimenko

POSIPOL 2008, June 2008

Page 2: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

various scenarios

Compton sourcesCompton ring – CR (“pulsed”), or Compton ERL – CERL (“continuous”)

accumulation ringsILC damping ring CLIC pre-damping ring

Page 3: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

(1) ILC-CR

Page 4: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

similar assumptions as for Snowmass’05

• stacking in longitudinal phase space

• ingredients: sinusoidal rf, momentum compaction, 

radiation damping and quantum excitation

• injection septum placed at location with large 

dispersion; septum blade << transverse beam size

• between successive injections orbit at the septum is 

varied with fast bumper magnets

• energy of injected beam is ramped such that the 

transverse septum position is always separated by 2 

σδ0 from injected beam centroid

Page 5: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

ILC‐CR injection scheme

• ILC 2008: inject every second turn (80 MHz) into the 

same bucket ‐ 30 times; then wait 10 ms (~450 

turns, ~1 damping time) and repeat 9 times; total 

injections/bucket: 300; synchrotron phase advance 

between two injections: 0.134

• simulation result (February’08) : 

35% loss  / cycle, total loss 76%!

Page 6: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

improve ILC‐CR stacking effiency

possible approaches – not (yet) used:

smaller momentum compaction factor

reduced synchrotron tune

larger interval between cycles

(but nominal already too long for vertical

damping – Vitaly Yakimenko; next slide)

Page 7: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

ILC DR “trouble” (Vitaly Yakimenko) 

final γεy,rms=0.017 microninitial  γεy,rms=6 mm

minimum store time Tstore follows from0.017*exp(2 Tstore/τy) μm=6000 μm

→ Tstore > 6.4 τy=164 msleaving only 36 ms for stacking

Page 8: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

improving ILC‐CR stacking efficiency

methods chosen:

energy pre‐compression [x3] (R. Chehab)additional DR wigglers for faster damping [x2]larger rf voltage [x 1.5]

→ 2008 ILC DR Compton version

Page 9: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

2 ILC-DR Snowmass ‘05 proposal

ILC 2008 –Compton version

pre-DR for CLIC (NLC 2004 design)

pre-DR for CLIC with higher Vrf

beam energy 5 GeV 5 GeV 1.98 GeV 1.98 GeVcircumference 3223 m 6695 m 230.93 230.93particles per extracted bunch 2.4x1010 2.0x1010 4.0x109 4.0x109

rf frequency 650 MHz 650 MHz 2 GHz 2 GHzharmonic number 6983 14516 1540 1540no. trains stored in the ring 10 (10/pulse) 52.5

(52.5/pulse)4 (1/pulse) 4 (1/pulse)

#bunches/train 280 50 312 312bunch spacing 4.202 ns 6.15 ns 0.5 ns 0.5 nsgap between trains 80 (336 ns) ~50 ns 73 (36.5 ns) 73 (36.5 ns)#e+ / injection 2.4x108 6.65x107 6.65x107 6.65x107

#turns between injections in 1 bucket 1 2 40 40injections/bucket per cycle 10 30 3 6injection frequency ~240 MHz 80 MHz ~50 MHz ~50 MHzfull cycle length 200 ms 200 ms 80 ms 80 mstime between injection periods 10 ms 10 ms 1.9 ms 3.8 ms#turns between cycles 930 450 2470 4935length of one injection period 0.107 ms 0.963 ms 0.046 ms 0.092 msTI=total # injections/bucket 100 300 60 60ST=store time after last injection 110 ms 110 ms 42 ms 42 msIP=time interval with injection periods 90 ms 90 ms 38 ms 38 msenergy loss/turn 5.5 MeV 8.7x2 MeV 0.803 MeV 0.803 MeVlongitudinal damping time τ|| 10 ms 6.4 ms 2 ms 2 ms

Page 10: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

ILC-DR Snowmass ‘05 proposal

ILC 2008-Compton version

pre-DR for CLIC (NLC 2004 design)

pre-DR for CLIC with higher Vrf

transv. normalized edge emittance at injection (10x rms)

0.05 rad-m 0.063 rad-m 0.063 rad-m 0.063 rad-m

transv. normalized dynamic aperture (Ax+Ay)gamma

>>0.05 rad-m?

0.4 rad-m 0.2 rad-m 0.2 rad-m?

rms bunch length at injection 3 mm 11.4 mm 3.8 mm 3.8 mmrms energy spread at injection 0.14% 0.04% (2 MeV) 0.28% 0.28%final rms bunch length 6 mm 5.2 mm 5.12 mm 1.62 mmfinal rms energy spread 0.14% 0.091 % 0.089% 0.089%longit. “edge” emittance at inj. 0.7 meV-s 0.72 meV-s 0.72 meV-s 0.72 meV-srf voltage 20 MV 36 MV 1.72 MV 17.2 MVmomentum compaction 3x10-4 4.2x10-4 1.69x10-3 1.69x10-3

2nd order momentum compaction 1.3x10-3 - - -synchrotron tune 0.0356 0.084 0.0188 0.0596bucket area 292 meV-s 129 meV-s 10 meV-s 61 meV-sICM=bucket area / long. edge emit. /π 133 57 4 30

RMIN=TI/ICM 0.75 5 15 2IP/RMIN/τ|| 12 2.8 1.3 9.5IP/RACT/τ|| 0.78 1.56 0.95 1.9synchronous phase 15.58o 28.97o 26.47o 2.55o

separatrix phases 1&2 164.42 o, -159.19 o

151.03 o, -82.64 o 153.53 o, -95.66 o 177.45 o, -140.11 o

max. momentum acceptance +/-2.7% +/- 1.6% +/- 1.0% +/- 4.4%

Page 11: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

cycle 1,  after 1st injection cycle 1, after 5th injection cycle 1, after 10th injection

cycle 1, after 30th injection cycle 2, before 1st injection cycle 2, after 1st injection

cycle 2, after 5th injection cycle 2, after 30th injection cycle 3, before 1st injection

simulation for ILC‐CR

Page 12: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

cycle 10, after 30th injection 10 ms after cycle 10 110 ms after cycle 10

~ 10.6% of injected e+ are lost!

similar loss fraction for single cycle 

→ stacking efficiency ~90% 

for ILC DR Compton version   

Page 13: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

questions & comments for ILC‐CR

2x3 km ring is option from Andy Wolski; it could reduce the damping times by factor 2, if we do not reduce the length of the wigglers

ring parameters can be considered somewhat flexible; at present parameters are optimized for the undulator based source

can we reduce initial energy spread to 2 MeV rms?

option of pre‐damping ring for ILC?

Page 14: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

(2) ILC-CERL

Page 15: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

continuous stacking (ERL option),~27MHz (Omori san,Variola san) 850 injections over 5100 turns (inject every 6th turn), followed by 5155 turns (~100 ms) damping; damping time 6.4 ms; inject with constant offset δ=1.2%σz=9 mm,σδ0=1x10‐4 (0.5 MeV, small!!): 63.7% loss

Omori san asked about “unstable point” injectionoffset δ=1.2% or 0.4%, z=0.1 m: 99.8% lossoffset δ=0.2%, z=‐0.1 m: 99.9% lossoffset δ=0.5%, z=0.01 m: 72.8% lossoffset δ=0.7%, z=0.01 m: 50% loss!! Method works!? offset δ=0.8%, z=0.01 m: 41.8% loss! offset δ=0.9%, z=0.01 m: 36.7% loss! 63% efficient

ILC‐CERL injection scheme ‐ A

<Vivoli san’s result:~ 2.9 MeV

Page 16: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

again continuous stacking (ERL option), ~32 MHz,1020 injections over 5100 turns (inject every 5th turn), followed by 5155 turns (~100 ms) damping; damping time 6.4 ms; inject with constant offset δ=0.9%, z=0.01 m

σz=9 mm,σδ0=1x10‐4 (0.5 MeV, small!!): 36% lossoffset δ=1.0%, z=0.01 m: 33% lossoffset δ=1.2%, z=0.01 m: 27% loss! 73% efficientoffset δ=1.3%, z=0.01 m: 23% loss! 77% efficientoffset δ=1.4%, z=0.01 m: 16% loss! 84% efficientoffset δ=1.5%, z=0.01 m: 9% loss! 91% efficient!

ILC‐CERL injection scheme ‐ Bover 6 turns synchrotron phase advance ~0.5!?perhaps better inject every 5th turn?!

Page 17: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

10 turns,  3 bunches  20 turns, 5 bunches 100 turns, 20 bunches

1000 turns, 200 bunches 5000 turns, 1000 bunches 100 ms after last injection

simulation for ILC‐CERL

→ stacking efficiency ~91% for ILC DR Compton version   

Page 18: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

(3) CLIC-CR

Page 19: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

CLIC beam parameters (updated ‘08 by Louis Rinolfi):at IP: 3.72x109 ppb, 312 bunches, 0.5 ns spacing, 156 ns (= ) train length, 50 Hz repetition raterequest 6x109 ppb e+ to account for downstream loss6.2x1010 e‐/bunch in 1.3 GeV Compton ring→ ~7x108 photons → 1.4x107 e+ ? injected in pre‐DRaccumulation over 460 turns yields target e+ number;could split this into 20x23 injections e.g.minimum pre‐DR circumference: 47 mQs is ~variable pre‐DR parameter;at exit of 2.2 GeV linac: σδ=2.7%?, σz=5mm (A.Latina) CLIC damping ring circumference: 365.2 m7 full trains fit into DR (7x more time for stacking;total available time 7x20 ms=140 ms!)

Page 20: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

to be updated?! ILC-DR Snowmass ‘05 proposal

ILC 2008 –Compton version

pre-DR for CLIC (NLC 2004 design)

pre-DR for CLIC Comptonversion withhigher Vrf

beam energy 5 GeV 5 GeV 1.98 GeV 1.98 GeVcircumference 3223 m 6695 m 230.93 230.93 (365m?)particles per extracted bunch 2.4x1010 2.0x1010 4.0x109 4.0 (4.4) x 109

rf frequency 650 MHz 650 MHz 2 GHz 2 GHzharmonic number 6983 14516 1540 1540no. trains stored in the ring 10 (10/pulse) 52.5

(52.5/pulse)4 (1/pulse) 4 (1/pulse)

#bunches/train 280 50 312 312bunch spacing 4.202 ns 6.15 ns 0.5 ns 0.5 nsgap between trains 80 (336 ns) ~50 ns 73 (36.5 ns) 73 (36.5 ns)#e+ / injection 2.4x108 6.65x107 6.65x107 6.65x107

#turns between injections in 1 bucket 1 2 40 40injections/bucket per cycle 10 30 3 6injection frequency ~240 MHz 80 MHz ~50 MHz ~50 MHzfull cycle length 200 ms 200 ms 80 ms 80 mstime between injection periods 10 ms 10 ms 1.9 ms 3.8 ms#turns between cycles 930 450 2470 4935length of one injection period 0.107 ms 0.963 ms 0.046 ms 0.092 msTI=total # injections/bucket 100 300 60 60ST=store time after last injection 110 ms 110 ms 42 ms 42 msIP=time interval with injection periods 90 ms 90 ms 38 ms 38 msenergy loss/turn 5.5 MeV 8.7x2 MeV 0.803 MeV 0.803 MeVlongitudinal damping time τ|| 10 ms 6.4 ms 2 ms 2 ms (0.5 ms?)

Page 21: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

to be updated?! ILC-DR Snowmass ‘05 proposal

ILC 2008-Compton version

pre-DR for CLIC (NLC 2004 design)

pre-DR for CLIC Comptonversion withhigher Vrf

transv. normalized edge emittance at injection (10x rms)

0.05 rad-m 0.063 rad-m 0.063 rad-m 0.063 rad-m

transv. normalized dynamic aperture (Ax+Ay)gamma

>>0.05 rad-m?

0.4 rad-m 0.2 rad-m 0.2 rad-m?

rms bunch length at injection 3 mm 11.4 mm 3.8 mm? 3.8 mm?rms energy spread at injection 0.14% 0.04% (2 MeV) 0.28%? 0.28%?final rms bunch length 6 mm 5.2 mm 5.12 mm 1.62 mmfinal rms energy spread 0.14% 0.091 % 0.089% 0.089%longit. “edge” emittance at inj. 0.7 meV-s 0.72 meV-s 0.72 meV-s 0.72 meV-srf voltage 20 MV 36 MV 1.72 MV 17.2 MVmomentum compaction 3x10-4 4.2x10-4 1.69x10-3 1.69x10-3

2nd order momentum compaction 1.3x10-3 - - -synchrotron tune 0.0356 0.084 0.0188 0.0596bucket area 292 meV-s 129 meV-s 10 meV-s 61 meV-sICM=bucket area / long. edge emit. /π 133 57 4 30

RMIN=TI/ICM 0.75 5 15 2IP/RMIN/τ|| 12 2.8 1.3 9.5IP/RACT/τ|| 0.78 1.56 0.95 1.9synchronous phase 15.58o 28.97o 26.47o 2.55o

separatrix phases 1&2 164.42 o, -159.19 o

151.03 o, -82.64 o 153.53 o, -95.66 o 177.45 o, -140.11 o

max. momentum acceptance +/-2.7% +/- 1.6% +/- 1.0% +/- 4.4%

Page 22: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

CLIC‐CR injection scheme

• CLIC February 2008: inject every 40th turn (50 MHz) 

into the same bucket ‐ 6 times; then wait  3.8 ms 

(~4900 turns, ~2 [now 4] damping times) and repeat 

9 times; total injections/bucket: 60; synchrotron 

phase advance between two injections: 2.384

result coming soon

Page 23: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

(4) CLIC-CERL

also coming soon

Page 24: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

(5) outlook

Page 25: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

next steps & ideas:

determine “optimum” CLIC pre-DR parameters

set up CLIC simulations once parameters clarified

optimize injection offsets z,δ for minimum loss

optimize synchrotron tune

energy pre-compressor for both ILC & CLIC

combined longitudinal/transverse stacking?

Page 26: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

(6) summary

Page 27: stacking simulations for CR C ERL schemes...‘05 proposal ILC 2008-Compton version pre-DR for CLIC (NLC 2004 design) pre-DR for CLIC with higher Vrf transv. normalized edge emittance

stacking is helped by:• short damping time• small energy spread (which value is possible?)• large ring momentum acceptance• sufficient store time

simulation results: 90% for ILC-CR (300 inj’s, σδ=2 MeV spread)91% for ILC-CERL (1020 inj’s! σδ=0.5 MeV)both for Compton version of ILC DR with energy pre-compression - Compton version of ILC-DR acceptable? #e+ / pulse for C-ERL scheme?

CLIC simulations: still work in progress