ST and WINF LOAD From ICE Manual of Bridge Engineering

  • Upload
    rareee

  • View
    24

  • Download
    0

Embed Size (px)

DESCRIPTION

Bridge Example

Citation preview

  • Appendix 1: Shrinkage stressesA contiguous composite bridge is located over a waterwayand consists of a series of Y8 precast prestressed concretebeams at 2m centres and with a 220mm deep in situ con-crete slab. Youngs modulus for the Y-beam concrete is50N/mm2 and for the in situ slab it is 35N/mm2. Determinethe stresses induced in the section due to shrinkage of thetop slab. (Figure 41 and Table 7 refer.)

    1. Calculate properties of sectionModular ratio 50/35 1.429. Therefore eective width ofslab 2000/1.429 1400mm.Ix (slab) 140 223=12 124 227 cm4Distance of neutral axis from top 607 471/8927 68 cm.Ix (comp) 124 227 3080 68 112

    118:86 105 5847 76:1 22 682

    273 105 cm4

    2. Calculate restrained shrinkagestresses

    F 50 1400 220 200 106 3080 kNM 3080 0:68 0:11 1756 kNmRestrained shrinkage stress f0 3080 103=308 000

    10N=mm2

    3. Calculate balancing stresses

    Direct stress f10 3080 103=892 700 3:45N/mm2Bending stresses My=I , Balancing stresses:f21 3:45=1:429 1756106 680=273109=1:429

    2:41 3:06 5:47N/mm2

    f22 2:41 1756 106 680 220=273 109 1:429 2:41 2:07 4:48N/mm2

    f23 4:48 1:429 6:40N/mm2

    f24 3080 103=892 700 1756 106 940=273 109 3:45 6:04 2:59N/mm2

    It is clear that there is a substantial level of tension in thetop slab which cannot only cause cracking but also resultsin a considerable shear force at the slabbeam interfacewhich has to be resisted by shear links projecting fromthe beam.

    Appendix 2: Primary temperaturestresses (BD 37/88)Determine the stresses induced by both the positive andreverse temperature dierences for the concrete box girderbridge shown in Figure 42 (A 940 000mm2,I 102 534 106 mm4, depth to NA 409mm,T 12 106, E 34 kN/mm2).1. Calculate critical depths oftemperature distributionFrom BD 37/88 Figure 9 this is a Group 4 section, there-fore:

    h1 0:3h 0:3 1000 300 > 150; thus h1 150mmh2 0:3h 0:3 1000 300 > 250; thus h2 250mmh3 0:3h 0:3 1000 300 > 170; thus h3 170mm

    +

    10

    +

    Restrainedshrinkage force

    Balancing forcesand stresses

    Final stresses

    5.47

    4.486.40

    2.59

    4.53

    5.52

    3.6

    2.59

    Figure 41 Final stress distribution

    Section A: cm2 y: cm Ay

    Slab 3080 11 33 880

    Y8 beam 5847 98.1 573 591

    8927 607471

    Table 7 Section properties

    409

    5911000

    250 250

    220

    2201000

    200070 surfacing

    h1h2

    h3

    T1

    T2

    T3

    Figure 42 Box girder dimensions and temperature distribution

    46 www.icemanuals.com ICE Manual of Bridge Engineering # 2008 Institution of Civil Engineers

    Loads and load distributionice | manuals

  • 2. Calculate temperature distributionBasic values are given in Figure 9 of BD 37/01 which aremodied for depth of section and surface thickness by inter-polating from Table 24 of BD 37/01.

    T1 17:8 17:8 13:520=50 16:18CT1 4:0 4:0 3:020=50 3:608CT1 2:1 2:5 2:120=50 2:268C3. Calculate restraint forces at criticalpointsThis is accomplished by dividing the depth into convenientelements corresponding to changes in the distributiondiagram and/or changes in the section (see Figure 3.2 ofBD 37/01):

    F EcTTiAiF1 34 000 12 106 16:1 3:6 2000 150=1000

    765 kNF2 34 000 12 106 3:6 2000 150=1000

    441 kNF3 34 000 12 106 3:6 2:6=2 2000

    220 150=1000 177 kNF4 34 000 12 106 2:6=2 2 250 70

    250=1000 48 kNF5 34 000 12 106 2:26=2 1000 170=1000

    78 kNTotal F 1509 kN (tensile)4. Calculate restraint moment about theneutral axis

    M 765409 50 441409 75 177409 185 48409 270 78591 170 2=3=1000

    M 431 kNm (hogging)

    5. Calculate restraint stressesf EcTTif01 34 000 12 106 16:1 6:56N/mm2

    f02 34 000 12 106 3:6 1:47N/mm2

    f03 34 000 12 106 2:6 1:06N/mm2

    f04 34 000 12 106 0 0:00N/mm2

    f05 34 000 12 106 0 0:00N/mm2

    f06 34 000 12 106 2:26 0:92N/mm2

    6. Calculate balancing stressesDirect stress f10 1509 103=940 000 1:61N/mm2

    Bending stresses f2i My=I :

    f21 431 106

    102 534 106 409 1:71N/mm2

    f22 431 106

    102 534 106 259 1:08N/mm2

    f23 431 106

    102 534 106 180 0:75N/mm2

    f24 431 106

    102 534 106 9 0:06N/mm2

    f25 431 106

    102 534 106 421 1:76N/mm2

    f26 431 106

    102 534 106 591 2:47N/mm2

    7. Calculate final stressesThe nal stress distribution is shown in Figure 44. Similarcalculations for the cooling (reverse) situation are shownin Figure 45. Table 8 gives a summary of stresses.

    F1F3

    F2F4

    F52.26

    2.6

    3.6

    16.1Top slab 220 h1 = 150

    h1 = 250

    h3 = 170

    430

    180 409NA

    Figure 43 Element forces

    Restrainedstresses

    Stresses dueto relaxing

    force

    Stresses dueto relaxingmoment

    Final self-equilibrating

    stresses

    0.92 2.47 1.78

    6.56

    1.06

    1.61150

    250

    430

    170

    1.71 3.241.14

    1.67+

    Figure 44 Final stress distribution (positive)

    ICE Manual of Bridge Engineering # 2008 Institution of Civil Engineers www.icemanuals.com 47

    Loads and load distribution ice | manuals

  • Appendix 3: wind loads (BD 37/88)Calculate the worst transverse wind loads on the structureshown in Figure 46. Assume that v 28m/s; span 33m;H 10m.S1 K1 1:0: From Table 2, S2 1:54(i) Unloaded deck:

    vt 28 1 1 1:54 43:13m/sq 43:132 0:613=103 1:14 kN/m2

    From Table 4, d d2 1 1:94 2:94mFromTable 5, d2 1:94m, thus b=d2 9:52=2:94 3:24,

    and Figure 5, CD 1:4.A1 2:94 33 97:02m2

    Thus Pt 1:14 97:02 1:4 154:84 kN(ii) Loaded deck:

    vt 35m/s (maximum allowed in the code)q 352 0:613 103 0:75 kN/m2

    d2 2:94m > dL 2:5mFrom Table 5, d d2 thus b=d2 9:52=2:94 3:24, and

    from Figure 5, CD 1:4.From Table 4,

    d d3 dL slab thickness depth of steel beams 2:5 0:22 1:4 4:12m

    Pt 0:75 1:4 4:12 33 142:76 kNThus design force greater of (i) and (ii)154.84 kN.

    Restrainedstresses

    Stresses dueto relaxing

    force

    Stresses dueto relaxingmoment

    Final self-equilibrating

    stresses

    2.57 0.83 2.00

    200

    200

    200

    200

    200

    3.827 1.38 0.56 1.89

    1.89

    1.11

    +

    +

    Figure 45 Final stress distribution (negative)

    Restraintstresses

    Balancingdirect stress

    Balancingbending stress

    Finalstresses

    1 6.56 1.61 1.71 3.24 (C)2 1.47 1.61 1.08 1.14 (T)3 1.06 1.61 0.75 1.3 (T)4 0 1.61 0.06 1.67 (T)

    5 0 1.61 1.76 0.15 (C)6 0.92 1.61 2.47 1.78 (C)

    Table 8 Summary of stresses

    9520

    Closed parapet

    220

    1940

    1400

    1000

    Figure 46 Steel beam and reinforced concrete deck

    Note: BD 37/88 has been superseded by BD 37/01.

    48 www.icemanuals.com ICE Manual of Bridge Engineering # 2008 Institution of Civil Engineers

    Loads and load distributionice | manuals