22
Springer Series in Optical Sciences Volume 219 Founded by H. K. V. Lotsch Editor-in-chief William T. Rhodes, Florida Atlantic University, Boca Raton, FL, USA Series editors Ali Adibi, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA Toshimitsu Asakura, Hokkai-Gakuen University, Sapporo, Hokkaido, Japan Theodor W. Hänsch, Max-Planck-Institut für Quantenoptik, Garching, Bayern, Germany Ferenc Krausz, Garching, Bayern, Germany Barry R. Masters, Cambridge, MA, USA Katsumi Midorikawa, Laser Technology Laboratory, RIKEN Advanced Science Institute, Saitama, Japan Bo A. J. Monemar, Department of Physics and Measurement Technology, Linköping University, Linköping, Sweden Herbert Venghaus, Ostseebad Binz, Germany Horst Weber, Berlin, Germany Harald Weinfurter, München, Germany

Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Springer Series in Optical Sciences

Volume 219

Founded by

H. K. V. Lotsch

Editor-in-chief

William T. Rhodes, Florida Atlantic University, Boca Raton, FL, USA

Series editors

Ali Adibi, School of Electrical and Computer Engineering, Georgia Institute ofTechnology, Atlanta, GA, USAToshimitsu Asakura, Hokkai-Gakuen University, Sapporo, Hokkaido, JapanTheodor W. Hänsch, Max-Planck-Institut für Quantenoptik, Garching, Bayern,GermanyFerenc Krausz, Garching, Bayern, GermanyBarry R. Masters, Cambridge, MA, USAKatsumi Midorikawa, Laser Technology Laboratory, RIKEN Advanced ScienceInstitute, Saitama, JapanBo A. J. Monemar, Department of Physics and Measurement Technology,Linköping University, Linköping, SwedenHerbert Venghaus, Ostseebad Binz, GermanyHorst Weber, Berlin, GermanyHarald Weinfurter, München, Germany

Page 2: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Springer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes,Georgia Institute of Technology, USA, and provides an expanding selection ofresearch monographs in all major areas of optics:

– lasers and quantum optics– ultrafast phenomena– optical spectroscopy techniques– optoelectronics– information optics– applied laser technology– industrial applications and– other topics of contemporary interest.

With this broad coverage of topics the series is useful to research scientists andengineers who need up-to-date reference books.

More information about this series at http://www.springer.com/series/624

Page 3: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Eugene Kamenetskii • Almas SadreevAndrey MiroshnichenkoEditors

Fano Resonances in Opticsand MicrowavesPhysics and Applications

123

Page 4: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

EditorsEugene KamenetskiiDepartment of Electrical and ComputerEngineering

Ben-Gurion University of the NegevBeersheba, Israel

Almas SadreevFederal Research Center KSC SB RASKirensky Institute of PhysicsKrasnoyarsk, Russia

Andrey MiroshnichenkoSchool of Engineering and InformationTechnology

University of New South WalesCanberra, ACT, Australia

ISSN 0342-4111 ISSN 1556-1534 (electronic)Springer Series in Optical SciencesISBN 978-3-319-99730-8 ISBN 978-3-319-99731-5 (eBook)https://doi.org/10.1007/978-3-319-99731-5

Library of Congress Control Number: 2018953587

© Springer Nature Switzerland AG 2018This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, express or implied, with respect to the material contained herein orfor any errors or omissions that may have been made. The publisher remains neutral with regard tojurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Page 5: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Preface

Scattering of waves involves different phenomena, but the most common one is theinterference. It has different manifestations, including constructive interference,corresponding to the field enhancement, and destructive interference, leading to thefield suppression. One of the interesting phenomena is resonant scattering whencoexistence of resonant transmission and resonant reflection can be reduced to theinterference of discrete resonant states with a continuum of nonresonant propagationmodes. It results in an asymmetric profile of the resonant lineshapes. These are knownas Fano resonances. It turns out to be a common situation in any complex systemdescribing wave propagation regardless of their nature, including classical andquantum mechanical systems. These effects are intimately related to the presence ofquasibound states resonantly interacting with a continuum of scattering states. All thismakes the Fano resonance a very generic phenomenon. The Fano resonances havebeen extensively studied in nanoparticles, plasmonic, dielectric, and magnonicstructures, and metamaterials as well. With their unique physical properties andunusual combination of classical and quantum effects, Fano resonances have ahuge application potential in a wide range of fields, from telecommunication toultrasensitive biosensing, medical instrumentation, and data storage.

This book enables readers to acquire the multifaceted understanding required forthese multidisciplinary challenges. The book has 23 chapters in total coveringvarious aspects of the Fano resonances manifestation. The chapters were written byinternational experts from 16 countries (Turkey, South Korea, India, Italy,Switzerland, Japan, China, France, Russia, Morocco, USA, Belgium, Brazil,Germany, Australia, and Israel), who have contributed to the advancement of sci-ence and engineering of the Fano resonance in optical and microwave systems. Thespectrum of the problems presented in this book is very wide. It is shown that Fanoresonances manifesting novel phenomena both in linear and nonlinear response ofplasmonic nanomaterials can extend the lifetime of plasmonic excitations, enablingthe operation of nanolasers. A new pathway toward nonmagnetic excitation of anoptical spin angular momentum based on the spin-dependent excitation of Fanoresonances is introduced. A new concept based on polarization Mueller matrixanalysis for tuning the Fano interference effect and the resulting asymmetric

v

Page 6: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

spectral line shape in anisotropic optical system is discussed. A comprehensivereview of recent theoretical and experimental advances in the field of Fano reso-nances and bound states in the continuum for light transport in evanescently cou-pled optical structures is provided including arrays of dielectric optical waveguidesand coupled resonator optical waveguides. The review of different forms of coupledoscillator models for Fano resonant optical and microwave systems is given. Thereare studies of tunable metamaterials that realize the storage and retrieval of elec-tromagnetic waves in the same way as the atomic electromagnetically- nducedtransparency system. The temporal coupled-mode theory formalism to describe thecoupling process and the interference effect involved with optical scattering andabsorption in nanostructures is shown. To unveil the origin of Fano lineshapes inthe scattering efficiency of a spherical nanoparticle, the analysis of the full-wavescattering in terms of a set of eigenmodes independent of its permittivity is derived.Based on symmetry considerations, with the theoretical and experimental evidence,it is shown that electromagnetically induced-transparency and dark mode excitationare not necessarily associated. The feasibility of realizing the light-tunable Fanoresonance in the metal-dielectric multilayer structures is demonstrated.

In the book, the reader can find a study of the core-level absorption of animpurity in a one-dimensional semiconductor superlattice with the use of thecomplex spectral analysis. One can see the results of investigation of the Fanoresonances in high-index dielectric nanowires for directional scattering. There arechapters with studies of total wave refection in band networks due to impurities,disorder, and quasiperiodic potentials; the theory of the multiple resonance inter-ference in metallic nanohole array systems based on spatial and temporalcoupled-mode methods; and the theory describing the Fano asymmetry byexpanding the transmission amplitude with respect to states with point spectra,including not only bound states, but also resonant states with complex eigenvalues.It is shown that the Fano resonances can be effectively engineered with the use ofmultilayered hyperbolic metamaterials with either metal-dielectric orgraphene-based multilayers. For Fano resonance generation, a new type of struc-tures—3D folding metamaterials—is introduced. It is demonstrated that the conceptof Fano resonance can be of significant interest in the context of a new emergingtopic of topological photonics. Analytically, it is shown that the Purcell factorrelated to a dipole emitter oriented orthogonal or tangential to the spherical surfacecan exhibit the Fano or Lorentzian line shapes in the near-field. It is also discussedthat almost any resonant response, either in directional or total scattering lightscattering, can be efficiently described in terms of Fano resonances. Tuning of Fanoresonance by waveguide rotation is considered in a non-axisymmetricacoustic-wave structure. It is shown that interaction of magnetic-dipolar-modeferrite particles with a microwave-field continuum is distinguished by broken dual(electric–magnetic) symmetry. A unified vision of strong, weak, and critical cou-pling is provided based on a simple coupled oscillator model with a nonresonantbackground usually employed to describe Fano resonances in nanophotonicstructures.

vi Preface

Page 7: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

We hope that the book will be a valuable aid to understand the current researchof the Fano resonance phenomena in optical and microwave structures for scien-tists, researchers, and graduate students working in the fields of electronic engi-neering, materials science, and condense matter physics. We are thankful to allauthors who accepted our invitation to contribute the respective chapters. We wouldlike to express our gratitude to Dr. Claus Ascheron, Executive Editor, Springer, forhis initial support of the book proposal and collaboration with us during preparationof the book. We are thankful to Adelheid Duhm, Jayanthi Krishnamoorthi, and ElkeSauer from the Springer Production Department for their assistance at the bookproduction.

Beersheba, Israel Eugene KamenetskiiKrasnoyarsk, Russia Almas SadreevCanberra, Australia Andrey Miroshnichenko

Preface vii

Page 8: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Contents

1 Fano Resonances in the Linear and Nonlinear PlasmonicResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Mehmet Emre Taşgın, Alpan Bek and Selen Postacı1.1 Plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Fano Resonances in Linear Response . . . . . . . . . . . . . . . . . . . 51.3 Fano Resonances in Nonlinear Response . . . . . . . . . . . . . . . . 10

1.3.1 Overlap Integrals and Selection Rules . . . . . . . . . . . . 121.3.2 Enhancement and Suppression of SHG . . . . . . . . . . . 151.3.3 Silent Enhancement of SERS. . . . . . . . . . . . . . . . . . . 231.3.4 Interference of Multiple Conversion Paths

and FWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Fano-resonant Excitations of Generalized Optical Spin Waves . . . . 33Xianji Piao, Sunkyu Yu and Namkyoo Park2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.2 Coupled Mode Theory for Optical Spin Waves . . . . . . . . . . . . 34

2.2.1 TCMT Analysis of 2D non-Hermitian Chirality . . . . . 362.2.2 TCMT Analysis of 3D Bulk Chirality with Circular

Birefringent Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . 372.3 Fano-resonant Excitation of Optical Spin . . . . . . . . . . . . . . . . 42

2.3.1 Fano Line Shapes Toward SpectralSpin Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Spin-Dependent Antisymmetric Fano Resonances . . . . 442.3.3 Spin Fano Parameters . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Applications and Metamaterial Realizations . . . . . . . . . . . . . . 472.4.1 Fano-resonant Optical Spin Switching . . . . . . . . . . . . 472.4.2 Fano-resonant ‘Net’ Spin Excitation for

Unpolarized Light . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix

Page 9: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

2.4.3 Metamaterial Realizations . . . . . . . . . . . . . . . . . . . . . 502.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Mueller Matrix Approach for Engineering AsymmetricFano-resonance Line Shape in Anisotropic Optical System . . . . . . . 57A. K. Singh, S. Chandel, S. K. Ray, P. Mitra and N. Ghosh3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.2 Basics of Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Polarization Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 603.2.2 Comprehensive Polarimetric Platform for Plasmonic

Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653.3 Fano Resonance in Scattering . . . . . . . . . . . . . . . . . . . . . . . . 673.4 Plasmonic Waveguiding Photonic Crystal . . . . . . . . . . . . . . . . 69

3.4.1 Resonant Anomaly in Metal Dielectric Grating . . . . . . 703.4.2 Rayleigh Anomaly in Metal Dielectric Grating . . . . . . 72

3.5 Polarization Mediated Tuning of Fano-resonance . . . . . . . . . . 723.5.1 Plasmonic Oligomers . . . . . . . . . . . . . . . . . . . . . . . . 733.5.2 Polarisation Controlled Tuning of Fano

Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Fano Resonances and Bound States in the Continuum inEvanescently-Coupled Optical Waveguides and Resonators . . . . . . 85Stefano Longhi4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.2 Fano Resonance and Bound States in the Continuum

in Optical Waveguide Lattices with Side-CoupledWaveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Fano Resonance and Particle Statistics . . . . . . . . . . . . . . . . . . 934.4 Dynamical Control of Fano Resonances . . . . . . . . . . . . . . . . . 994.5 Fano Resonances in Non-Hermitian Photonic Structures . . . . . 102References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Model of Coupled Oscillators for Fano Resonances . . . . . . . . . . . . 109Benjamin Gallinet5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105.2 Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105.3 Coupled Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135.4 Resonance Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1 Derivation of Resonance Formula Without IntrinsicDamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.2 Derivation of Formula Including IntrinsicDamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

x Contents

Page 10: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

5.5 Electromagnetically Induced Absorption . . . . . . . . . . . . . . . . . 1255.6 Radiative and Non-radiative Lifetimes in Strongly

Coupled Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275.6.1 Extended Coupled Oscillator Model . . . . . . . . . . . . . . 1295.6.2 Superradiance and Subradiance in Hybridized

Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Storage and Retrieval of Electromagnetic Waves inMetamaterials by Dynamical Control of EIT-Like Effect . . . . . . . . 137Toshihiro Nakanishi and Masao Kitano6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376.2 Electromagnetically Induced Transparency in Atomic

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1386.3 Metamaterial Analog to Atomic EIT Effect . . . . . . . . . . . . . . . 141

6.3.1 Coupled Resonator Model . . . . . . . . . . . . . . . . . . . . . 1416.3.2 Design of EIT-like Metamaterials . . . . . . . . . . . . . . . 142

6.4 Storage and Retrieval of Electromagnetic Waves inMetamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436.4.1 Procedures for Storage and Retrieval of

Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . 1436.4.2 Tunable EIT-Like Metamaterial . . . . . . . . . . . . . . . . . 1446.4.3 Storage and Retrieval of Electromagnetic Waves . . . . 1476.4.4 Frequency Conversion of Electromagnetic Waves . . . . 149

6.5 Loss Compensation by Parametric Amplification forExtension of Storage Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506.5.1 Parametric Amplification of Continuous Waves . . . . . 1516.5.2 Extension of Storage Time by Loss

Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Temporal Coupled-Mode Theory for Light Scattering andAbsorption by Nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Yisheng Fang and Zhichao Ruan7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1577.2 Temporal Coupled-Mode Theory for Light Scattering . . . . . . . 158

7.2.1 General Scattering Theory for Arbitrarily ShapedScatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.2 Temporal Coupled-Mode Theory witha Single-Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3 General Line Shapes of Scattering and Absorption CrossSections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Contents xi

Page 11: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

7.4 Temporal Coupled-Mode Theory for Scattering with TwoCoupled Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Fano Resonance in the Scattering of Nanostructures . . . . . . . . 1687.5.1 Fano Resonances in Plasmonic Resonators . . . . . . . . . 1687.5.2 Fano Resonances in All-Dielectric Resonators . . . . . . 172

7.6 All-Optical Analog to Electromagnetically InducedTransparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.7 Design of Super-Scattering Nanoparticles . . . . . . . . . . . . . . . . 1777.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8 A Full-Retarded Spectral Technique for the Analysis of FanoResonances in a Dielectric Nanosphere . . . . . . . . . . . . . . . . . . . . . . 185Carlo Forestiere, Giovanni Miano, Mariano Pascaleand Roberto Tricarico8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1858.2 Material Independent Modes for Electromagnetic

Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1888.2.1 Differences Between Material Independent Modes

and Quasi Normal Modes . . . . . . . . . . . . . . . . . . . . . 1908.3 Spectral Theory of Electromagnetic Scattering

from a Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1918.3.1 Coupling with an External Excitation . . . . . . . . . . . . . 1978.3.2 Radiation Pattern and Scattering Efficiency . . . . . . . . . 199

8.4 Resonances’ Properties of a Homogeneous Sphere . . . . . . . . . 2018.5 Resonances and Interferences in the Scattering by Si

and Ag Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2058.6 Backscattering Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . 2108.7 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9 Dark-Mode Characteristics of Metasurfaces Engineered bySymmetry Matching of Resonant Elements and ElectromagneticFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219A. Lupu, E. Bochkova, S. N. Burokur and A. de Lustrac9.1 Plasmonic EIT Viewed as Bright and Dark Modes Fano

Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2199.1.1 Symmetry-Broken Dolmen Metamolecules . . . . . . . . . 2229.1.2 Symmetry-Broken Ring-Disk Nanocavities . . . . . . . . . 2239.1.3 Plasmonic Oligomer Clusters . . . . . . . . . . . . . . . . . . . 223

9.2 Plasmonic EIT Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2249.3 Direct Dark Mode Excitation Mechanism Based on

Symmetry Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2269.4 Fano Interference is a System with Identical Coupled

Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

xii Contents

Page 12: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

9.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 236References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

10 Light-Tunable Fano Resonance in Metal-Dielectric MultilayerStructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241Shinji Hayashi, Dmitry V. Nesterenko and Zouheir Sekkat10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24110.2 How to Realize Fano Resonances in Metal-Dielectric

Multilayer Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24310.2.1 SPP Mode in MD Structure and PWG Modes

in DDD Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 24310.2.2 Fano Resonance in MDDD Structure . . . . . . . . . . . . . 24610.2.3 Experimental Observation of Fano Resonance

in MDDD Structure . . . . . . . . . . . . . . . . . . . . . . . . . 25010.3 Light-Tunable Fano Resonance . . . . . . . . . . . . . . . . . . . . . . . 252

10.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 25210.3.2 Analysis of Experimental Results and Mechanism

of Light Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25510.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

11 Study of Fano Resonance in the Core-Level Absorption Spectrumin Terms of Complex Spectral Analysis . . . . . . . . . . . . . . . . . . . . . 261Satoshi Tanaka, Taku Fukuta and Tomio Petrosky11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26111.2 Absorption Spectrum in the Infinite Chain . . . . . . . . . . . . . . . 263

11.2.1 Model and Complex Eigenvalue Problem . . . . . . . . . . 26311.2.2 Absorption Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 268

11.3 Absorption Spectrum in the Semi-infinite Chain . . . . . . . . . . . 27311.3.1 Model and Complex Eigenvalue Problem . . . . . . . . . . 27311.3.2 Absorption Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 275

11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

12 Fano-resonances in High Index Dielectric Nanowiresfor Directional Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283Peter R. Wiecha, Aurélien Cuche, Houssem Kallel,Gérard Colas des Francs, Aurélie Lecestre, Guilhem Larrieu,Vincent Larrey, Frank Fournel, Thierry Baron, Arnaud Arbouetand Vincent Paillard12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

12.1.1 Plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28412.1.2 High Refractive Index Dielectric Nano-particles . . . . . 28512.1.3 General Applications of Dielectric

Nano-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Contents xiii

Page 13: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

12.2 Fano Resonances and Kerker’s Conditions . . . . . . . . . . . . . . . 28712.2.1 Fano in Nano-optics . . . . . . . . . . . . . . . . . . . . . . . . . 28812.2.2 Kerker’s Conditions at Optical Frequencies . . . . . . . . 28912.2.3 Directional Scattering From Nanoparticles . . . . . . . . . 29012.2.4 Applications of Nanoscale Directional Scattering . . . . 291

12.3 Mie Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29212.3.1 Directional Scattering from Spheres

and Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29312.3.2 Nanowires: Resonant Enhancement of the Electric

and Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . 29512.3.3 Nanowires: Multipolar Contributions to Directional

Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29612.4 Directional Scattering from Silicon Nanowires . . . . . . . . . . . . 297

12.4.1 Cylindrical Nanowires . . . . . . . . . . . . . . . . . . . . . . . . 29812.4.2 Rectangular Nanowires . . . . . . . . . . . . . . . . . . . . . . . 30012.4.3 Coupled Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . 303

12.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

13 Fano Resonances in Flat Band Networks . . . . . . . . . . . . . . . . . . . . 311Ajith Ramachandran, Carlo Danieli and Sergej Flach13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

13.1.1 Fano Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . 31213.1.2 Flat Band Networks . . . . . . . . . . . . . . . . . . . . . . . . . 314

13.2 Single Local Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31713.3 Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31813.4 Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32213.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

14 Multiple-Resonance Interference in Metallic Nanohole Arrays . . . . 331Munehiro Nishida and Yutaka Kadoya14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33114.2 Surface Plasmon Polariton in a Metallic Nanohole Array . . . . . 33314.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

14.3.1 Spatial Coupled-Mode (SCM) Method . . . . . . . . . . . . 33414.3.2 Temporal Coupled-Mode (TCM) Method . . . . . . . . . . 337

14.4 Waveguide Modes in a Metallic Nanohole . . . . . . . . . . . . . . . 34114.5 Fano Resonance and Short-Circuit Effect . . . . . . . . . . . . . . . . 34214.6 SPP Molecule and Spoof Surface Plasmon . . . . . . . . . . . . . . . 34314.7 Multipole Surface Plasmon Polariton . . . . . . . . . . . . . . . . . . . 34614.8 Multiple Fano Resonance Interference . . . . . . . . . . . . . . . . . . 348

xiv Contents

Page 14: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

14.9 EIT-like Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35114.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

15 Resonant-State Expansion of the Fano Peak in Open QuantumSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Naomichi Hatano and Gonzalo Ordonez15.1 Introduction: Resonant States . . . . . . . . . . . . . . . . . . . . . . . . . 357

15.1.1 Landauer Formula and the TransmissionProbability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

15.1.2 Siegert Boundary Condition: A Tutorial Example . . . . 35915.1.3 Resonant and Anti-resonant States . . . . . . . . . . . . . . . 360

15.2 Resonant-State Expansion: Another Tutorial Example . . . . . . . 36315.2.1 Transmission Probability and the Green’s

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36315.2.2 Feshbach Formalism for the Tight-Binding

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36415.2.3 Green’s Function of the Effective Hamiltonian . . . . . . 36515.2.4 Calculation of the Self-energy . . . . . . . . . . . . . . . . . . 36615.2.5 Quadratic Eigenvalue Problem . . . . . . . . . . . . . . . . . . 36715.2.6 Resonant-State Expansion of the Green’s

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37215.2.7 New Formula for the Transmission Probability . . . . . . 373

15.3 Fano Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37615.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

16 Fano Resonances in Slanted Hyperbolic MetamaterialCavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383F. Vaianella and B. Maes16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38316.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38416.3 Effective Medium Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38516.4 Rigorous Calculations and Analysis . . . . . . . . . . . . . . . . . . . . 38916.5 Graphene Multilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39416.6 Loss Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39816.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

17 Fano Resonance Generation and Applications in 3D FoldingMetamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403Z. Liu, S. Y. Yang, J. J. Li and C. Z. Gu17.1 Fano Resonances Excited in Composite Structures . . . . . . . . . 40417.2 Fabrication of 3D Folding Metamaterial . . . . . . . . . . . . . . . . . 405

Contents xv

Page 15: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

17.2.1 Combination of Traditional Planar Techniques . . . . . . 40617.2.2 Brand New Techniques . . . . . . . . . . . . . . . . . . . . . . . 407

17.3 Fano Resonances in 3D Folding Metamaterials . . . . . . . . . . . . 40917.3.1 Unusual Fano Resonance in Composite 3D

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41017.3.2 Mechanism of Fano Resonance Excitation . . . . . . . . . 41017.3.3 Conductive Coupling and Capacitive Coupling . . . . . . 413

17.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41617.4.1 Refractive Index Sensing . . . . . . . . . . . . . . . . . . . . . . 41717.4.2 SERS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

17.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

18 Fano Resonances in Topological Photonic Systems . . . . . . . . . . . . . 425Xiang Ni, Maxim A. Gorlach, Daria A. Smirnova, Dmitry Korobkinand Alexander B. Khanikaev18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42518.2 Theoretical Description of Topological Fano Resonances:

Coupled Mode Theory Approach . . . . . . . . . . . . . . . . . . . . . . 42618.3 Fitting of Experimental Data with the Analytical Model . . . . . 43018.4 Constructing the Effective Hamiltonian Using the Plane

Wave Expansion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43118.5 Perturbative Electromagnetic Theory of Radiative Losses . . . . 43618.6 Numerical Calculation of Transmissivity Using

Tight-Binding-Based Coupled Mode Theory . . . . . . . . . . . . . . 43918.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

19 Fano Resonances in Plasmonic Core-Shell Particles and thePurcell Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445Tiago José Arruda, Alexandre Souto Martinez, Felipe A. Pinheiro,Romain Bachelard, Sebastian Slama and Philippe Wilhelm Courteille19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44619.2 Light Scattering by Core-Shell Spheres: Conventional

and Unconventional Fano Resonances . . . . . . . . . . . . . . . . . . 44719.2.1 The Lorenz-Mie Theory for Single-Layered

Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44819.2.2 Fano Resonances in Optical Cross Sections . . . . . . . . 450

19.3 Spontaneous Emission of a Dipole Emitter Near a PlasmonicNanoshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45719.3.1 Radiative and Non-radiative Decay Rates of a Dipole

Emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45819.3.2 Decay Rates and Radiation Efficiency Near

a Plasmonic Nanoshell . . . . . . . . . . . . . . . . . . . . . . . 461

xvi Contents

Page 16: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

19.3.3 The Purcell Effect and Fano Resonancesin Plasmonic Nanoshells . . . . . . . . . . . . . . . . . . . . . . 464

19.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

20 Fano Resonances in Light Scattering by Finite Obstacles . . . . . . . . 473Andrey Miroshnichenko20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47320.2 Analysis of the Scattered Field . . . . . . . . . . . . . . . . . . . . . . . . 474

20.2.1 Scattering Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 47420.2.2 Parity and Mirror Symmetries of the Spherical

Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47620.2.3 Forward and Backward Scattering . . . . . . . . . . . . . . . 478

20.3 Light Scattering by a Single Particle . . . . . . . . . . . . . . . . . . . . 47920.3.1 Directional Fano Resonance . . . . . . . . . . . . . . . . . . . 47920.3.2 Vanishing Partial Wave Scattering

and Anapole modes . . . . . . . . . . . . . . . . . . . . . . . . . . 48120.3.3 Fano Profile of the Scattering Coefficients . . . . . . . . . 483

20.4 Fano Resonance in Oligomer nanostructures . . . . . . . . . . . . . . 48620.4.1 Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48620.4.2 Chiral Structures and Optical Activity . . . . . . . . . . . . 48920.4.3 Harmonic Generation . . . . . . . . . . . . . . . . . . . . . . . . 490

20.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

21 Tuning of Fano Resonance by Waveguide Rotation . . . . . . . . . . . . 497Almas Sadreev, Artem S. Pilipchuk and Alina A. Pilipchuk21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49721.2 Acoustic Coupled Mode Theory for Open Cylindrical

Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49921.3 Trapping in Non Coaxial Waveguide Under Variation

of the Resonator Length L . . . . . . . . . . . . . . . . . . . . . . . . . . . 50321.3.1 D/ ¼ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50521.3.2 D/ ¼ p=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

21.4 Wave Faucet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50721.5 BSCs in Two Continua Different in Phase . . . . . . . . . . . . . . . 512

21.5.1 The Mode with m ¼ 0 Crosses the Modeswith �M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

21.5.2 The Modes �112 Cross the Modes �211 . . . . . . . . . 51821.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Contents xvii

Page 17: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

22 Interaction of MDM Ferrite Particles with a Microwave-FieldContinuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527Eugene Kamenetskii22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52722.2 Quasistatic Eigenvalue Problems for Plasmon and Magnon

Oscillations in Subwavelength Particles . . . . . . . . . . . . . . . . . 52922.3 The Spectral Problem for Magnetostatic-Potential Wave

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53322.3.1 MDMs in a Ferrite Rod . . . . . . . . . . . . . . . . . . . . . . 53322.3.2 MDMs in a Ferrite-Disk Particle . . . . . . . . . . . . . . . . 537

22.4 Magnetoelectric Fields and Helical Bound States in aMicrowave-Field Continuum . . . . . . . . . . . . . . . . . . . . . . . . . 539

22.5 G- and L-Magnetic Dipolar Modes . . . . . . . . . . . . . . . . . . . . . 54422.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

23 Weak Coupling, Strong Coupling, Critical Coupling and FanoResonances: A Unifying Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551Simone Zanotto23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55123.2 Model System, Parametrization, and Linear Response . . . . . . . 55223.3 Lineshape Inheritance to the Strong Coupling Regime . . . . . . . 55523.4 Absorption Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

23.4.1 Universal Absorption Lineshapes . . . . . . . . . . . . . . . . 55823.4.2 A Detour on Coherent (Perfect) Absorption . . . . . . . . 56023.4.3 Universal Coherent Absorption Lineshapes . . . . . . . . . 562

23.5 Weak, Strong, and Critical Coupling . . . . . . . . . . . . . . . . . . . 56423.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

xviii Contents

Page 18: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Contributors

Arnaud Arbouet CEMES, Université de Toulouse, CNRS, Toulouse, France

Tiago José Arruda Instituto de Física de São Carlos (IFSC), Universidade de SãoPaulo (USP), São Paulo, São Carlos, Brazil

Romain Bachelard Departamento de Física, Universidade Federal de São Carlos(UFSCar), São Paulo, São Carlos, Brazil

Thierry Baron LTM, Université Grenoble-Alpes, CNRS, Grenoble, France

Alpan Bek Department of Physics, Middle East Technical University, Ankara,Turkey

E. Bochkova Centre de Nanosciences et de Nanotechnologies, CNRS, UniversitéParis-Sud, Université Paris-Saclay, Orsay, France

S. N. Burokur LEME, UPL, Université Paris Nanterre, Ville d’Avray, France

S. Chandel Indian Institute of Science Education and Research (IISER) Kolkata,Kolkata, India

Gérard Colas des Francs ICB, Université Bourgogne-Franche Comté, CNRS,Dijon, France

Philippe Wilhelm Courteille Instituto de Física de São Carlos (IFSC),Universidade de São Paulo (USP), São Paulo, São Carlos, Brazil

Aurélien Cuche CEMES, Université de Toulouse, CNRS, Toulouse, France

Carlo Danieli Center for Theoretical Physics of Complex Systems, Institute forBasic Science, Daejeon, South Korea

A. de Lustrac Centre de Nanosciences et de Nanotechnologies, CNRS, UniversitéParis-Sud, Université Paris-Saclay, Orsay, France; UPL, Université Paris Nanterre,Ville d’Avray, France

xix

Page 19: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Yisheng Fang Department of Physics, Zhejiang University, Hangzhou, China

Sergej Flach Center for Theoretical Physics of Complex Systems, Institute forBasic Science, Daejeon, South Korea

Carlo Forestiere Department of Electrical Engineering and InformationTechnology, Università degli Studi di Napoli Federico II, Napoli, Italy

Frank Fournel CEA-LETI, Université Grenoble-Alpes, Grenoble, France

Taku Fukuta Department of Physical Science, Osaka Prefecture University,Sakai, Japan

Benjamin Gallinet CSEM SA, Neuchâtel, Switzerland

N. Ghosh Indian Institute of Science Education and Research (IISER) Kolkata,Kolkata, India

Maxim A. Gorlach ITMO University, Saint Petersburg, Russia

C. Z. Gu Beijing National Laboratory for Condensed Matter Physics, Institute ofPhysics, Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory ofVacuum Physics, School of Physical Sciences, University of Chinese Academy ofSciences, Beijing, China; Collaborative Innovation Center of Quantum Matter,Beijing, China

Naomichi Hatano Institute of Industrial Science, The University of Tokyo,Kashiwa, Chiba, Japan

Shinji Hayashi Graduate School of Engineering, Kobe University, Kobe, Japan;Optics and Photonics Center, Moroccan Foundation for Science, Innovation andResearch (MAScIR), Rabat, Morocco

Yutaka Kadoya Graduate School of Advanced Science of Matter, HiroshimaUniversity, Higashi-Hiroshima, Japan

Houssem Kallel CEMES, Université de Toulouse, CNRS, Toulouse, France

Eugene Kamenetskii Microwave Magnetic Laboratory, Department of Electricaland Computer Engineering, Ben Gurion University of the Negev, Beersheba, Israel

Alexander B. Khanikaev The City College of the City University of New York,New York City, NY, USA; ITMO University, Saint Petersburg, Russia

Masao Kitano Department of Electronic Science and Engineering, KyotoUniversity, Kyoto, Japan

Dmitry Korobkin The City College of the City University of New York, NewYork City, NY, USA; ITMO University, Saint Petersburg, Russia

Vincent Larrey CEA-LETI, Université Grenoble-Alpes, Grenoble, France

Guilhem Larrieu LAAS, Université de Toulouse, CNRS, Toulouse, France

xx Contributors

Page 20: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Aurélie Lecestre LAAS, Université de Toulouse, CNRS, Toulouse, France

J. J. Li Beijing National Laboratory for Condensed Matter Physics, Institute ofPhysics, Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory ofVacuum Physics, School of Physical Sciences, University of Chinese Academy ofSciences, Beijing, China

Z. Liu Beijing National Laboratory for Condensed Matter Physics, Institute ofPhysics, Chinese Academy of Sciences, Beijing, China

Stefano Longhi Dipartimento di Fisica e Istituto di Fotonica e Nanotecnologie delConsiglio Nazionale delle Ricerche, Politecnico di Milano, Milan, Italy

A. Lupu Centre de Nanosciences et de Nanotechnologies, CNRS, UniversitéParis-Sud, Université Paris-Saclay, Orsay, France

B. Maes Micro- and Nanophotonic Materials Group, Faculty of Science,University of Mons, Mons, Belgium

Alexandre Souto Martinez Faculdade de Filosofia, Ciências e Letras de RibeirãoPreto (FFCLRP), Universidade de São Paulo (USP), São Paulo, Ribeirão Preto,Brazil

Giovanni Miano Department of Electrical Engineering and InformationTechnology, Università degli Studi di Napoli Federico II, Napoli, Italy

Andrey Miroshnichenko School of Engineering and Information Technology,University of New South Wales, Canberra, ACT, Australia

P. Mitra Indian Institute of Science Education and Research (IISER) Kolkata,Kolkata, India

Toshihiro Nakanishi Department of Electronic Science and Engineering, KyotoUniversity, Kyoto, Japan

Dmitry V. Nesterenko IPSI RAS - Branch of the FSRC “Crystallography andPhotonics” RAS, Samara, Russia; Faculty of Information Technology, SamaraNational Research University, Samara, Russia

Xiang Ni The City College of the City University of New York, New York City,NY, USA

Munehiro Nishida Graduate School of Advanced Science of Matter, HiroshimaUniversity, Higashi-Hiroshima, Japan

Gonzalo Ordonez Department of Physics and Astronomy, Butler University,Indianapolis, IN, USA

Vincent Paillard CEMES, Université de Toulouse, CNRS, Toulouse, France

Contributors xxi

Page 21: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Namkyoo Park Photonic Systems Laboratory, Department of Electrical andComputer Engineering, Seoul National University, Seoul, Korea, South Korea

Mariano Pascale Department of Electrical Engineering and InformationTechnology, Università degli Studi di Napoli Federico II, Napoli, Italy

Tomio Petrosky Center for Complex Quantum System, University of Texas atAustin, Austin, USA; Institute of Industrial Science, The University of Tokyo,Tokyo, Japan

Xianji Piao Photonic Systems Laboratory, Department of Electrical and ComputerEngineering, Seoul National University, Seoul, Korea, South Korea

Alina A. Pilipchuk Federal Research Center KSC SB RAS, Kirensky Institute ofPhysics, Krasnoyarsk, Russia

Artem S. Pilipchuk Federal Research Center KSC SB RAS, Kirensky Institute ofPhysics, Krasnoyarsk, Russia

Felipe A. Pinheiro Instituto de Física, Universidade Federal do Rio de Janeiro(UFRJ), Rio de Janeiro, Brazil

Selen Postacı Department of Physics, Middle East Technical University, Ankara,Turkey

Ajith Ramachandran Center for Theoretical Physics of Complex Systems,Institute for Basic Science, Daejeon, South Korea

S. K. Ray Indian Institute of Science Education and Research (IISER) Kolkata,Kolkata, India

Zhichao Ruan State Key Laboratory of Modern Optical Instrumentation,Department of Physics, Zhejiang University, Hangzhou, China

Almas Sadreev Federal Research Center KSC SB RAS, Kirensky Institute ofPhysics, Krasnoyarsk, Russia

Zouheir Sekkat Optics and Photonics Center, Moroccan Foundation for Science,Innovation and Research (MAScIR), Rabat, Morocco; Faculty of Sciences,Mohammed V University in Rabat, Rabat, Morocco; Graduate School ofEngineering, Osaka University, Suita, Japan

A. K. Singh Indian Institute of Science Education and Research (IISER) Kolkata,Kolkata, India

Sebastian Slama Physikalisches Institut, Eberhardt-Karls-Universität Tübingen,Tübingen, Germany

Daria A. Smirnova The City College of the City University of New York, NewYork City, NY, USA

xxii Contributors

Page 22: Springer Series in Optical Sciences978-3-319-99731-5/1.pdfSpringer Series in Optical Sciences is led by Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, and

Satoshi Tanaka Department of Physical Science, Osaka Prefecture University,Sakai, Japan

Mehmet Emre Taşgın Institute of Nuclear Science, Hacettepe University,Ankara, Turkey

Roberto Tricarico Department of Electrical Engineering and InformationTechnology, Università degli Studi di Napoli Federico II, Napoli, Italy

F. Vaianella Micro- and Nanophotonic Materials Group, Faculty of Science,University of Mons, Mons, Belgium

Peter R. Wiecha CEMES, Université de Toulouse, CNRS, Toulouse, France

S. Y. Yang Beijing National Laboratory for Condensed Matter Physics, Institute ofPhysics, Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory ofVacuum Physics, School of Physical Sciences, University of Chinese Academy ofSciences, Beijing, China

Sunkyu Yu Photonic Systems Laboratory, Department of Electrical and ComputerEngineering, Seoul National University, Seoul, Korea, South Korea

Simone Zanotto NEST, Istituto Nanoscienze - CNR and Scuola NormaleSuperiore, Pisa, Italy

Contributors xxiii