29
Springer Encyclopedia of Sustainability Science and Technology, Second Edition. Robert A. Meyers (ed.) Second Edition 2017 Title Bioclimatic design Author Donald Watson, FAIA Trumbull CT, USA e-mail: [email protected] Topic Headings Glossary Definition of the Subject 1 Introduction 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows and walls 3.4 Indoor/outdoor rooms 3.5 Earth-sheltering 3.6 Thermally massive construction 3.7 Sun shading 3.8 Natural ventilation 3.9 Plants and water 4 Bioclimatic design of atriums 4.1 Solar heating guidelines 4.2 Natural cooling guidelines 4.3 Daylighting guidelines 4.4 Garden atriums 5 Large-scale applications 6 Urban and regional scale 6.1 Solar access 6.2 Urban heat islands and cool zones 6.3 Urban air quality 7 Future directions: design for resilience to climate change Bibliography

Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

SpringerEncyclopediaofSustainabilityScienceandTechnology,SecondEdition.RobertA.Meyers(ed.)SecondEdition2017Title BioclimaticdesignAuthor DonaldWatson,FAIA TrumbullCT,USA e-mail:[email protected]

GlossaryDefinitionoftheSubject

1 Introduction2 Principlesofbioclimaticdesign3 Practicesofbioclimaticdesign3.1 Windbreaks3.2 Thermalenvelope3.3 Solarwindowsandwalls3.4 Indoor/outdoorrooms3.5 Earth-sheltering3.6 Thermallymassiveconstruction3.7 Sunshading3.8 Naturalventilation3.9 Plantsandwater4 Bioclimaticdesignofatriums4.1 Solarheatingguidelines4.2 Naturalcoolingguidelines4.3 Daylightingguidelines4.4 Gardenatriums 5 Large-scaleapplications6 Urbanandregionalscale6.1 Solaraccess6.2 Urbanheatislandsandcoolzones6.3 Urbanairquality7 Futuredirections:designforresiliencetoclimatechange

Bibliography

Page 2: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

GlossaryTermsandsymbolsfrequentlyusedinbuildingscienceandclimatologyFahrenheittemperature(F)referstotemperaturemeasuredonascaledevisedbyG.D.Fahrenheit,theinventorofthealcoholandmercurythermometers,intheearly18thcentury.OntheFahrenheitscale,thefreezingpointofwateris32Fanditsboilingpointis212Fatnormalatmosphericpressure.Celsiustemperature(°C)referstotemperaturesmeasuredonascaledevisedin1742byAndersCelsius,aSwedishastronomer.TheCelsiusscaleisgraduatedinto100unitsbetweenthefreezingtemperatureofwater(0°C)anditsboilingpointatnormalatmosphericpressure(100°C)andis,consequently,commonlyreferredtoastheCentigradescale.Dry-bulbtemperature(DBT)isthetemperaturemeasuredinairbyanordinary(drybulb)thermometerandisindependentofthemoisturecontentoftheair.Itisalsocalled“sensibletemperature.”Wet-bulbtemperature(WBT)isanindicatorofthetotalheatcontent(orenthalpy)oftheair,thatis,ofitscombinedsensibleandlatentheats.Itisthetemperaturemeasuredbyathermometerhavingawettedsleeveoverthebulbfromwhichwatercanevaporatefreely.Dewpointtemperature(DPT)isthetemperatureofasurfaceuponwhichwatervaporcontainedintheairwillcondenseintoliquidwater.Stateddifferently,itisthetemperatureatwhichagivenquantityofairwillbecomesaturated(reach100%relativehumidity)ifchilledatconstantpressure.Itisthusanotherindicatorofthemoisturecontentoftheair.Dewpointtemperatureisnoteasilymeasureddirectly;itisconvenientlyfoundonapsychrometricchartifdry-bulbandwet-bulbtemperaturesareknown.Humidityisageneraltermreferringtothewatervaporcontainedintheair.Liketheword“temperature,”thetypeof“humidity”mustbedefined.Relativehumidity(RH)isdefinedasthepercentofmoisturecontainedintheairunderspecifiedconditionscomparedtotheamountofmoisturecontainedintheairattotalsaturationatthesame(drybulb)temperature.Relativehumiditycanbecomputedastheratioofexistingvaporpressuretovaporpressureatsaturation,ortheratioofabsolutehumiditytoabsolutehumidityatsaturationexistingatthesametemperatureandbarometricpressure.

Page 3: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

DefinitionoftheSubjectBioclimaticdesign–combining“biology”and“climate”–isanapproachtothedesignofbuildingsandlandscapethatisbasedonlocalclimate.Bioclimaticdesigntechniquesincludesolarheatingandsunshading,naturalventilation,anduseofbuildingmaterialsforthermaltimelagandstorage.Resilientdesignisanextensionofbioclimaticdesign,addingprecautionarymeasurestoprovidehealthandsafetytopreparebuildings,communitiesandregionsfornaturaldisastersandclimatechange.1IntroductionInadoptingbioclimaticapproaches,thedesignerendeavorstocreatecomfortconditionsinbuildingsbyunderstandingthemicroclimateandresultingdesignstrategiesthatincludenaturalventilation,daylighting,andpassiveheatingandcooling.Examplesofbioclimaticdesignsarefoundinexamplesofindigenousandvernacularbuildingthroughouttheglobe,evidenceofgeniusloci,thewaysoflivingandworkingrootedinaparticularplaceandtime.Nowanestablishedtopicofbuildingscienceresearchandarchitecturalpractice,bioclimaticdesigncanbeappliedtobuildings,landscapes,urbanandregionalscales,aspartof21stcenturysustainabilityandresilientplanninggoals.Techniquesofsun-tempering,solarshading,anddaylightingwereamplyrepresentedintheearly20thcenturyportfoliosofFrankLloydWright,TonyGarnier,andAugustinRey,in1920sBauhausmanifestosofHannesMeyerandMarcelBreuer,inlate1920shealth-orienteddesignsofAlvarAaltoandRichardNeutra,andin“solarhouse”designsoftheKeckBrothersintheChicagoareathelate1930s.[1]OlgyayandOlgyayusedtheterm“bioclimaticdesign”todefineamethodologythatmatchedlocalclimatevariablestoachievementofhumancomfort,applicabletoarchitectureandplanning,promotedinaseriesofprofessionalandpopularpublicationsinthelate1940sand1950s.[2,3]Whenair-conditioningsystemsbecamewidelyavailableinthe1950sandelectricitywasconsideredcheapandavailable—itbecamepossible“tocoolaglasshouseinthedesert.”Interestinbioclimaticdesignwanedandbecamelessevidentinbuiltwork,althoughpioneeringstudiescontinuedinacademicandarchitecturalresearchcentersinBritainandtheU.S.Thetopicrevivedinresponsetoenergyshortagesofthe1970s.“Passivesolardesign”becamethepopulartermtoincorporateelementsofbioclimaticdesign,atfirstemphasizingsolarheatingbutsoonbroadenedtopassivecoolinganddaylighting.[4]

Page 4: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Inthelate1980s,theUnitedNationsBruntlandCommissionandtheRioEarthSummitofJune1992gaveinternationalfocustotheconceptof“sustainability,”includingreducedrelianceonnon-renewableresourcesandthreatstoecosystemsandthebiodiversityofenvironmentsandcultures.Withemergenceofsuchglobalenvironmentalconcerns,thescopeofbioclimaticdesignwasenlargedtoincludelandscape,soil,water,andwastenutrientrecovery,designedtomimicandrestorethehealthofnaturalprocessesandecosystems,characterizedbytheterm“regenerativedesign.”[5]Atthebeginningofthe21stcentury,theworldconfrontstheevidenttrendsofextremeweatherandclimatechange.Bioclimaticdesignhasgainedadditionalrelevanceasthebasisofapplyingclimatescienceto“passivesurvivability”—definedbyAlexWilsonas“abuilding’sabilitytomaintaincriticallife-supportconditionsifservicessuchaspower,heatingfuel,orwaterarelost.”[6]Thechallengetoreduceandeliminatewherepossibletheuseoffossilfuelsforcarbonreductionfurthersupportsbioclimaticdesign.Bioclimaticdesignprovidestheknowledgeandinspirationofnaturetodesignforsustainabilityandresilienceinbuildings,landscapes,citiesandregions.[7]2PrinciplesofbioclimaticdesignSixkeyvariableshavebeenidentifiedinresearchstudiesofhumanphysiologicalcomfort,inwhichvolunteersubjectsareaskedtoreportlevelofcomfortanddiscomfort:airtemperature,ambientradianttemperature,humidity,airvelocity,dress,andmetabolicrateasafunctionofactivitylevel[8]Commonresponsesacrossallthesevariableshaveestablishedbaselineconditionsrequiredforhumancomfort.Studiesindicatethatthe“comfortzone”forhumansdoesnotvary,regardlessofsex,age,placeoforiginandresidence,skincolor,andbodyformandweight.Inotherwords,thehuman"comfort"zoneisrelativelyuniversalindependentofage,health,orsex.However,pointswhereresearchsubjectsreportdiscomfortandevidencethermalstressdoesvary,asafunctionofmanyvariables,includingage,health,andacculturation.Comfortstudiesarethebasisofthedesigncriteriaofheatingandcoolingsystemsforbuildings,alsoapplicabletobioclimaticdesign.The“resources”ofbioclimaticdesignarethenaturalflowsof“ambient”energyinandaroundabuilding—the“microclimate”createdbysun,wind,precipitation,vegetation,temperatureandhumidityintheairandintheground.(Figure1)[INSERTFigure1]

Page 5: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Figure1.Pathsofenergyexchangeatthebuildingmicroclimatescale.Bioclimaticdesignisbaseduponunderstandingenergyflowswithinandaroundbuildings.(Reference4)• Conduction—fromhotterobjecttocoolerobjectbydirectcontact.• Convection—byflowofairbetweenwarmerobjectsandcoolerobjects.• Radiation—fromhotterobjecttocoolerobjectwithinthedirectviewofeachotherregardlessofthetemperatureofairbetween,includingradiationfromsuntoearth.• Evaporation—thechangeofphasefromliquidtogaseousstate:Thesensibleheat(dry-bulbtemperature)intheairisloweredbythelatentheatabsorbedfromairwhenmoistureisevaporated.• Thermalstorage—fromheatchargeanddischargebothdiurnallyandseasonally,asafunctionofitsspecificheat,mass,andconductivity.Althoughnotusuallyincludedalongsidethefourclassicmeansofheattransport,thermalstorageishelpfulinunderstandingtheheattransferphysicsofbuildingclimatology.Thestrategiescanbesetforthas:•MinimizeconductiveheatflowThisstrategyisachievedbyusinginsulationandthermalbreaks.Itiseffectivewhentheoutdoortemperatureissignificantlydifferent,eitherlowerorhigher,thantheinteriorcomfortrange.Insummer,thisstrategyshouldbeconsideredwheneverambienttemperaturesarewithinorabovethecomfortrangeandwherenaturalcoolingstrategiescannotbereliedupontoachievecomfort(thatis,whenevermechanicalairconditioningisnecessary).•DelayperiodicheatflowWhiletheinsulationvalueofbuildingmaterialsiswellunderstood,itisnotaswidelyappreciatedthatbuildingenvelopematerialsalsocandelayheatflowsthatcanbeused

Page 6: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

toimprovecomfortandtolowerenergycosts.Timelagthroughmasonrywalls,forexample,candelaytheday’sthermalimpactuntileveningandisaparticularlyvaluabletechniqueinhotaridclimateswithwideday-nighttemperaturevariations.Techniquesofearthshelteringandearthbermingalsoexploitthelong-lageffectofsubsurfaceconstruction.•Minimizeinfiltration“Infiltration”referstouncontrolledairleakagearounddoorsandwindowsandthroughjoints,cracks,andfaultysealsinthebuildingenvelope.Infiltration(andresulting“exfiltration”ofheatedorcooledair)isconsideredthelargestandpotentiallythemostintractablesourceofenergylossinabuilding,onceotherpracticalmeasureshavebeentaken.•ProvidethermalstorageThermalmassinsideoftheinsulatedenvelopeiscriticaltodampeningtheswingsinairtemperatureandinstoringheatinwinterandasaheatsinkinsummer.•PromotesolargainThesuncanprovideasubstantialportionofwinterheatingenergythroughelementssuchasequatorial-facingwindowsandgreenhouses,thatincludeotherpassivesolartechniqueswhichutilizespacestocollect,store,andtransfersolarheat.•MinimizesolargainThebestmeansforensuringcomfortfromtheheatofsummeristominimizetheeffectsofthedirectsunbyshadingwindowsfromthesun,orotherwiseminimizingthebuildingsurfacesexposedtosummersun,byuseofradiantbarrierandbyinsulation.•MinimizeexternalairflowWinterwindsincreasetherateofheatlossfromabuildingby“washingaway”heatandthusacceleratingthecoolingoftheexteriorenvelopesurfacesbyconduction,andalsobyincreasinginfiltration(exfiltration)losses.Sitingandshapingabuildingtominimizewindexposureorprovidingwindbreakscanreducewindimpactsandheatloss.•PromoteventilationCoolingbyairflowthroughaninteriormaybepropelledbytwonaturalprocesses,cross-ventilation(winddriven)andstack-effectventilation(drivenbythebuoyancyofheatedairevenintheabsenceofexternalwindpressure).Afan(usingphotovoltaicforfanpower)canbeanefficientwaytoaugmentnaturalventilationcoolingintheabsenceofsufficientwindorstack-pressuredifferential.•PromoteradiantcoolingAbuildingcanloseheatifthemeanradianttemperatureofthematerialsatitsoutersurfacesisgreaterthanthatofitssurroundings,principallythenightsky.Themeanradianttemperatureofthebuildingsurfaceisdeterminedbytheintensityofsolar

Page 7: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

irradiation,thematerialsurface(filmcoefficient)andbytheemissivityofitsexteriorsurface(itsabilityto“emit”orre-radiateheat).Thiscontributesonlymarginallyifthebuildingenvelopeiswellinsulated.•PromoteevaporativecoolingSensiblecoolingofabuildinginteriorcanbeachievedbyevaporatingmoistureintotheincomingairstream(orifanexistingroofhaslittleinsulation,byevaporativecoolingtheexteriorenvelopesuchasbyaroofspray.)Thesearesimpleandtraditionaltechniquesandmostusefulinhot-dryclimatesifwaterisavailableforcontrolledusage.Mechanicallyassistedevaporativecoolingisachievedwithaneconomizer-cycleevaporativecoolingsystem,insteadof,orinconjunctionwith,refrigerantairconditioning.The“comfortrange”asdefinedinresearchstudiesiswithinasmallrangeoftemperatureandhumidityconditions,roughlybetween68-80F(20-26.7°C)and20-80%relativehumidity(RH),referredtoonthepsychrometricchartasthe“comfortzone.”Othervariablesincludeenvironmentalindices—radianttemperatureandrateofairflow—aswellasclothingandactivity(metabolicrate).Whilesuchcriteriadescriberelativelyuniversalrequirementsinwhichallhumansare“comfortable,”therearesignificantdifferencesinandvaryingtolerancefordiscomfort,thatis,thelimitsinwhichstressisfelt,whichvarydependinguponage,sex,health,culturalconditioningandexpectations.Givoni[9]andMilneandGivoni[10]offeradesignmethodusingthe“BuildingBioclimaticChart,”modifiedbyArens.[11](Figure2)[INSERTFigure2here]

Figure2.BuildingBioclimaticChart.Thechartindicatesparametersofclimaticconditionsfavorableforbioclimaticdesign.(References9,10,11)

Page 8: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Adoptingthepsychometricchartformat,theBuildingBioclimaticChartdisplaystheparametersforbioclimaticdesignstrategiesthatcanachievehumancomfortinabuildinginterior.Iflocaloutdoortemperaturesandhumidityfallwithinspecifiedzones,thedesignerisalertedtoopportunitiestousespecificbioclimaticdesignstrategiestocreateeffectiveinteriorcomfort.TMY(TypicalMeteorologicalYear)summariescontainclimaticdataforall8,760hoursina“typical”year,availableformostlocationsintheUnitedStatesandincreasinglyavailableformajorregionsandcitiesworldwide.Eachfilecontainsonecompleteyearofhourlydata,includingdirect(beam)solarradiation,totalhorizontalsolarradiation,dry-bulbtemperature,dew-pointhumidity,windspeedandcloudcover.[12]Climateconsultantisacomputer-basedprogramthatcanbedownloadedatnocostfromtheweb.[13]Partofacareer-longprojectofUCLAProfessorEmeritusMurrayMilnetodeveloppublicdomainenergydesigntools,thesoftwareplotstemperatures,windvelocity,skycover,percentsunshine,beamandhorizontalirradiation.Itincludes3-Dplotsoftemperature,windspeed,andrelatedclimaticdatacross-referencedtobioclimaticdesignpracticespresentedinWatsonandLabs.[4][INSERTFigure3here]

Figure3.ClimateConsultantdisplayoftheBuildingBioclimaticChartforAtlantaGA.RepresentativebioclimaticchartgeneratedbyClimateConsultant.Thebox“DesignStrategies”tabulatesthepercenthoursperyearthatbioclimaticdesignstrategiesareeffective,compilingTMY3dataset.(Reference13)

Page 9: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

ClimateConsultantgraphsincludetheBuildingBioclimaticChartforAtlanta(Figure3),withsummariesofpercentannualhoursofheatingandcoolingrequirements,alongwitheffectivebioclimaticstrategies,listedbelowinrankorderofpercentannualhoursofpotentialneedandeffectiveness.Thedesignercanthusassesstherelativeeffectivenessandprioritiesofoptions,alsosubjecttolocalenergycosts,reliability,andbuildinguses.26.8%Heating,addHumidificationifneeded(2346hrs)25.4%InternalHeatGain(2223hrs)17.2%Dehumidification(1504hrs)14.0%SunShadingofWindows(1228hrs)11.2%Cooling,addDehumidificationifneeded(979hrs)11.1%Comfort(968hrs)09.9%PassiveSolarDirectGainLowMass(866hrs)08.5%PassiveSolarDirectGainHighMass(747hrs)03.4%HighThermalMass(299hrs)02.9%HighThermalMassNightFlushed(252hrs)02.3%Two-StageEvaporativeCooling(198hrs)02.2%DirectEvaporativeCooling(189hrs)02.0%NaturalVentilationCooling(174hrs)01.2%Fan-forcedVentilationCooling(107hrs)01.1%WindProtectionofOutdoorSpaces(94hrs)00.0%Humidificationonly(0hrs)3PracticesofBioclimaticDesignBioclimatictechniquescanbesetforthasasetofdesignopportunities,adaptedfromWatsonandLabs(Reference4):3.1 Windbreaks(winter):Twodesigntechniquesservethefunctionofminimizingwinterwindexposure•Useneighboringlandforms,structures,orvegetationforwinterwindprotection.•Shapeandorientthebuildingshelltominimizewinterwindturbulence.(Figure4)[INSERTFigure4here]

Page 10: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Figure4.SeaRanch,California.Landscapeplanting,roofslopesandfencingdesignedforwindprotection.Esherick,Homsey,DodgeandDavis,ArchitectsandPlannerswithLawrenceHalprin,LandscapeArchitect.3.2 Thermalenvelope(winter):Isolatingtheinteriorspacefromthehotsummerandcoldwinterclimate,suchas:•Useatticspaceasbufferzonebetweeninteriorandoutsideclimate.•Usebasementorcrawlspaceasbufferzonebetweeninteriorandgrounds.•Usevestibuleorexterior“windshield”atentryways.•Locatelow-usespaces,storage,utilityandgarageareastoprovideclimaticbuffers.•Subdivideinteriortocreateseparateheatingandcoolingzones.•Selectinsulatingmaterialsforresistancetoheatflowthroughbuildingenvelope.•Applyvaporbarrierstothewarmsideofbuildingenvelopeassembliestocontrolmoisturemigration.•Developconstructiondetailstominimizeairinfiltrationandexfiltration.•Provideinsulatingcontrolsatglazing.•Useheatreflectiveorradiantbarriersonorbelowsurfacesorientedtosummersun.•Minimizetheoutsidewallandroofarearatioofexteriorsurfacetoenclosedvolume.(Figure5)[INSERTFigure5here]

Page 11: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Figure5.Analysisofbuildingaspectratio.Simplifiedbuildingshapesarecomparedforratioofexteriorsurfacetoenclosedvolume.(Reference4)3.3 Solarwindowsandwalls(winter):Usingthewintersunforheatingabuildingthroughsolar-orientedwindowsandwallsisprovidedbyanumberoftechniques:•Maximizereflectivityofgroundandbuildingsurfacesoutsidewindowsfacingthewintersun.•Shapeandorientthebuildingshelltomaximizeexposuretowintersun.•Usehigh-capacitancethermalmassmaterialsintheinteriortostoresolarheatgain.•Usesolarwallandroofcollectorsonequatorial-orientedsurfaces.•Optimizetheareaofequatorial-facingglazing.•Useclerestoryskylightsforwintersolargainandnaturalillumination.•Providesolar-orientedinteriorzoneforsolarheatgain,withsolarcontrolforshadinginoverheatedperiods.(Figure6)[INSERTFigure6here]

Figure6.Solarwindows&walls.L:Keck+Keck,ArchitectsdevelopedsolardesignprinciplesintheChicagoareainthe1930s.ThedesignsofKeck+Keck—inthisexampleaprefabforGreenReady-BuiltHomes—includedsouth-facingglass,exposedmasonryfloorswithhypostyle(warmairradiant)heating,interiormasonrywalls,interiorcurtainsandexteriorshading.PHOTO:WilliamKeck,ArchitectR:RuralSchool,Kesserine,Tunisia.Solar“TrombeWall”(glasscoveredmasonry),clerestorydaylighting,SaveTheChildrenFederation.1986.PHOTO:DonaldWatson,FAIA,Architect3.4 Indoor/outdoorrooms(winterandsummer):Courtyards,coveredpatios,seasonalscreenedandglassed-inporches,greenhouses,atriumsandsunspacescanbelocatedinthebuildingplanforsummercoolingandwinterheatingbenefits,asinthesethreetechniques:•Provideoutdoorsemi-protectedareasforyear-roundclimatemoderation.(Figure7)[INSERTFigure7here]

Page 12: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Figure7.Protectedcourtyard.BuliKhelamIhakhangMonastery,Bhutan.IntheHimalayantraditionofbuilding,anenclosedcourtyardwithsunexposedadobewallsandwindowscreatesawindprotectedmicroclimate,permittingatemperateplantingregimetoflourishwithin,incontrasttohighmountainclimaticconditionsofitslocale.PHOTO:DonaldWatson3.5 Earth-sheltering(winterandsummer):Techniquessuchasbankingearthagainstthewallsofabuildingorgreenroofsprovidethermalstorageanddampingtemperaturefluctuations(dailyandseasonally),reducingenvelopeheatlossorgain(winterandsummer).Thesetechniquesareoftenreferredtoasearth-contactorearth-sheltering:•Useslab-on-gradeconstructionforgroundtemperatureheatexchangeandthermalstorage.•Useearth-coveredorsodroofs.•Recessstructurebelowgradeorraiseexistinggradeforearthsheltering.(Figure8)[INSERTFigure8]

Figure8.Earth-shelteredhome.NewCanaanCT.DonaldWatson,FAIA,Architect(1)Wintersolstice,(2)Summersolstice,(3)Lightshelf/daylightreflector,(4)Greenroof,(5)Skylight,(6)Earthsheltering.3.6 Thermallymassiveconstruction(summerandwinter):Particularlyeffectiveinhotaridzones,orinmoretemperatezoneswithcoldclearwinters.Thermallymassiveconstructionprovidesa“thermalflywheel.”Absorbingheatduringthedayfromsolarradiationandconvectionfromindoorair,thermalmasscancreatecomfortifitiscooled

Page 13: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

atnight,ifnecessarythroughnighttimeventilativecooling(ifairtemperaturesfallwithinthecomfortzone).•Usehighmassconstructionwithoutsideinsulationandnighttimeventilation.•Forselectedclimates(hotdry),usehigh-capacitancematerialstodampenheatflowthroughthebuildingenvelope.(Figure9)[INSERTFigure9here]

Figure9.Thermalmassappropriateforhotdryclimate.Indigenousadobeblockconstruction,withroofandwindowoverhangstoshadeandprotectthewalls.TahonoO’OdhamNation,PapagoIndianReservation,Arizona.PHOTO:DonaldWatson3.7 Sunshading(summer):Mid-daysolaraltitudeanglesarehigherinsummerthaninwinter.Thus,anoverhangcanshadewindowsfromthesunduringtheoverheatedsummerperiodandpermitsuntoreachthewindowsurfacesandinteriorspacesinwinter.•Minimizereflectivityofgroundandbuildingsurfacesoutsidewindowsfacingthesummersun.•Useneighboringlandforms,structures,orvegetationforshadingsummersun.•Shapeandorientthebuildingshelltominimizeexposuretosummerafternoonsun.•Provideseasonallyoperableshading,includingdeciduoustrees.3.8 Naturalventilation(summerandseasonal):Naturalventilationisasimpleconceptbywhichtocoolabuilding.•Shapeandorientthebuildingshelltomaximizeexposuretosummerbreezes.•Use“openplan”interiortopromoteairflow.•Provideverticalairshaftstopromote“thermalchimney”orstack-effectairflow.•Usedoubleroofconstructionforventilationwithinthebuildingshell.•Orientdoorandwindowopeningstofacilitatenaturalventilationfromprevailingsummerbreezes.•Usewingwalls,overhangs,andlouverstodirectsummerwindflowintointerior.•Uselouveredwallopeningsformaximumventilationcontrol.•Useroofmonitorsfor“stackeffect”ventilation.(Figure10)[INSERTFigure10here]

Page 14: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Figure10.Shadingandventilationstrategies.Builtinanerawellbeforeair-conditioning,plantationmanorhousessuchasthe1827SanFranciscoPlantationHouse,NewOrleans,combinedarangeofstrategiesfornaturalcoolinginhothumidclimates,includingopenunderstoryandporches,cross-ventilation,androofsdesignedtoinduceventilationbythermalupdraft.PHOTO:RobertPerron3.9Plantsandwater(summer):Manytechniquesprovidecoolingbyplantsandwaternearbuildingsurfacesforshadingandevaporativecooling.•Useplantingnexttobuildingskin(provideditdoesnotinterferewithventilation).•Useroofsprayorroofpondsforevaporativecooling.•Usegroundcoverandplantingforsitecooling.•Maximizeon-siteevaporativecooling.(Figure11)[INSERTFigure11here]

Figure11.Evaporativecoolingstrategies:Publiccourtyard.Seville,Spain.Thestreetsandpassagesofthecitycombinecourtyards,gardens,andalandscaperichwithplantingandwaterfountains.PHOTO:HelenKessler

Page 15: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

4BioclimaticdesignofatriumsAtriumsoffermanyenergydesignopportunities,dependinguponclimatevariables,toprovidenaturalheating,cooling,lightingandplants.SuggestedbyitsLatinmeaningas“heart,”oranopencourtyardofaRomanhouse,thetermatriumasusedtodaytodescribeaprotectedcourtyardorglazedlarge-volumespaceplacedwithinabuilding.Modernatriumdesignincorporatesmanyarchitecturalelements—wallenclosures,sun-orientedopenings,shadingandventilationdevices,andsubtlemeansofmodifyingtemperatureandhumidity—suggestedbyexamplesthatderivefrom19thCenturygreenhousesandglass-coveredarcadesofGreatBritainandFrance.InnorthernEurope,especiallyHollandandEngland,fromthe17thcenturyon,south-facingorientationofindoorgardens,propagatingsheds,orangeries,andconservatoriesrevealedanunderstandingofbioclimaticdesign.Gardenersandgreenhousedesignerscombinedthermalmass,doubleglass,steepglassorientation,undergroundheating,shadingandinsulatingdevicesingreenhouses.ThegreenhousedesignsofJ.C.Loudon,beginningcirca1820,hadalloftheseelementsevidentinsketchesandbuiltexamplesthroughmid-century.JosephPaxton’sGreatExpositionCrystalPalaceof1851demonstratedthepossibilityforlargeglazed-coveredareas,inauguratingaproliferationofurbanatriumdesignsacrossEuropeandtheworld.[14]Atriumsoffermanyenergydesignopportunities:first,comfortisachievedbygradualtransitionfromoutsideclimatetobuildinginterior;second,designedproperly,protectedspacesandbufferzonescreatenaturalandfreeflowingenergybyreducingorbyeliminatingtheneedtootherwiseheat,cool,orlightbuildinginteriors.4.1SolarheatingguidelinesIfheatingefficiencyaloneistheprimaryenergydesigngoaloftheatrium,thefollowingdesignprinciplesshouldbeparamount:HeatingRule1 Tomaximizewintersolarheatgain,orienttheatriumaperture(openingsandglazing)totheequator.Ifpossible,theglazingshouldbeverticalorslopednotlowerthanatiltangleequaltothelocallatitude.HeatingRule2 Tostoreanddistributeheat,placeinteriormasonrydirectlyinthepathofthewintersun.Thisismostusefuliftheheatedwallorfloorsurfacewillinturndirectlyradiatetobuildingoccupants.HeatingRule3 Topreventexcessivenighttimeheatloss,consideraninsulatingsystemfortheglazing,suchasinsulatingcurtainsorhighperformancemulti-layeredwindowsystems.HeatingRule4

Page 16: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Heatrecoverycanbeaccomplishedifthewarmairisredistributedeithertothelowerareaoftheatrium(aceilingfan)orredirected(andcleaned)tothemechanicalsystem,orthroughaheatexchangeriftheairmustbeexhaustedforhealthandair-qualityreasons.Becausealargeairvolumemustbeheated,anatriumisnotanefficientsolarcollector.Ahighspacehelpstomakeanoverheatedspaceacceptable,asthewarmestairrisestothetop.Byfacingalargeskylightand/orwindowopeningtowardstheequator,directwintersolarheatingbecomesfeasible.Incoolclimates,anatriumusedasasolarheatcollectorwouldrequireasmuchwintersunlightaspossible.Inoverbrightconditions,darkfinishesonsurfaceswherethesunstrikeswillhelpreduceglareandalsotostoreheat.Onsurfacesnotindirectsun,lightfinishesreflectlight,especiallywelcomedundercloudyconditions.Inmostlocationsanduses,glassshouldbecompletelyshadedfromthesummersun.Movableinsulationmightbeconsideredtoreducenighttimeheatloss.4.2NaturalcoolingguidelinesSeveralguidelinesrelatedtotheuseofanatriumdesignasanintermediaryorbufferzoneapplytobothheatingandcooling.Ifanunconditionedatriumislocatedinabuildinginterior,heatgainresultsfromthewarmersurroundingspacesintotheatrium.Inbuildingswithlargeinternalgainsduetooccupants,lighting,andmachines,theatriummayrequirecoolingthroughouttheyear.Todesignexclusivelyforcooling,thefollowingprincipleswouldpredominate:CoolingRule1 Tominimizesolargain,provideshadeforthesummersun.Whilefixedshadingdevicessufficeformuchofthesummerperiod,movableshadingistheonlymeansbywhichtomatchtheseasonalshadingrequirementsatalltimes.Inbuildingsinwarmclimates,sunshadingmaybeneededthroughouttheyear.CoolingRule2 Tousetheatriumasanexhaustairplenuminthemechanicalsystemofthebuilding.Thegreatadvantageisoneofeconomy,butheatrecoveryoptions(discussedabove)andventilationbecomemosteffectivewhenthenaturalairflowintheatriumisinthesamedirectionandintegratedwiththemechanicalsystem.CoolingRule3 Tofacilitatenaturalventilation,createavertical“chimney”effectbyplacingventilatingoutletshigh(preferablyinthefree-flowairstreamwellabovetheroof)andbyprovidingcool“replacementair”inletsattheatriumbottom,withattentionthattheairstreamisclean,thatis,freeofcarexhaustorotherpollutants.Theinletairsteamcanbecoolednaturally,bestwithcoolairfromashadedarea.Inhot,dryclimates,passingtheinletairoverwatersuchasanaeratedfountainorlandscapecanfacilitateevaporativecooling.Allowingtheatriumtocoolbyventilationatnightiseffectiveinclimateswheresummernighttimetemperaturesarelowerthandaytime(greaterthan15Fdifference).

Page 17: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Additionalcoolingcapacity(toabsorbandholdheat)isprovidedbymaterialssuchasmasonry.However,asageneralrule,iftheaveragedailytemperatureisabove78F(25.5°C),thermallymassivematerialsaredisadvantageousinnon-air-conditionedspacesbecausetheydonotcoolasrapidlyasathermallylightstructure.Whenstackventilationispossiblethrougharoofaperture,thespacewillventilatenaturallyevenintheabsenceofoutsidebreezes,bythedrivingforceofheatedair.Ifair-conditioningoftheatriumisneededbutcanberestrictedtothelowerareaofthespace,itcanbedonereasonably;coolair,beingheavier,willpoolatthebottom.Designchoicesmustbalancebetweentherequirementsforsunshadingandthosefordaylighting.Theideallocationforashadingscreenisontheoutsideoftheglazing,whereitcanbewind-cooled.Whentheoutsideairrangesabout80F(26.7°C),glassareas—evenifshaded—admitundesiredheatgainbyconduction.Intrulywarmclimates,aminimumofglazedapertureshouldbeusedtopreventundesiredheatgain:asmallamountofglazingshouldbeplacedwhereitismosteffectivefordaylighting.Heat-absorbentorheat-reflectiveglass,thecommonsolutiontoreducesolarheatgain,alsoreducestheilluminationlevel,andalsoreducesdesirablewinterheatgain.Intemperate-to-coolclimates,heatgainthroughaskylightcanbetoleratedifthespaceishigh,sothatheatbuildsupwellabovetheoccupancyzoneandthereisgoodventilation.Inhotclimates,anatriumwillperformbetterasanunconditionedspaceifitisashadedbutotherwiseopencourtyard.4.3DaylightingguidelinesInallclimates,anatriumcanbeusedfordaylighting.Electriclightingcostsavingscanbeachieved,butonlyifthedaylightingsystemworks;thatis,ifitreplacestheuseofartificiallighting.(Manydaylitbuildingsendupwiththeelectriclightsinfulluseregardlessoflightinglevelsneeded.)Atriumsserveaparticularlyusefulfunctionforanentirebuildingbybalancinglightlevels—thusreducingbrightnessratios—acrosstheinteriorfloorsofabuilding.If,forexample,anopenofficefloorhasawindowwallononlyoneside,typicallymoreelectriclightingisrequiredthanwouldberequiredwithoutnaturallightingtoreducethebrightnessratio.Alightcourtcanprovidesuchbalanced“twosource”lighting.Thefollowingprinciplesapplytoatriumdesignfordaylighting:LightingRule1 Tomaximizedaylight,anatriumcross-sectionshouldbesteppedopentotheentireskydomeinpredominantlycloudyareas.Inpredominantlysunnysites,atriumgeometrycanbybaseduponheatingand/orcoolingsolarorientationprinciples.LightingRule2

Page 18: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Tomaximizelight,windoworskylightaperturesshouldbedesignedforthepredominantskycondition.Ifthepredominantskyconditioniscloudyandmaximumdaylightisrequired(asinanorthernclimatewintergarden),considerclearglazingorientedtotheentireskydome,withmovablesuncontrolsforsunnyconditions.Ifthepredominantskyconditionissunny,orienttheglazingaccordingtoheatingand/orcoolingdesignrequirements.LightingRule3 Providesun-and-glarecontrolbygeometryofaperture,surfacetreatment,color,andadjustableshadesorcurtains.Designingfordaylightinginvolvescompromisetomeetwidelyvaryingskyconditions.Whatworksinbrightsunconditionswillnotbeadequateforcloudyconditions.Anopaqueoverhangorlouver,forexample,maycreateparticularlysombershadowingonacloudyday.Lightisdiffusedbyacloudysky,fallingnearlyequallyfromalldirections;thesidesoftheatriumthuscastgrayshadowsonallsides.Forpredominantlycloudyconditions,aclearskylightistherightchoice.Brighthazewillnonethelesscauseintolerableglareatleasttoaviewupwards.Undersunnyconditions,thesameskylightistheleastsatisfactorychoicebecauseofoverlightingandoverheating.Unlessthelocalclimateistrulycloudyandtheatriumrequireshighlevelsofillumination,partialskylightingcanachieveabalanceofnaturallighting,heating,andcooling.Partialskylighting(thatis,askylightingtakesonlyaportionoftheroofsurface).Thisapproachoffersadvantagesofcontrollingglareandsunlightbyprovidingreflectingandshadingsurfaces,suchasbythecoffersoftheskylights.Withlesslightintensityandcontrast,asurfaceilluminatedbyreflectedlightismoreacceptabletothehumaneyethanadirectviewofabrightwindowarea.Movableshadesforglareandsuncontrolprovideafurthermeanstobalanceforthevarietyofconditions.Thedesignprinciplesforheating,cooling,anddaylightingcanbeselectedaccordingtobuildingtypeandlocalclimate.Inthenorthernclimates,thesolarheatingpotentialpredominates,whilethenaturalcoolingpotentialpredominatesinthesouthernUnitedStates.Incommercialandinstitutionalstructures,naturalcoolinganddaylightingarebothimportant.Inthiscase,thelocalclimatewoulddeterminetherelativeimportanceofopennessachievedwithlargeandclearskylighting(mostappropriateforcloudytemperate-to-coolregions)orofclosedandshadedskylighting(mostappropriateforsunnywarmregions).Thedesignprinciplescanbesummarizedasguidelineprinciples.(Figure12)[INSERTFigure12here]

Page 19: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Figure12.Bioclimaticprinciplesforatriumdesign.Guidelinesfordesignofatriaandlightcourtsinvariousclimates.(Reference15)4.4GardenatriumsPlantshaveanimportantroleinbufferzones.Iftherequirementsofplantsareunderstood,healthygreenerycanbeincorporatedintoatriumdesignandcontributetohumancomfort,amenityandenergyconservation.Plants,however,whenuncomfortable,cannotmove.Majorplantinglosseshavebeenreportedingardenedatriumsbecausethebioclimaticrequirementswerenotachieved.Agreenhouseforyear-roundcroporplantproductionisintendedtocreatespring-summerorthegrowing-periodclimatethroughouttheyear.Awintergardenreplicatesspring-summerconditionsforplantgrowthinwintertimebymaximizingwinterdaylightexposureand

Page 20: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

bysolarheating.Plantsneedamplelight,butnotexcessiveheat.Althoughvaryingaccordingtoplantspecies,asageneralruleplantingareasrequirefulloverheadskylighting(essentiallytosimulatetheirindigenousgrowingcondition).Mostplantsareoverheatediftheirrootsrangeabove65F(18.3°C).Plantgrowthslowswhentheroottemperaturedropsbelow45F(7.2°C).Asaresult,agreenhousehasthegeneralproblemofoverheating(aswellasoverlighting)duringanysunnydayandofunderlighting(inintensityandduration)duringanycloudywinterday.Ifthefunctionoftheatriumincludesplantpropagationorhorticulturalexhibit(replicatingtheindigenousclimateinwhichthedisplayplantsflower),thenclear-glassskylightingisneededforthecloudydaysandadjustableshadingandoverheatingcontrolsareneededforsunnydays.Iftheplantbedsareheateddirectly,bywaterpipingforexample,thenroottemperaturescanbemaintainedintheoptimumrangewithoutheatingtheair.Asaresult,theairtemperatureintheatriumcanbecoolforpeople,inthe50F(10°C)range,withtheresultingadvantageofprovidingadefenseagainstsuperheatingthespace.Peoplecanbecomfortableinlowerairtemperaturesifexposedtotheradiantwarmthofthesunand/oriftheradianttemperatureofsurroundingsurfacesiscorrespondinglyhigher,thatis,rangingabove80F(26.7°C).Loweratriumtemperatureshaveafurtheradvantagetoplantsandenergy-efficientspaceoperation:evaporationfromplantsisslowed,savingwaterandenergy(1000Btuareremovedfromthesensibleheatofthespacewitheachpoundofwaterthatevaporates).Aircirculationreducesexcessivemoisturebuild-upattheplantleafandcirculatesCO2,neededduringthedaytimegrowthcycle.(Figure13)[INSERTFigure13here]

Figure13NewCanaanNatureCenterGreenhouse,NewCanaan,CT1982.Buchanan/WatsonArchitects.(1)south-facinggreenhouse(2)solarcollectors(3)thermalstorage(4)ceilingfans(5)roofmonitor(6)operablesun-shade/insulatingcurtain(7)earth-contactfloor(8)root-bedheating(9)grow-lights(10)earthberm(11)rainwatercollection.ILLUSTRATION:MarjaWatson5Large-scaleapplicationsFigure14depictssiteandbuildingopportunitiesforenergycollection,storage,and

Page 21: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

distributionthatmaybeintegratedintolargerbuildingsascombinedpassiveandactivemeasuresofbioclimaticdesign.Applicationsmayincludeon-siteecosystemservices,greenroofs,watercollection,wasterecycling,andbiologicaldiversityofsunandshade,warmandcoolzonesandenergystorage,selecteddependinguponopportunitieswithineachsiteandregion.[INSERTFigure14here]

Figure14.Largebuildingopportunitiesformicroclimaticdesignintegration.Bioclimaticdesignextendstolargerscaleforintegratedheating,coolingandlightingsystems.WilliamLam[16]providesadetailedguidanceforsunlightinglargebuildings,includingdocumentationofcasestudies.Anumberoflargescalebuildingdesignsdemonstrateexemplaryapplicationsofmicroclimaticdesign.(Figures15,16,17)[INSERTFigure15]

Page 22: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Figure15.CenterforInteractiveResearchonSustainability(CIRS)UniversityofBritishColumbia,Vancouver.Designedasa“livinglaboratory”withmultipleinnovationstoreduceenergyandtocaptureanduserainwater.BusbyPerkins+Will,Architects.PHOTO:MartinTessler1 Daylighting/suntempering 9 Deciduouslivingwall2 Photovoltaiccollectors 10 Solaraquaticbiofiltration3 Evacuatedtubecollectors 11 Stormwatertoraingardens4 Greenroof/Rainwaterharvesting 12 SolarDHW5 Displacementventilation 13 Rainwatercistern6 Groundsourceheatpump 14 Waterpurification7 Heatrecovery 15 Grayandblackwaterrecovery8 Radiantheating 16 Greenspaceirrigation[INSERTFigure16here]

Figure16.Solaire-27-storyresidentialapartmentbuildinginNewYorkCityPassivesolar,greenroof,energyandwaterconservingfeatures.CesarPelli&AssociatesArchitectsandSLCEArchitects6UrbanandregionalscaleManystudiesaddressmicroclimaticimpactsattheurbanscale.[3]Perennialtopicshaveincludedsolaraccess,evidentinearly20thCenturystudiesrelatedtosolaraccessanddaylighting,aswellasurbanscaleairflow,6.1SolaraccessRalphKnowles[17]instudiesundertakenovermanydecadeswithstudentsatUniversityofSouthernCaliforniadevelopedthenotionofassuringsolaraccesstobuildings,forsuntempering,daylightingandsolarcollection.Hisstudieshavedemonstratedthatsolaraccesscanbeguaranteedinmosturbanareaswhilekeepingwithinconventionalmediumtomedium-highdensityFloortoAreaRatios(FARs).(Figure17)

Page 23: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

[INSERTFigure17here]

Figure17.L:SolarEnvelopeforamediumdensityneighborhoodofLosAngeles.R:Mediumdensityneighborhoodwithinthesolarenvelope.PHOTOS:courtesyofRalphL.KnowlesAstudybyFXFowleArchitects[18]illustratesthefeasibilityofpassivesolarandimprovedinsulationmeasuresequaltoPassivhausstandards.Strategiesincludeshading,passivesolargain,shading,attentiontothermalbreaksininsulationandenvelope,sun-orientedinteriorlayouts,andenergy-recoverywithinmechanicalventilation.[INSERTFigure18here]

Figure18.CasestudyofPassivhausstandardsapplicablewith2016NewYorkCityzoningandhousingmarketrequirements.Buildingsincolorindicate“fullbuildout”ofsurroundingproperties,withwintermorningshading.(Reference18)6.2UrbanheatislandsandcoolzonesBaruchGivoni[18]compilesabroadsurveyofurbanbioclimaticdataanddesignapplications,withemphasisonmeasureddata,alongwithdiscussionofchallengesofdatameasurementattheurbanscale.

Page 24: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Table1showsaveragesofairandsurfacetemperaturesmeasuredataheightof1m(3.3ft.)aroundnoontimeontheUCLAcampusduringasequenceofseveralcleardaysinsummer.Thelowesttemperatureswereinaspacebetweenalineofhighshrubsandawallofabuilding.Table1.Representativeairandsurfacetemperatureaveragesmeasuredduringasequenceofseveralcleardaysinsummer.(Reference18)Location Air

TemperatureF

SurfaceTemperatureF

AirTemperature°C

SurfaceTemperature°C

Parkinglot 79 122 26.1 50.0Openplaza 78 107 25.6 41.7Shadedwalk 76 80 24.4 26.7Grasslawn 75 88 23.9 31.1Behindshrubs 74 73 23.3 22.8GIvoni’sresearchpointstoopportunitiesforcontinuedresearchattheurbanscale,supportinganapproachtourbanplanningbasedonbioclimaticanalysisanddesign.(Figure19)[INSERTFigure19here]

Figure19.PocketPark,NewYorkCity.PaleyParkcreatesasmallareaofrespite,withacoolingmicroclimatecreatedbyevaporativecooling,shadingandwindprotection,whilewaterfountainsoundhelpsneutralizeurbanclamor.PHOTO:DonaldWatson6.3UrbanairqualityStudiesbyAnneWhistonSpirn[19]haveutilizedresearchonurbanwindeffectstoindicatedesignstrategiestoreducepollutionincitystreetsandpublicways,principallybyopeningbuildingformsandlandscapestolessconstrainedairflow.(Figures20and21)

Page 25: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

[INSERTFigures20]Figure20.AirQuality.Theurbandesignerhasopportunitytoutilizestrategiestoimproveairqualityattheurbanmicroclimaticscale.(Reference19)A-Streetcanyonslinedwithbuildingofsimilarheight,orientedperpendiculartothewinddirectiontendtohavepooraircirculationcomparedtoB.B-Streetcanyonslinedwithbuildingsofdifferentheightsandinterspersedwithopenareashavebetteraircirculation.C-Topromoteaircirculationinstreetcanyons,stepbuildingsbackfromthestreet,increaseopeningsandvarybuildingheights.D-Topromoteaircirculationinstreetsidearcades,designthemwithhighcanopiesandairflowoutlets.[INSERTFigure21here]

Figure21.Comprehensiveplantoimproveairquality.Stuttgart,FederalRepublicofGermany.Publicgardensandopenspaceatopthecitieshillsandhillsidecanyonsarepreservedasvegetatedpublicstairwaysandwatercourses.Hillsidecanyonsfunnelcool

Page 26: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

nighttimeairflowtocentercitystreetsanddowntownparks.PHOTO:Dr.MichaelTrieb,UrbanPlanningInstitute,UniversityofStuttgart.7Futuredirections:designforresiliencetoclimatechangeTheconceptofresiliencyapplieslessonsfromnaturalsystemstodesignforsafetyandprotectioninextremeconditionsusingstrategiesfoundinnaturalsystems,suchasbuffering,zoneseparation,redundancy,rapidfeedbackanddecentralization.Extremeconditionsincludeimpactsofnaturaldisasters,suchashurricanes,tsunamis,andearthquakes.Italsoincludesmitigationandadaptationmeasuresforlonger-termrisksofglobalwarmingandsealevelrisethroughactionsthatreducecarbonemissions.Ascitiesgrowinsizeanddensity,riskstolifesafetyandhealthincrease.Thenaturallandscapethathasevolvedinresponsetoclimateandwaterregimesovermillenniahadadaptedtolong-evolvingpatternsofrainfall,aridity,heatandcold.Historicalfloodconditionswereaccommodatedwithinthewatershedecologyanditsco-evolvingplantsandanimals.Whenthosepatternsaredisruptedandthenaturallandscapeisaltered,floodingrisksanddisastersincrease.WatsonandAdams[7]andWatson[21]extendbioclimaticdesigntoincluderesilience,toadoptprecautionaryprinciplesindesignofbuildings,communitiesandcities.Resiliencyisevidentinnaturalsystemsstrategiestoadjusttoshock,variableandextremeconditions.(Table2)Table2.LessonsofnatureforresilientdesignPrinciplefromnature Applicationtoresilientdesign

ABSORPTION watershedplanninganddesign(reservoirs,retention

ponds,greenroofs)BUFFERING breaks,riparianbuffers,raingardens

COREPROTECTION zoning,decentralization,self-reliantsubsystems

DIFFUSION meanders,wetlandandcoastalzonelandscape,open

foundationsWATERSTORAGECAPACITY aquifers,wetlands,reservoirs,cisterns

REDUNDANTCIRCUITS greeninfrastructure,wildlifecorridors,andmultiple

serviceroutesWASTE/NUTRIENTRECOVERY

sustainablestormwaterdesignandwastesystems

RAPIDRESPONSE earlywarning,emergencyresponsivesystems

Page 27: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

Bioclimaticlifelinesystems—greenspace,water,food,waste,mobility,andsafeshelter—replicatethebiologicalsystemsofwater,vegetation,food,andbiodiversitythatprotectthelife,healthandsafetyofcities.Ecosystemsregulatethesupplyandqualityofwater,air,andsoil.Urbanparksandvegetationreducetheurbanheatislandeffect.Urbangreenspaceshelptoregulateclimate,reflectandabsorbsolarradiation,filterdust,storecarbon,serveaswindbreaks,improveairqualitybyoxygenemissionandmoistening,andenhancecoolingbyevaporation,shading,andairexchange.(Figure22)[INSERTFigure22here]

Figure22:Lifelinesystems,integratingbioclimaticprinciplesasurbanandregionalscales.(Reference21)Bioclimatictechniquesthatcontributetolifelinesystemsattheurbanscaleinclude:Greenspace:walkways,pocketparks,playgrounds,wildlife,trees,plants,andsoilprotection.Water:streamdaylighting,cleansing,waterfountaincoolingzones,andurbanwildlifeponds.Food:localcommunitygardens,farmersmarkets,othercommunitymarketvenues.Energy:protectedutilityandcommunicationlines,districtenergyconduits,solar/windstructures.Waste:combinedurbanservices,efficientwastecollection,recyclingandremoval.Mobility:urbantransitoptions,bikeways,pedestrianscaledvehicles,flexibleuse,

Page 28: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

emergencyservicelanes.Refuge:communitysheltersandsafezones,emergencycommunication,evacuationandmaterialsstaging.Bibliography[1]ButtiK,PerlinJ(1980)Agoldenthread:2500yearsofsolararchitectureandtechnology.VanNostrandReinhold,NewYork[2]FitchJM,SipleP(1952)AIABulletin1949-1952.UniversityMicrofiche,AnnArbor[3]OlgyayV,OlgyayA(1963)Designwithclimate:BioclimaticApproachtoArchitecturalRegionalism.PrincetonUniversityPress,Princeton[4]WatsonD,LabsK(1993)Climaticbuildingdesign.2ndedn.McGraw-Hill,NewYork[5]LyleJT(1996)Regenerativedesignforsustainabledevelopment.Wiley,NewYork[6]WilsonA(2005)Passivesurvivability:anewdesigncriterionforbuildings.EnvironmentalBuildingNewsVol.14:12www.buildinggreen.com/feature/passive-survivability-new-design-criterion-buildings(accessedJune1,2017)[7]WatsonD,AdamsM(2011)Designforflooding:architecture,landscape,andurbandesignforresiliencetoclimatechange.Wiley,NewYork[8]FangerPO(1970)Thermalcomfort.DanishTechnicalPress.Copenhagen[9]GivoniB(1976)Man,climateandarchitecture.2ndedn.AppliedSciencePublishers,London.[10]MilneM,GivoniB(1979)Architecturaldesignbasedonclimate.In:WatsonD(ed)Energyconservationthroughbuildingdesign.McGrawHill,NewYork,pp96—113[11]ArensE,GonzalesR,BerglundL(1986)Thermalcomfortunderanextendedrangeofenvironmentalconditions.ASHRAETransactions.Vol.92-1.ASHRAEPublications,Atlanta,pp18—25http://escholarship.org/uc/item/1jw5z8f2(accessedJune1,2017)[12]NationalEnergyRenewableLaboratoryNREL(1996)Typicalmeteorologicalyearclimatedatafiles.NationalRenewableEnergyLaboratory,GoldenCO[13]MilneM(1997)Energydesigntools.UniversityofCalifornia,LosAngeles.www.energy-design-tools.aud.ucla.edu(accessedJune1,2017)[14]HixJ(1974)Theglasshouse.MITPress,Cambridge[15]WatsonD(1982)Energywithinthespacewithin.ProgressivearchitecturemagazineJuly1982,pp97—102.www.ncmodernist.org/PA/PA-1982-07.PDF(accessedJune1,2017)[16]LamWMC(1986)Sunlightingasformgiverforarchitecture.VanNostrandReinhold,NewYork[17]KnowlesR(2003)Thesolarenvelope.In:WatsonD(ed)Time-saverstandardsforurbandesign.McGraw-Hill,NewYork,pp4.6-—4.6-18[18]FXFowleArchitects(2017)FeasibilitystudytoimplementthePassivehausstandardontallresidentialbuildings.NewYorkStateResearchandDevelopmentAuthority,Albany[19]GivoniB(2003)Urbandesignandclimate.In:WatsonD(ed)Time-saverstandardsforurbandesign.McGraw-Hill,NewYork,pp4.7-1—4.7-14

Page 29: Springer Encyclopedia of Sustainability Science and ... · 2 Principles of bioclimatic design 3 Practices of bioclimatic design 3.1 Wind breaks 3.2 Thermal envelope 3.3 Solar windows

[20]SpirnAW(2003)Betterairqualityatstreetlevel:strategiesofurbandesign.In:WatsonD(ed)Time-saverstandardsforurbandesign.McGraw-Hill,NewYork,pp7.7-1—7.7-8[21]WatsonD(2017)Urbanlifelinestoarchiveclimateresiliency.In:BayJWP,LehmannS(eds)Earthscan/Routledge,London(forthcoming)AdditionalreferencesBrownGZ,DeKayM(2001)Sun,wind&light:architecturaldesignstrategies.JohnWiley,NewYorkBurtHillKosarRittelmann,KantrowitzM(1987)Commercialbuildingdesign:integratingclimate,comfort,andcost.VanNostrandReinhold,NewYorkDodmanD,DiepL,ColenbranderS(2017)Resilienceandresourceefficiencyincities.UnitedNationsEnvironmentProgramme,GenevaFitchJM,BranchDP(1960)Primitivearchitectureandclimate.ScientificAmerican,vol.219,no.3.September1960,pp190-202GivoniB(1998)Climateconsiderationsinbuildingandurbandesign.VanNostrandReinhold,NewYorkHastingsSR(1994)(ed)Passivesolarcommercial&andinstitutionalbuildings:asourcebookofexamplesanddesigninsights.InternationalEnergyAgency.Wiley,NewYorkKnowlesRL(2006)Ritualhouses:drawingonnature’srhythmsforarchitectureandurbandesign.IslandPress,Washington,DCKoenigsbergerOH,IngersollTG,MayhewA,SzokolaySV(1974)Manualoftropicalhousingandbuilding.Longman,NewYorkKwokAG,GrondzikWT(2007)Thegreenstudiohandbook:environmentalstrategiesforschematicdesign.Elsevier,NewYorkLandsburgHE(1972)Assessmentofhumanbioclimate.TechnicalNote123.WorldMeteorologicalOrganization.UNIPUB.Geneva.ac.ciifen.org/omm-biblioteca/CCI_TECH/WMO-331.pdf(accessedJune1,2017)ENDOFARTICLE