33
Introduction Complex Eigenvalues Singular Values Checkerboard Matrices Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor [email protected], [email protected] with Yujin Kim, Jared Lichtman, Alina Shubina, and Shannon Sweitzer Advisor: Steven J. Miller 1

Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor [email protected], [email protected] with Yujin

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Spectral Statistics of Non-Hermitian MatrixEnsembles

Ryan Chen, Eric [email protected], [email protected]

with Yujin Kim, Jared Lichtman, Alina Shubina, and Shannon SweitzerAdvisor: Steven J. Miller

1

Page 2: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Introduction

2

Page 3: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Random Matrix Ensembles

A random matrix ensemble is a collection of matrices,with some probability assigned to each matrix.

For us, we will consider ensembles with matrixprobabilities given by a product of entry probabilities:

A =

a11 a12 a13 · · · a1Na12 a22 a23 · · · a2N...

...... . . . ...

a1N a2N a3N · · · aNN

Fix p, define

Prob(A) =∏

1≤i,j≤N

p(aij).

3

Page 4: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Random Matrix Ensembles - Examples

Examples:

Real symmetric matricesHermitian matricesReal asymmetric matricesComplex symmetric/asymmetric matrices

Real eigenvalues: Real symmetric matrices, Hermitianmatrices

Complex eigenvalues: Real asymmetric matrices,Complex symmetric/asymmetric matrices

4

Page 5: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Classical Random Matrix Theory

The basic question: Given a random matrix ensemble,what does the distribution of eigenvalues look like as wesend the matrix dimension N →∞?

Wigner’s Semi-Circle Law (Wigner 1958)N × N real symmetric matrices, entries i.i.d.r.v. from afixed p(x) with mean 0, variance 1, and other momentsfinite. Then for almost all A, as N →∞

µA,N(x) −→

{2π

√1− x2 if |x | ≤ 1

0 otherwise.

5

Page 6: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Proof Sketch - Wigner Semicircle

The kth-moments Mk of a probability distribution µ aregiven by Mk :=

∫∞−∞ xkdµ.

Let A be an N × N matrix with eigenvalues λi .

Mk(N) := 1N · E

[N∑

i=1

(λi√N

)k]

N∑i=1

λki = Trace(Ak) =

N∑i1=1· · ·

N∑ik=1

ai1i2 · · · aik i1

6

Page 7: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Numerical Support

(Rescaled) 500 Matrices (Gaussian) 250× 250p(x) = 1√

2πe−x2/2

The even moments are given by the Catalan numbers.

7

Page 8: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Ensembles with Complex Eigenvalues

8

Page 9: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Moment analysis has its limitations - for example, in thecomplex plane, every radially symmetric distribution hasall moments zero!

Circular Law - Complex Asymmetric (Tao and Vu,2008)Consider the ensemble of N × N complex asymmetricrandom matrices, with iidrv complex random variableswith mean 0 and variance 1. Then, after normalizing by√

N, the eigenvalue distribution converges to the uniformdistribution on the unit disk.

9

Page 10: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Numerical Support

(Rescaled) 500 Matrices (Gaussian) 250× 250

10

Page 11: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

We will study complex symmetric matrices. It turns outthat, for sufficient conditions on the higher moments of thebase distribution, we also obtain a circular law:

Circular Law - Complex Symmetric (SMALL 2017)Consider the ensemble of N × N complex symmetricrandom matrices, with iidrv complex random variableswith mean 0 and variance 1. Then, after normalizing by√

N, the eigenvalue distribution converges to the uniformdistribution on the unit disk.

11

Page 12: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Complex Symmetric Matrices - Singular Values

12

Page 13: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Singular Values

The singular values of a matrix A are defined as thesquare roots of the eigenvalues of A∗A.Since A∗A is Hermitian, these eigenvalues will be real.Furthermore, A∗A positive definite implies all theeigenvalues are nonnegative.

Quarter Circular Law - Complex Asymmetric(Marchenko and Pastur, 1967)Consider the ensemble of N × N complex asymmetricrandom matrices, with iidrv complex random variableswith mean 0 and variance 1. Then, after normalizing by√

N, the singular value distribution converges to a quartercircle.

13

Page 14: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Numerical Support

(Rescaled) 500 Matrices (Gaussian) 250× 250

14

Page 15: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

The Complex Symmetric Case

It turns out that, for sufficient conditions on the highermoments of the base distribution, we also obtain a quartercircular law for complex symmetric matrices:

Quarter Circular Law - Complex Symmetric (SMALL2017)Consider the ensemble of N × N complex symmetricrandom matrices, with iidrv complex random variableswith mean 0 and variance 1. Then, after normalizing by√

N, the singular value distribution converges to a quartercircular law.

15

Page 16: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Joint Density Functions (Gaussian Distributions)

Joint Density - Real Asymmetric Singular Values(James 1960)

ρN(z1, . . . , zN) = cN

∏1≤i<j≤N

|z2j − z2

i |∏

1≤i≤N

e−|zi |2

Joint Density - Complex Asymmetric Singular Values(James 1963)

ρN(z1, . . . , zN) = cN

∏1≤i<j≤N

|z2j − z2

i |2∏

1≤i≤N

|zi |∏

1≤i≤N

e−|zi |2

16

Page 17: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Joint Density - Complex Symmetric Singular Values(SMALL 2017)

ρN(z1, . . . , zN) = cN

∏1≤i<j≤N

|z2j − z2

i |∏

1≤i≤N

|zi |∏

1≤i≤N

e−|zi |2

17

Page 18: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Joint Densities - 2-tuples of singular values of 2× 2 matrices

Figure: Real and Complex Asymmetric

18

Page 19: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Joint Densities - 2-tuples of singular values of 2× 2 matrices

Figure: Complex Symmetric

19

Page 20: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Structured Families - Complex Checkerboard Matrices

20

Page 21: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Complex Symmetric Checkerboard Matrices

A complex symmetric (k ,w)-checkerboard random matrixis a complex symmetric matrix made up of k × k blocks ofthe form

B =

w ∗ · · · ∗∗ w · · · ∗...

... . . . ...∗ ∗ · · · w

where w is some fixed constant and each ∗ represents arandom variable.

21

Page 22: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Complex Symmetric Checkerboard - Singular Values

Singular Value Distribution for Complex SymmetricCheckerboard Ensemble (SMALL 2017)The limiting singular value distribution for the complexsymmetric checkerboard ensemble shows split limitingbehavior:

1 A "bulk" containing most of the mass following theQuarter Circle Law.

2 A "blip" of density k/N with mean close to Nw/kwhose distribution is that of the hollow GOEensemble (random real symmetric matrices with 0 onthe diagonal).

22

Page 23: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Numerical Support

(Rescaled) 2000 Complex Symmetric (3,1)-CheckerboardMatrices

100× 100

23

Page 24: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Proof Outline - Checkerboard Singular Value Bulk

Reduce to case of w = 0 by using a matrixperturbation argument.Apply eigenvalue-trace and method of moments.Use combinatorial argument similar to WignerSemicircle Law proof.

24

Page 25: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Checkerboard Singular Value Blip

Harder: Define the empirical blip square singularspectral measure (EBSSSM) for a matrix A to be

µs2

A,N :=1k

∑σ

fn(N)

(k2σ

N2

(x − 1

N

(σ − N2

k2

))where σ ranges over singular values of A,

fn (x) = x2n (x − 2)2n

and n (N) is some slow growing function.

25

Page 26: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Checkerboard Singular Value Blip

We apply the method of moments to show that thisdistribution converges to the square of the hollow GOEdistribution in the case of the complex symmetriccheckerboard ensemble.

26

Page 27: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Complex Symmetric Checkerboard - Eigenvalues

Eigenvalue Distribution for Complex SymmetricCheckerboard Ensemble (SMALL 2017)The limiting singular value distribution for the complexsymmetric checkerboard ensemble shows split limitingbehavior:

1 A "bulk" containing most of the mass following theCircular Law.

2 A "blip" of density k/N with mean close to Nw/k .

27

Page 28: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Numerical Support

(Rescaled) 500 Complex Symmetric (3,1)-CheckerboardMatrices

300× 300

28

Page 29: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Checkerboard Eigenvalue Blip

Use knowledge of singular values.

FactThe largest singular value of a complex symmetric matrixA has magnitude greater than or equal to that of thelargest eigenvalue of A.

The absolute values of the eigenvalues must be boundedabove by N/k +O (1). Look at eigenvalues of k

N A.

29

Page 30: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Checkerboard Eigenvalue Blip

Eigenvalues of kN A: Contained within disk of radius

1 +O(

1N

).

Show that mean of eigenvalue distribution iskN +O

(N−2

).

Show that the only eigenvalues contributing to themean must be on the boundary of the disk.Conclude that there must be k

N eigenvalues at 1.

30

Page 31: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Future Work

Different placement of w ’s and different block shapes.Complex asymmetric and combinations ofcheckerboarding with other ensembles.Allow the block size to grow as a function of N.

31

Page 32: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

References

Paula Burkhardt, Peter Cohen, Jonathan Dewitt, Max Hlavacek, Steven J.Miller, Carsten Sprunger, Yen Nhi Truong Vu, Roger Van Peski, and KevinYang, Random Matrix Ensembles with Split Limiting Behavior, prepint.http://arxiv.org/abs/1609.03120.

Jean Ginibre, Statistical Ensembles of Complex, Quaternion, and RealMatrices, Journal of Mathematical Physics, 6, 440 (1965).

Alan James, Distributions of Matrix Variates and Latent Roots Derived fromNormal Samples, The Annals of Mathematics Statistics (1963).

Terence Tao, 254a, notes 4: The semi-circular law,https://terrytao.wordpress.com/2010/02/02/254a-notes-4-the-semi-circular-law/, Posted:2010-02-02,Accessed:2017-08-04.

Terence Tao, Topics in Random Matrix Theory (2011).

32

Page 33: Spectral Statistics of Non-Hermitian Matrix Ensembles...Spectral Statistics of Non-Hermitian Matrix Ensembles Ryan Chen, Eric Winsor rcchen@princeton.edu, rcwnsr@umich.edu with Yujin

Introduction Complex Eigenvalues Singular Values Checkerboard Matrices

Thank you!

33