38
Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine & IUF) in collaboration with M. J. Caceres, J. A. Ca˜ nizo, G. Ega˜ na, M. Gualdani, C. Mouhot, J. Scher works by K. Carrapatoso, I. Tristani GDR DynQua Annual meeting 2014 Roscoff, Station Biologique, 5-7 February 2014 S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 1 / 38

Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Spectral analysis of semigroups in Banach spacesand applications to PDEs

S. Mischler

(Paris-Dauphine & IUF)

in collaboration with M. J. Caceres, J. A. Canizo, G. Egana,M. Gualdani, C. Mouhot, J. Scherworks by K. Carrapatoso, I. Tristani

GDR DynQua Annual meeting 2014

Roscoff, Station Biologique, 5-7 February 2014

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 1 / 38

Page 2: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Outline of the talk

1 Introduction

2 Examples of linear evolution PDEGallery of examplesHypodissipativity result under weak positivityHypodissipativity result in large space

3 Nonlinear problemsIncreasing the rate of convergencePerturbation regime

4 Spectral theory in an abstract setting

5 Elements of proofsThe enlargement theoremThe spectral mapping theoremUniqueness and stability by perturbation argument

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 2 / 38

Page 3: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Outline of the talk

1 Introduction

2 Examples of linear evolution PDEGallery of examplesHypodissipativity result under weak positivityHypodissipativity result in large space

3 Nonlinear problemsIncreasing the rate of convergencePerturbation regime

4 Spectral theory in an abstract setting

5 Elements of proofsThe enlargement theoremThe spectral mapping theoremUniqueness and stability by perturbation argument

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 3 / 38

Page 4: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Revisit the spectral theory in an abstract setting

Spectral theory for general operator and its semigroup in general (large) Banachspace, without regularity ( 6= eventually norm continuous), without symmetry ( 6=Hilbert space and self-adjoint op) and without (or with) positivity (Banach lattice)

• Spectral map Theorem ↪→ Σ(etΛ) ' etΣ(Λ) and ω(Λ) = s(Λ)

• Weyl’s Theorem ↪→ (quantified) compact perturbation Σess(A+B) ' Σess(B)

• Small perturbation ↪→ Σ(Λε) ' Σ(Λ) if Λε → Λ

• Krein-Rutmann Theorem ↪→ s(Λ) = sup<eΣ(Λ) ∈ Σd(Λ) when SΛ ≥ 0

• functional space extension (enlargement and shrinkage)↪→ Σ(L) ' Σ(L) when L = L|E↪→ tide of spectrum phenomenon

Structure: operator which splits as

Λ = A+ B, A ≺ B, B dissipative

Examples: Boltzmann, Fokker-Planck, Growth-Fragmentation operators andW σ,p(m) weighted Sobolev spaces

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 4 / 38

Page 5: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Applications / Motivations :

• (1) Convergence rate in large Banach space for linear dissipative andhypodisipative PDEs (ex: Fokker-Planck, growth-fragmentation)

• (2) Long time asymptotic for nonlinear PDEs via the spectral analysis oflinearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural ϕ space

• (3) Existence, uniqueness and stability of equilibrium in “small perturbationregime” in large space (ex: inelastic Boltzmann, Wigner-Fokker-Planck,parabolic-parabolic Keller-Segel, neural network)

Is it new?

• Simple and quantified versions, unified theory (sectorial, KR, general) whichholds for the “principal” part of the specrtrum

• first enlargement result in an abstract framework by C. Mouhot (CMP06)

• Unusual splitting

Λ = A0︸︷︷︸compact

+ B0︸︷︷︸dissipative

= Aε︸︷︷︸smooth

+Acε + B0︸ ︷︷ ︸

dissipative

• The applications to these nonlinear problems are clearly newS.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 5 / 38

Page 6: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Old problems

• Fredholm, Hilbert, Weyl, Stone (Funct Analysis & sG Hilbert framewrok)

≤ 1932

• Hyle, Yosida, Phillips, Lumer, Dyson (sG Banach framework & dissipative

operators) 1940-1960 and also Dunford, Schwartz

• Kato, Pazy, Voigt (analytic op., positive op.) 1960-1975

• Engel, Nagel, Gearhart, Metz, Diekmann, Pruss, Arendt, Greiner, Blake,Mokhtar-Kharoubi, Yao, ... 1975-

Spectral analysis of the linearized (in)homogeneous Boltzmann equationand convergence to the equilibrium

• Hilbert, Carleman, Grad, Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg,Guo, Strain, ...

Spectral tide/spectral analysis in large space

• Bobylev (for Boltzmann), Gallay-Wayne (for harmonic Fokker-Planck)S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 6 / 38

Page 7: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Still active research field

• Semigroup school (≥ 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart,Greiner, Metz, Mokhtar-Kharoubi, Nagel, Pruss, Webb, Yao, ...

• Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq,Duyckaerts, Gallay, Helffer, Herau, Lebeau, Nier, Sjostrand, Wayne, ...

• Probability school (as in Toulouse): Bakry, Barthe, Bobkov, Cattiaux,Douc, Gozlan, Guillin, Fort, Ledoux, Roberto, Rockner, Wang, ...

• Kinetic school (∼ Boltzmann):

B Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality)

B Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault,Schmeiser, ... (Poincare inequality & hypocoercivity)

B Guo school related to Ukai, Arkeryd, Esposito, Pulvirenti, Wennberg, ...(existence in “small spaces” and “large spaces”)

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 7 / 38

Page 8: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

A list of related papers

M., Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann

equation for inelastic hard spheres, CMP 2009

Gualdani, M., Mouhot, Factorization for non-symmetric operators and exponential

H-Theorem, ArXiv 2010

Arnold, Gamba, Gualdani, M., Mouhot, Sparber, The Wigner-Fokker-Planck

equation: Stationary states and large time behavior, M3AS 2012

Canizo, Caceres, M., Rate of convergence to the remarkable state for fragmentation

and growth-fragmentation equations, JMPA 2011 & CAIM 2011

Egana, M. Uniqueness and long time asymptotic for the Keller-Segel equation - Part I.

The parabolic-elliptic case, arXiv 2013

M., Mouhot Semigroup factorisation in Banach spaces and kinetic hypoelliptic

equations, in progress

M., Scher Spectral analysis of semigroups and growth-fragmentation eqs, arXiv 2013

Carrapatoso, Exponential convergence ... homogeneous Landau equation, arXiv 2013

Tristani, Boltzmann equation for granular media with thermal force in a weakly

inhomogeneous setting, arXiv 2013S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 8 / 38

Page 9: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Outline of the talk

1 Introduction

2 Examples of linear evolution PDEGallery of examplesHypodissipativity result under weak positivityHypodissipativity result in large space

3 Nonlinear problemsIncreasing the rate of convergencePerturbation regime

4 Spectral theory in an abstract setting

5 Elements of proofsThe enlargement theoremThe spectral mapping theoremUniqueness and stability by perturbation argument

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 9 / 38

Page 10: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Examples of operators - I

1) - Linear Boltzmann, e.g. k(v , v∗) = σ(v , v∗)M(v∗), σ(v∗, v) = σ(v , v∗),

Λf =

∫k(v , v∗) f (v∗) dv∗︸ ︷︷ ︸

=:Af

−∫

k(v∗, v) dv∗ f (v)︸ ︷︷ ︸=:Bf

2) - Fokker-Planck, with E (v) ≈ v |v |γ−2, γ ≥ 1,

Λ = ∆v + divv (E (v) ·)−M χR︸ ︷︷ ︸=:B

+M χR(v)︸ ︷︷ ︸=:A

3) - Inhomogeneous/kinetic Fokker-Planck

Λ = T + C −M χR︸ ︷︷ ︸=:B

+M χR(x , v)︸ ︷︷ ︸=:A

withT := −v · ∇x + F · ∇x , Cf := ∆v f + divv (E (v) f )

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 10 / 38

Page 11: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Examples of operators - II

4) - Growth fragmentation

Λ = F+ −F− +D = F+δ︸︷︷︸

=:A

+F+,cδ −F− +D︸ ︷︷ ︸

=:B

withDf = −τ(x)∂x f − νf , (τ, ν) = (1, 0) or (x , 2)

F+(f ) :=

∫ ∞x

k(y , x) f (y) dy , F−f := K (x) f

Mass conservation of F+ −F− implies

K (x) =

∫ x

0

y

xk(x , y) dy

Self-similarity in y/x

k(x , y) = K (x) x−1 θ(y/x),

∫ 1

0

zθ(z) dz = 1,

withθ ∈ D(0, 1) or θ(z) = 2 δz=1/2 or θ(z) = δz=0 + δz=1

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 11 / 38

Page 12: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Examples of operators - III

5) - Linearized Boltzmann

Λh = Q(h,M) + Q(M, h)

= Q+(h,M) + Q+(M, h)− L(h)M − L(M)h

= Q+,∗δ [h]︸ ︷︷ ︸=:Ah

+Q+,∗,cδ [h]− L(M)h︸ ︷︷ ︸

=:Bh

6) - Inhomogeneous linearized Boltzmann (in the torus)

Λh = Q+,∗δ [h]︸ ︷︷ ︸=:Ah

+Q+,∗,cδ [h]− L(M)h + T h︸ ︷︷ ︸

=:Bh

, T := −v · ∇x

7) - other operators: homogeneous/inhomogeneous linearized inelasticBoltzmann, homogeneous linearized Landau, Fokker-Planck with fractionaldiffusion, linearized Keller-Segel (parabolic-elliptic), homogeneous Boltzmann forhard potential without angular cut-off

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 12 / 38

Page 13: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Operators and their decomposition

General rule 1 for FP/Boltzmann type operator

L := order ≤ 1 + order 2

L := compact + explicit

L := smooth/order ≤ 1︸ ︷︷ ︸A

+ small + explicit/order 2︸ ︷︷ ︸B

General rule 2 for non space homogeneous operator

Lv := Av + BvLx ,v := Av︸︷︷︸

Ax,v

+Bv + Tx︸ ︷︷ ︸Bx,v

, Tx = −v · ∇x +∇xΨ · ∇v

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 13 / 38

Page 14: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

The Growth-Fragmentation equation

Th 1. (M., Scher)

Assume that for γ ≥ 0, x0 ≥ 0, 0 < K0 ≤ K1 <∞:

K0 xγ 1x≥x0 ≤ K (x) ≤ K1 x

γ .

There exists a (unique) (λ, f∞) with λ ∈ R and f∞ is the unique solution to

F f∞ +Df∞ = λ f∞, f∞ ≥ 0, 〈f∞, 1〉 = 1.

There exists a < λ, C > 0 such that ∀ f0 ∈ L1α, α > 1

‖feΛt f0 − eλt Π0f0‖L1α≤ C eat ‖f0 − eλt Π0f0‖L1

α,

where Π0 is the projector on the eigenspace Vect(f∞).

Improve and unify : Metz-Diekmann (1983), Escobedo-M-Rodriguez (2005),Michel-M-Perthame (2005), Perthame-Ryzhik (2005), Laurencot-Perthame(2009), Caceres-Canizo-M (2010) &t (2011)

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 14 / 38

Page 15: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

The Fokker-Planck equation

Consider∂t f = Λf = ∆v f + divv (F f )

with a (friction) force field F such that

F · x ≥ |x |γ , divF ≤ CF |x |γ−2, ∀ x ∈ BcR

There exists then a (unique) function f∞ ∈ P(Rd) which is a stationarysolution, with f∞ = exp(−Φ + Φ0) when F = ∇Φ, Φ(v) = 1

γ 〈v〉γ .

For an integrability exponent p ∈ [1,∞], a regularity exponentσ ∈ {−1, 0, 1} and a polynomial weight

m = 〈v〉k , k > k∗(p, σ, γ), if γ ≥ 2,

or an exponential weight

m = eκ〈v〉s, s ∈ [2− γ, γ], γ ≥ 1, κ < 1/γ if s = γ,

we define the abscissa

aσ(p,m) = finite < 0 in the limit cases, = −∞ otherwise

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 15 / 38

Page 16: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Th 2. Gualdani-M.-Mouhot; M.-Mouhot; Ndao

There exists0 > a ≥ aσ(p,m)

there exists C = C (a, p, σ, γ,m) such that for any f0 ∈W σ,p(m)

‖etΛf0 − 〈f0〉 f∞‖W σ,p(m) ≤ C eat ‖f0 − 〈f0〉 f∞‖W σ,p(m).

If moreover, γ ∈ [2, 2 + 1/(d − 1)],

W1(etΛf0), 〈f0〉 f∞) ≤ C eat W1(f0, 〈f0〉 f∞)

• Generalize similar result known in L2(f−1/2∞ )

• The same result holds for the kinetic Fokker-Planck in the torus and may beextended to the kinetic Fokker-Planck in Rd

x with confinement potential

• In the case E (v) = ∇Φ one can take −a = λ := the best constant in thePoincare inequality if m is “increasing enough”

• A rate of decay in Wasserstein distance W2 have been obtained byBolley-Gentil-Guillin (2012)

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 16 / 38

Page 17: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Outline of the talk

1 Introduction

2 Examples of linear evolution PDEGallery of examplesHypodissipativity result under weak positivityHypodissipativity result in large space

3 Nonlinear problemsIncreasing the rate of convergencePerturbation regime

4 Spectral theory in an abstract setting

5 Elements of proofsThe enlargement theoremThe spectral mapping theoremUniqueness and stability by perturbation argument

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 17 / 38

Page 18: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Conditionally (up to time uniform strong estimate) exponential H-Theorem

• (ft)t≥0 solution to the inhomogeneous Boltzmann equation for hardspheres interactions in the torus with strong estimate

supt≥0

(‖ft‖Hk + ‖ft‖L1(1+|v |s)

)≤ Cs,k <∞.

• Desvillettes, Villani proved [Invent. Math. 2005]: for any s ≥ s0, k ≥ k0

∀ t ≥ 0

∫T×Rd

ft logft

G1(v)dvdx ≤ Cs,k (1 + t)−τs,k

with Cs,k <∞, τs,k →∞ when s, k →∞, G1 := Maxwell function

Th 3. Gualdani-M.-Mouhot

∃ s1, k1 s.t. for any a > λ2 exists Ca

∀ t ≥ 0

∫T×Rd

ft logft

G1(v)dvdx ≤ Ca e

a2t ,

with λ2 < 0 (2nd eigenvalue of the linearized Boltzmann eq. in L2(G−11 )).

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 18 / 38

Page 19: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Global existence and uniqueness for weakly inhomogeneous initial data for theelastic and inelastic inhomogeneous Boltzmann equation for hard spheresinteractions in the torus

Th 4. Gualdani-M.-Mouhot; Tristani

For any F0 ∈ L13(Rd) there exists e0 ∈ (0, 1) and ε0 > 0 such that if f0 ∈

W k,1x (Td ; L1

3(Rd)) satisfies ‖f0 − F0‖ ≤ ε0 and if e ∈ [e0, 1] then

there exists a unique global mild solution f (t, x , v) starting from f0;

f (t)→ G1 when t →∞ (with rate) when e = 1;

f (t)→ Ge when t →∞ (with rate) when e < 1 (diffuse forcing).

• The case e ∼ 1 is proved thanks to a small perturbation argument in a large space because

Ge(v) ≥ e−|v|3/2

/∈ L2(G−1/21 ).

• The case e = 1 has been treated by non constructive arguments by Arkeryd-Esposito-Pulvirenti (CMP 1987), Wennberg (Nonlinear Anal. 1993) and for the space homogeneousanalogous by Arkeryd (ARMA 1988), Wennberg (Adv. MAS 1992)

• Extend to a larger class of initial data similar results due to Ukai, Guo, Strain and collaborators

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 19 / 38

Page 20: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

More results about constructive exponential rate of convergence

For• homogeneous Boltzmann eq for hard spheres (Mouhot 2006)• homogeneous weakly inelastic Boltzmann eq for hard spheres (M-Mouhot 2009)• homogeneous Landau eq for hard potential (Carrapatoso 2013)• parabolic-elliptic Keller-Segel eq (Egana-M 2013)• homogeneous Boltzmann eq for hard potential (Tristani, soon on arXiv)

In all these cases, we prove that under minimal assumptions on the initial datumf0 (bounded mass, energy, entropy, ...) the associated solution f (t) satisfies

f (t)→ G when t →∞ (with exponential rate)

where G is the unique associated equilibrium/self-similar profile

We know (except for the inelastic Boltzmann eq) that the associated linearizedoperator L is self-adjoint and has a spectral gap in the very small space

L2(G−1/21 ) in which a general solution does not belong (even for large time).

B we start by “enlarge” the space in which L has a spectral gap and then we(classically) prove a nonlinear stability resultB for the weakly inelastic Boltzmann eq we additionally use perturbationargument

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 20 / 38

Page 21: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Outline of the talk

1 Introduction

2 Examples of linear evolution PDEGallery of examplesHypodissipativity result under weak positivityHypodissipativity result in large space

3 Nonlinear problemsIncreasing the rate of convergencePerturbation regime

4 Spectral theory in an abstract setting

5 Elements of proofsThe enlargement theoremThe spectral mapping theoremUniqueness and stability by perturbation argument

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 21 / 38

Page 22: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Main issue

For a given operator Λ in a Banach space X , we want to prove

Σ(Λ) ∩∆a = {ξ1}, ξ1 = 0

with Σ(Λ) = spectrum, ∆α := {z ∈ C, <e z > α}

ΠΛ,ξ1 = finite rank projection, i.e. ξ1 ∈ Σd(Λ)

‖SΛ(I − ΠΛ,ξ1)‖X→X ≤ Ca eat , a < <eξ1

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 22 / 38

Page 23: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Spectral mapping - characterization

Th 1. (M., Scher)(0) Λ = A+ B, where A is Bζ′ with 0 ≤ ζ ′ < 1,

(1) ‖SB ∗ (ASB)(∗`)‖X→X ≤ C` eat , ∀ a > a∗, ∀ ` ≥ 0,

(2) ‖SB ∗ (ASB)(∗n)‖X→D(Λζ) ≤ Cn eat , ∀ a > a∗, with ζ > ζ ′,

(3) Σ(Λ) ∩ (∆a∗∗\∆a∗) = ∅, a∗ < a∗∗,

is equivalent to

(4) there exists a projector Π which commutes with Λ such thatΛ1 := Λ|X1

∈ B(X1), X1 := RΠ, Σ(Λ1) ⊂ ∆a∗

‖SΛ(t) (I − Π)‖X→X ≤ Ca eat , ∀ a > a∗

In particular

Σ(etΛ) ∩∆eat = etΣ(Λ)∩∆a ∀ t ≥ 0, a > a∗

andmax(s(Λ), a∗) = max(ω(Λ), a∗)

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 23 / 38

Page 24: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Weyl’s theorem - characterization

Th 2. (M., Scher)(0) Λ = A+ B, where A is Bζ′ with 0 ≤ ζ ′ < 1,

(1) ‖SB ∗ (ASB)(∗`)‖X→X ≤ C` eat , ∀ a > a∗, ∀ ` ≥ 0,

(2) ‖SB ∗ (ASB)(∗n)‖X→Xζ ≤ Cn eat , ∀ a > a∗, with ζ > ζ ′,

(3)∫∞

0 ‖(ASB)(∗n+1)‖X→Y e−at dt <∞, ∀ a > a∗, with Y ⊂⊂ X ,

is equivalent to

(4) there exist ξ1, ..., ξJ ∈ ∆a, there exist Π1, ...,ΠJ some finite rankprojectors, there exists Tj ∈ B(RΠj) such that ΛΠj = ΠjΛ = TjΠj ,Σ(Tj) = {ξj}, in particular

Σ(Λ) ∩ ∆a = {ξ1, ..., ξJ} ⊂ Σd(Σ)

and there exists a constant Ca such that

‖SΛ(t)−J∑

j=1

etTj Πj‖X→X ≤ Ca eat , ∀ a > a∗

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 24 / 38

Page 25: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Small perturbation

Th 3. (M. & Mouhot; Tristani)Assume(0) Λε = Aε + Bε in Xi , X−1 ⊂⊂ X0 = X ⊂⊂ X1, Aε ≺ Bε,(1) ‖SBε ∗ (AεSBε)(∗`)‖Xi→Xi

≤ C` eat , ∀ a > a∗, ∀ ` ≥ 0, i = 0,±1,

(2) ‖SBε ∗ (AεSBε)(∗n)‖Xi→Xi+1≤ Cn e

at , ∀ a > a∗, i = 0,−1,

(3) Xi+1 ⊂ D(Bε|Xi),D(Aε|Xi

) for i = −1, 0 and

‖Aε −A0‖Xi→Xi−1+ ‖Bε − B0‖Xi→Xi−1

≤ η1(ε)→ 0, i = 0, 1,

(4) the limit operator satisfies (in both spaces X0 and X1)

Σ(Λ0) ∩∆a = {ξ1, ..., ξk} ⊂ Σd(Λ0).

Then

Σ(Λε) ∩∆a = {ξε1,1, ..., ξε1,dε1 , ..., ξεk,1, ..., ξ

εk,dεk} ⊂ Σd(Λε),

|ξj − ξεj ,j ′ | ≤ η(ε)→ 0 ∀ 1 ≤ j ≤ k , ∀ 1 ≤ j ′ ≤ dj ;

dimR(ΠΛε,ξεj,1+ ...+ ΠΛε,ξεj,dj

) = dimR(ΠΛ0,ξj );

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 25 / 38

Page 26: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Krein-Rutmann for positive operator

Th 4. (M. & Scher) Consider a semigroup generator Λ on a “Banachlattice of functions” X ,(1) Λ such as in Weyl’s Theorem holds for some a∗ ∈ R;(2) ∃b > a∗ and ψ ∈ D(Λ∗) ∩ X ′+\{0} such that Λ∗ψ ≥ b ψ;(3) SΛ is positive (and Λ satisfies Kato’s inequalities);(4) −Λ satisfies a strong maximum principle.

Defining λ := s(Λ), there holds

a∗ < λ = ω(Λ) and λ ∈ Σd(Λ),

and there exists 0 < f∞ ∈ D(Λ) and 0 < φ ∈ D(Λ∗) such that

Λf∞ = λ f∞, Λ∗φ = λφ, RΠΛ,λ = Vect(f∞),

and thenΠΛ,λf = 〈f , φ〉 f∞ ∀ f ∈ X .

Moreover, there exist α ∈ (a∗, λ) and C > 0 such that for any f0 ∈ X

‖SΛ(t)f0 − eλt ΠΛ,λf0‖X ≤ C eαt ‖f0 − ΠΛ,λf0‖X ∀ t ≥ 0.

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 26 / 38

Page 27: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Change (enlargement and shrinkage) of the functional space of the spectral

analysis and semigroup decay

Th 5. (M. & Mouhot) Assume

L = A+ B, L = A + B, A = A|E , B = B|E , E ⊂ E

(i) (B − a) is hypodissipative on E , (B − a) is hypodissipative on E ;

(ii) A ∈ B(E ), A ∈ B(E);

(iii) there is n ≥ 1 and Ca > 0 such that∥∥(ASB)(∗n)(t)∥∥E→E

≤ Ca eat .

Then the following for (X ,Λ) = (E , L), (E ,L) are equivalent:∃ξj ∈ ∆a and finite rank projector Πj ,Λ ∈ B(X ), 1 ≤ j ≤ k, whichcommute with Λ and satisfy Σ(Λ|Πj,Λ

) = {ξj}, so that

∀ t ≥ 0,∥∥∥SΛ(t)−

k∑j=1

S(t) Πj ,Λ

∥∥∥X→X

≤ CΛ,a ea t

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 27 / 38

Page 28: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Discussion / perspective

• In Theorem 1, 2, 3, 4, one can take n = 1 in the simplest situations(most of space homogeneous equations), but one need to take n = 2 forthe equal mitosis equation or for the space inhomogeneous Boltzmannequation• In Theorem 5, one need to take n > d/4 for the space homogeneousFokker-Planck equation in order to extend the spectral analysis from L2

(well-known) to L1

• Beyond the “dissipative case”?B example of the Fokker-Planck equation when γ ∈ (0, 1) and relationwith “weak Poincare inequality” by Rockner-WangB Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R,Batkal-E-P-S, Batty-D, ...B applications to Boltzmann and Landau equation associated to “softpotential”• inhomogeneous linearized Landau, linearized Keller-Segel (parabolic-parabolic), neural network, Fokker-Planck in the subcritical case γ ∈ (0, 1)

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 28 / 38

Page 29: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Outline of the talk

1 Introduction

2 Examples of linear evolution PDEGallery of examplesHypodissipativity result under weak positivityHypodissipativity result in large space

3 Nonlinear problemsIncreasing the rate of convergencePerturbation regime

4 Spectral theory in an abstract setting

5 Elements of proofsThe enlargement theoremThe spectral mapping theoremUniqueness and stability by perturbation argument

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 29 / 38

Page 30: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Proof of the enlargement theorem

We split the semigroup into invariant linear sub-manifolds (eigenspaces)

SL = ΠSL + (I − Π) SL (I − Π)

and write the (iterated) Duhamel formula or “stopped” Dyson-Phillipsseries (the Dyson-Phillips series corresponds to the choice n =∞)

SL =n−1∑`=0

SB ∗ (ASB)(∗`) + SL ∗ (ASB)(∗n)

or + (ASB)(∗n) ∗ SL.These two identities together

SL = Π SL + (I − Π) {n−1∑`=0

SB ∗ (ASB)(∗`)} (I − Π)

+ {(I − Π) SL} ∗ (ASB)(∗n)(I − Π)

or + (I − Π)(ASB)(∗n) ∗ {SL(I − Π)}

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 30 / 38

Page 31: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Sketch of the proof of the spectral mapping theorem

We introduce the resolvent

RΛ(z) = (Λ− z)−1 = −∫ ∞

0SΛ(t) e−zt dt.

Using the inverse Laplace formula for b > ω(Λ) ≥ s(Λ) = sup<eΣ(Λ) andthe fact that Π⊥RΛ(z) is analytic in ∆a∗ , Π⊥ := I − Π, we get

SΛ(t)Π⊥ =i

∫ b+i∞

b−i∞ezt Π⊥ RΛ(z) dz

= limM→∞

i

∫ a+iM

a−iMezt Π⊥RΛ(z) dz

Similarly as for the (iterated) Duhamel formula, we have

RΛ =N−1∑`=0

(−1)` RB(ARB)` + (−1)N RΛ(ARB)N

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 31 / 38

Page 32: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

These two identities together

SL(t)Π⊥ = Π⊥N−1∑`=0

(−1)`i

∫ a+i∞

a−i∞ezt RB(z)(ARB(z))` dz

+(−1)N Π⊥i

∫ a+i∞

a−i∞ezt RΛ(z)(ARB(z))N dz

=N−1∑`=0

Π⊥ SB ∗ (ASB)(∗`)

+(−1)Ni

∫ a+i∞

a−i∞ezt Π⊥RΛ(z)(ARB(z))N dz

and we have to explain why the last term is of order O(eat). We clearlyhave

supz=a+iy , y∈[−M,M]

‖Π⊥RΛ(z)(ARB(z))N‖

and it is then enough to get the bound

‖RΛ(z)(ARB(z))N‖ ≤ C/|y |2, ∀ z = a + iy , |y | ≥ M, a > a∗

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 32 / 38

Page 33: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

The key estimate

We assume (in order to make the proof simpler) that ζ = 1, namely

‖(ASB)(∗n)‖X→X1 = O(eat) ∀ t ≥ 0,

with X1 := D(Λ) = D(B), which implies

‖(ARB(z))n‖X→X1 ≤ Ca ∀ z = a + iy , a > a∗.

We also assume (for the same reason) that ζ ′ = 0, so that

A ∈ L(X ) and RB(z) =1

z(RB(z)B − I ) ∈ L(X1,X )

imply‖ARB(z)‖X1→X ≤ Ca/|z | ∀ z = a + iy , a > a∗.

The two estimates together imply

(∗) ‖(ARB(z))n+1‖X→X ≤ Ca/|z | ∀ z = a + iy , a > a∗.

• In order to deal with the general case 0 ≤ ζ′ < ζ ≤ 1 one has to use some additionalinterpolation arguments

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 33 / 38

Page 34: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

We writeRΛ(1− V) = U

with

U :=n∑`=0

(−1)` RB(ARB)`, V := (−1)n+1 (ARB)n+1

For M large enough

(∗∗) ‖V(z)‖ ≤ 1/2 ∀ z = a + iy , |y | ≥ M,

and we may write the Neuman series

RΛ(z) = U(z)︸︷︷︸bounded

∞∑j=0

V(z)j︸ ︷︷ ︸bounded

For N = 2(n + 1), we finally get from (∗) and (∗∗)

‖RΛ(z)(ARB(z))N‖ ≤ C/〈y〉2, ∀ z = a + iy , |y | ≥ M

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 34 / 38

Page 35: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Perturbation argument

Uniqueness and linearized/nonlinear stability of the steady state forproblems without “detailed balance condition” or “trivial stationarysolution”

My personal favorite example: the inelastic Boltzmann equation

steady state: ∃Ge ∈ P(Rd) ∩ S(Rd) solution to

(E ) Qe(Ge ,Ge) + (1− e) ∆Ge = 0,

∫Ge v dv = 0

Qe Boltzmann kernel associated to e ∈ [0, 1) inelastic coefficient

elastic collision: e = 1

∆Ge diffuse forcing

Ge ≈ e−|v |3/2

/∈ L2(G−1)!

See also Gamba, Panferov, Villani & Bobylev, Gamba, Panferov (2004)

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 35 / 38

Page 36: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Step 1 : uniqueness of the steady state Ge ...

• Ge → G1 when e → 1 with

G1 ∈ P(Rd) ∩ S(Rd), Q(G1,G1) = 0,

∫G1 v dv = 0.

⇒ G1(v) = (2πθ)−d/2 e−|v|22θ for some θ > 0.

• (E )× |v |2 implies

−(1− e2)DE(Ge) + (1− e) 2d

∫Ge dv = 0

and in the limit e → 1:

DE(G1) :=

∫ ∫|v − v∗|3 G1(v)G1(v∗) dvdv∗= d ⇒ θ = θ.

• We prove more: ∃!G1 for ”any” strong norm ‖ · ‖ ∃C

∀Ge solution ‖Ge − G1‖ ≤ C η(1− e)→ 0

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 36 / 38

Page 37: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Step 1 : ... by a “implicit function argument”

• Φ(e,Ge) = 0 when we define

Φ(e, g) := (DE(g)− 2d

1 + e,Qe(g , g) + (1− e) ∆g).

• We define A : E → R× E0 invertible, E = E0 ⊕ E1, by

Ah := D2Φ(1, G1) h = [2DE(g , G1),L h], Lh := 2Q(G1, h).

• For two given solutions Ge and He of (E) :

Ge − He = A−1 [AGe − Φ(e,Ge) + Φ(e,He)− AHe ]

⇒ ‖Ge − He‖ ≤ ‖A−1‖ η(1− e) ‖Ge − He‖

‖Ge − G1‖ = 0 if ‖A−1‖ η(1− e) < 1 we note it Ge

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 37 / 38

Page 38: Spectral analysis of semigroups in Banach spaces and ... › ~mischler › expo › ... · Spectral analysis of semigroups in Banach spaces and applications to PDEs S. Mischler (Paris-Dauphine

Step 2 : linear and nonlinear stability of Ge

• Define the inelastic linearized operator

Leh := 2Qe(Ge , h) + (1− e) ∆h ≈ 2Q1(G1, h) = L1h

• Introduce a decomposition L = A+ B, B(ξ) = B − ξ, L1(ξ) = L1 − ξ,and U(ξ) := B(ξ)−1 − L1(ξ)−1AB(ξ)−1, we get

(Le − ξ)U(ξ) = Id − (Le − L1) L1(ξ)AB(ξ) ≈ Id

if A h := Q+,∗e,δ (Ge , h), B h := re,δ(h)− ν(Ge) h − (1− e) ∆h

• We conclude with

Σ(Le) ∩∆a = {λE(e), 0}, λE(e) ≈ −(1− e) λE < 0

et Le (Id − ΠLe ,a) = O(ea t)

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis February 6, 2014 38 / 38