specialtopics_3

Embed Size (px)

Citation preview

  • 8/3/2019 specialtopics_3

    1/30

    Transient Recovery Voltage Following S.C.

    Removal

    L , and C: naturalcap

  • 8/3/2019 specialtopics_3

    2/30

    Simplifying Assumptions CCTs R, and Losses ignored After sep. of contacts, I flows in Arc

    I reach zero by controlling arc In Ac two I=0 in each cycle Current : Symm. & compl. Inductive At I=0 : VccT Max, VCB=Varc Assuming Varc=0 Time measu. from Inst. of Interr.

  • 8/3/2019 specialtopics_3

    3/30

    CCT Equation The KVL & Ic:L dI/dt+ Vc=Vm costI=C dVc/dt (only I)

    Physical InterPr.:- Ultimately: V supply

    - t=0, previous arc V=0- C charged, through L

    & cause Osc.

    2

    2cosc c m

    d V V V t

    dt LC LC [ !

  • 8/3/2019 specialtopics_3

    4/30

    Similar to LC ccT analysis Assuming:

    0=1/LC applyingL.T.:

    Vc(0)=0 arc vol.

    Vc(0)=I(0)/C=0

    2 ' 2

    0 0 2 2( ) (0) (0) ( )

    c c c c m

    s s v s sV V v s V

    s[ [

    [

    !

    '

    2

    0 2 2 2 2 2 2 2 2

    0 0 0

    (0)( ) (0)

    ( )( )

    c

    c m c

    Vs sv s V V

    s s s s[

    [ [ [ [!

  • 8/3/2019 specialtopics_3

    5/30

    Time Respose Inv. Transf. just 1st

    term

    Need:

    Then:

    Vc(t) is TRV Eq.:

    2 2 2 2 2 2 2 2 2 20 0 0

    1

    ( )( )( )

    s s s

    s s s s[ [ [ [ [ [!

    2

    0

    2 2 2 2 2 2

    0 0

    ( ) ( )c m

    s sv s V

    s s

    [

    [ [ [ [

    !

    2

    002 2

    0

    ( ) (cos cos )c m

    V t V t t [

    [ [

    [ [

    !

  • 8/3/2019 specialtopics_3

    6/30

    TRV Eq. (Park & Skeats) Discussion As 0 ,

    Thus:

    V(P.F.) very small

    2

    0

    2 2

    0

    1.0[

    [ [

    }

    0( ) (cos cos )c mV t V t t [ [!

    0( ) [1 cos ]c mV t V t [!

  • 8/3/2019 specialtopics_3

    7/30

    TRV Discussion Continued Fig : TRVp=2 x P.F. Vp TRV Osc.s damped out C.B. Ops follows Cap. Being charged

    VCB rises fast if:- L or C or both very small (0 large)

    if RRRV>RDSB : Reignition

    Then Switch passes If (another half Cycle) TRV named Restriking Voltage

  • 8/3/2019 specialtopics_3

    8/30

    Experimental TRV reults The TRV lasts 600 s

    Decline of current

    TRV starts a small opp. polar.To ins. Vol.

    due to: some Current Chopping

    Shows the H.F. Osc.

    Shows how H.F. Damped

  • 8/3/2019 specialtopics_3

    9/30

    r.r.r.v. factor A measure of severity of CCT for C.B.

    r.r.r.v.s high as Natural freq. higher

    air-cored reactor L=1 mH,C=400 pF F0=1/(210^-3x10^-10)=250KHz

    T0=4s, in T0/2 TRV swing to 2Vp

    In a 13.8KV CCT ,

    r.r.r.v.=2x13.82/(2x3)=11.3KV/s Beyond Capab. Most C.B.s

    Ex. Of very fact TRV: Kilometric Faults ch.9

  • 8/3/2019 specialtopics_3

    10/30

    Interruption of Asymmetrical If Sw. closes at random,I likely to Asym

    And Degree of Asym. for If

    Now C.B. opens at I=0,V not at peak TRV now is not so High : Figure

    R.V. osc. Around Vinst.(nolonger at Peak)

    TRV is not as high

  • 8/3/2019 specialtopics_3

    11/30

    TRV considerig C.B. Arc Voltage If arc vol. not negl.

    The inv. Trans. ofterm:

    Vc(0)=arc vol.,I=0

    Increasing Sw.Tra

    Effect: I more intoPhase with supplyvoltage Fig.

    102 2

    (0) (0) cosc c

    sV V ts

    ^ [[

    !

  • 8/3/2019 specialtopics_3

    12/30

    Assignment No. 1 Question1

    C1, 120 KV

    1st

    S closed 45s later G

    What is IR2?& Vc1?

    C1=5F,C2=0.5F

    R1=100,

    R2=1000

  • 8/3/2019 specialtopics_3

    13/30

    Solution of Question 1 C1V1(0)+C2V2(0)=(C1+C2)Vfinal

    Vfinal=C1/(C1+C2).V1(0)=600/5.5=

    109. KV With =100x0.4545=45.45s

    V2(t)=109.(1-e^(-t/45.45))=68. KV

    Therefore IR2=68KV/1000=68A V1(t)=120-11(1-e^(-t/45.45))=113.KV

  • 8/3/2019 specialtopics_3

    14/30

    Question 2 C1 has 1.0 C, C2

    discharged

    C1=60, C2=40F

    R=5 Ipeak?

    I(t=200s) ?

    Eultimate in C2 ? Vc1(ultimate) ?

  • 8/3/2019 specialtopics_3

    15/30

    Solution of Question 2 Ipeak=1x10^6/60/5=3.33KA

    Ceq=24F, =5x24=120s

    I(t=200s)=3.33xe^(-t/120)=629.5 A Vfinal=1x10^6/(60+40)=10KV

    1/2x40x10^-6x(10^8)=2000 Js

  • 8/3/2019 specialtopics_3

    16/30

    Question 3 Field coil of a machine,

    S1 closes 1 s, Energy in coil? Energy dissipated?

    S.S. reached,S1 opened S2closed

    0.1 s. later Vs1? E dissipated in R2 ? L=2 H, R1=3.6 R2=10

  • 8/3/2019 specialtopics_3

    17/30

    Soultion (Question 3) Ifinal=800/3.6=222.22 A I(t=1)=222.2x(1-e^(-R1t/L))=185.5A 1/2LI^2=34406. Js

    Esuppl.=VI dt=800^2/3.6(1-e^(-1.8t))dt=1.778x10^5[t+e^(-1.8t)/1.8]==95338 Js

    Edissip.=95338-34406=60932 Js IR2(t=0.1 s)=222.2xe^(-13.6t/2)=112.6A VR2=1126 volts, Vs1=800+1126=1926 volts Es.s.=1/2*2*222.2^2=49380Js, ER2=49380X10/13.6=36310 Js

  • 8/3/2019 specialtopics_3

    18/30

    Double Frequency Transients Simplest case

    Opening C.B.

    Ind.Load, Unload T.

    L1,C1 source side

    L2,C2, load side open:2halves osc

    indep.

    Deduction: Pre-open.

    Vc=L2/(L1+L2) x V

  • 8/3/2019 specialtopics_3

    19/30

    D.F. Transients continued Normally L2L1

    C1 &C2 charged to about V(t) of Sys.

    This V, at peak when I=0 C2 discharge via L2, f2=1/(2(L2.C2)) C1 osc f1=1/(2L1.C1)) about Vsys

    Figures :Load side Tran.s & Sourceside Transients

  • 8/3/2019 specialtopics_3

    20/30

    Clearing S.C. in sec. side of Transf. Another usual D.F.

    Transients

    L1 Ind. Upto Trans.

    L2 Leak. Ind. Trans.

    C1&C2 sides cap.

    Fig. Two LC loop

  • 8/3/2019 specialtopics_3

    21/30

    Second D.F. Transients Eq. CCT.

    Vc1(0)=L2/(L1+L2) .V

    Vc1=V-L1dI1/dt=Vc1(0)+1/C1(I1-I2)dt

    Vc2=1/C2I2.dt

    Vc2=V-L1dI1/dt-L2dI2/dt

  • 8/3/2019 specialtopics_3

    22/30

    Apply the L. T. to solve Eq.s V/s-L1si1(s)-

    L1I1(0)=Vc1(0)/s+1/C1s[i1(s)-i2(s)]

    -i1(s)(L1s+1/C1s)+i2(s)/C1(s)=Vc1(0)/s+L1I1(0)-L2.si2(s)+L2I2(0) Vc2(s)=i2(s)/sC2

    Vc2(s)=V/s-L1si1(s)+L1I1(0)-L2si2(s)+L2I2(0)

  • 8/3/2019 specialtopics_3

    23/30

    The D.F. CCT response Switch clear at t=0 I1(0)=I2(0)=I(0)=0

    i1(s)=V/(L1s)-[(L2C2s^2+1)/L1s].vc2(s)

    In term of

    vc2(s):

    4 2

    1 1 2 2 2 1 1 1 2 2

    2

    1 2 2 1 1 2 2

    1 1 1 1( )

    1( ) ( )

    ( )c

    s sL C L C L C L C L C

    sv s V

    L L C L C L C s

    - !

  • 8/3/2019 specialtopics_3

    24/30

    CCT Natural Frequencies (s^2+1^2)(s^2+^2)vc2(s)=

    AV(1/s+Bs)

    A,B,1,2 function of : L1,C2,L2,C2

    2 1 22 2 2 2 2 2 2 21 2 1 1 2 2 1 2

    2 12 21 2

    1 1 1( ) [ cos cos ( )

    ( ) ( )

    (cos cos )]

    V t AV t t

    Bt t

    [ [

    [ [ [ [ [ [ [ [

    [ [

    [ [

    !

  • 8/3/2019 specialtopics_3

    25/30

    Parameters of Eqs A=1/(L1C1L2C2)

    B=(L1+L2)/L1L2 C1

    2

    1,2

    1 1 2 2 2 1

    2

    1 1 2 2

    1 1 2 2 2 1

    1 1 1 1( )2

    1 1 1 1( ) 4 /( )

    2

    L C L C L C

    L C L C

    L C L C L C

    [ ! s

  • 8/3/2019 specialtopics_3

    26/30

    Damping Observation of RLC CCT

    LC CCT assumed lossless

    loss simulated by resistance in CCT Resistance has damping effect

    The two important CCTs:

    1- Parallel RLC CCT2- Series RLC CCT

  • 8/3/2019 specialtopics_3

    27/30

    RLC CCTs & General Diff. Eqs :I of branch or V

    across the CCT

    :V across a

    comp. or I in CCT

  • 8/3/2019 specialtopics_3

    28/30

    Typical Differential Eq. of RLC The Parallel RLC:

    The Series RLC :

    2

    2

    1( )

    d dF t

    dt RC dt LC

    J J J !

    2

    2( )d R d F t

    dt L dt LC

    ] ] ] !

  • 8/3/2019 specialtopics_3

    29/30

  • 8/3/2019 specialtopics_3

    30/30

    Basic Transform of RLC CCTs Closing s in C

    Parallel RLC