33
Special Procedures Fred Hill, MA, RRT

Special Procedures

  • Upload
    ginny

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Special Procedures. Fred Hill, MA, RRT. Surfactant Replacement. Composition Phospholipids (90%) phosphatidylcholine (PC) (85%) - dipalmitoyl phosphatidylcholine (DPPC) (60%) Phosphatidylglycerol (PG) Phosphatidylinositol (PI) Cholesterol Proteins (5-10%): SP-A, SP-B, SP-C, SP-D. - PowerPoint PPT Presentation

Citation preview

Page 1: Special Procedures

Special Procedures

Fred Hill, MA, RRT

Page 2: Special Procedures

Surfactant Replacement

Composition• Phospholipids (90%)

• phosphatidylcholine (PC) (85%) - dipalmitoyl phosphatidylcholine (DPPC) (60%)

• Phosphatidylglycerol (PG)• Phosphatidylinositol (PI)

• Cholesterol• Proteins (5-10%): SP-A, SP-B, SP-C, SP-D

Page 3: Special Procedures

Surfactant ReplacementIndications

• Prophylactic administration (high risk for developing RDS)– <32 weeks gestational age– <1300 grams– L/S ratio <2:1– Absence of PG

• Therapeutic (rescue) administration– ↑WOB (grunting, retractions, nasal flaring)– ↑ O2 requirements– RDS on CXR

Page 4: Special Procedures

Surfactant Replacement

Types of Surfactant• Exosurf (colfosceril palmitate): synthetic, 5

ml/kg• Survanta (beractant): calf lung, 4 ml/kg• Infasurf (calfactant): calf lung, 3 ml/kg• Curosurf (poractant alfa): pig lung, 2.5

ml/kg

Page 5: Special Procedures

Surfactant ReplacementAdverse Effects

• Bradycardia, desaturation• ETT reflux, ETT obstruction• Barotrauma

Benefit• Decreased mortality rates• Decreased morbidity rates, reduction in:

– Severity of RDS– Pulmonary air leaks– Incidence of BPD

Page 6: Special Procedures

High –Frequency Ventilation

Introduction• Delivery of small tidal volumes at very

high rates (usually >150/min.)• Rates may be expressed in hertz (Hz)

(1 Hz = 60/min.)• Amplitude = ΔP, determines PCO2

• Mean airway pressure determines PO2

Page 7: Special Procedures

High –Frequency Ventilation

Indications• Respiratory failure unresponsive to

conventional methods• Pulmonary air leaks• Congenital diaphragmatic hernia

Page 8: Special Procedures

High –Frequency Ventilation

Hazards• Gas trapping & hyperinflation• Necrotizing tracheobronchitis

(especially with HFJV)• Chest assessment is difficult• Obstruction• Malposition of ETT

Page 9: Special Procedures

High –Frequency Ventilation

Types• High-frequency positive pressure

ventilation (HFPPV)• High-frequency jet ventilation (HFJV)• High-frequency Oscillatory Ventilation

(HFOV)

Page 10: Special Procedures

High –Frequency Ventilation

High-Frequency Positive Pressure Ventilation (HFPPV)

• 60 to 150 bpm• Tidal volume exceeds dead space• Possible advantages:

–↓ pneumothoraces–↓ asynchrony with ventilator

Page 11: Special Procedures

High –Frequency Ventilation

High-Frequency Jet Ventilation (HFJV)Bunnell Life Pulse High Frequency Ventilator

Page 12: Special Procedures

High –Frequency VentilationHigh-Frequency Jet Ventilation (HFJV)

• 240-660 bpm• Passive exhalation• Requires special ETT or adapter• In tandem with conventional ventilator

– Occasional sighs– PEEP– Continuous gas flow for entrainment

Page 13: Special Procedures

High –Frequency Ventilation

High-Frequency Oscillatory Ventilation (HFOV)Sensormedics 3100A

Page 14: Special Procedures

High –Frequency Ventilation

High-Frequency Oscillatory Ventilation (HFOV)

• 8 to 30 HZ (480 – 1800)• Active inspiration and exhalation

Page 15: Special Procedures

Inhaled Nitric Oxide

Action

• Causes smooth muscle relaxation in vascular walls of pulmonary vessels

• Improves oxygen delivery due to dilation of vessels in ventilated areas of lung

Page 16: Special Procedures

Inhaled Nitric Oxide

Applications

• PPHN – most important• MAS• RDS• Pneumonia, sepsis• Congenital diaphragmatic hernia

Page 17: Special Procedures

Inhaled Nitric Oxide

Hazards

• Nitrogen dioxide (NO2)• Methemoglobinemia

Page 18: Special Procedures

Inhaled Nitric Oxide

Application

• INOvent Delivery System• 8 – 20 ppm

Page 19: Special Procedures

INOvent

Page 20: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

History

• 1950’s: short-term (hours) in open heart surgery

• 1960’s: long-term (days to weeks)• 1971: first use in infants

Page 21: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Exclusion Crtieria• Gestational age <35 weeks• Pre-existing IVH• Significant coagulopathy or uncontrollable bleeding. • No major (>grade 1) intracranial hemorrhage • Irreversible lung injury • Major congenital/chromosomal anomalies or severe encephalopathy • Major cardiac malformation • Mechanical Ventilation : >7days • Cardiac arrest other than immediately at birth

Page 22: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Inclusion Criteria• 80% mortality risk if no ECMO intervention• Oxygenation Index (OI)>40: OI =(Mean Airway Pressure [cmH20] x

FiO2 x 100) which in turn is divided by the Post ductal PaO2 [mmHg] • OI = Paw x FIO2 x 100 PaO2

• Gestational Age >35 weeks • Weight >2 kgs • Reversible lung disease • No major (>grade 1) intra-cranial hemorrhage • No lethal congenital abnormalities

Page 23: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Mechanisms of Bypass• Venoarterial: blood drawn from right atrium

via right internal jugular vein, returned to the aortic arch via right common carotid artery– Takes over function of heart and lungs

• Venovenous: blood drawn from right atrium via right internal jugular vein, returned to right atrium via femoral vein– Takes over function of lungs

Page 24: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Page 25: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Page 26: Special Procedures

Advantages of Venovenous ECLS

• Sparing of carotid artery• Preservation of pulsatile flow• Normal pulmonary blood flow• Perfusion of lungs with oxygenated blood• Perfusion of coronaries with oxygenated blood• Avoidance of infusion of possible emboli into arterial

circulation• Central venous pressure accurate• Selective limb perfusion does not occur

Page 27: Special Procedures

Disadvantages of Venovenous ECLS

• No cardiac support• Lower systemic PaO2

• Recirculation issues

Page 28: Special Procedures

Advantages of Venoarterial ECLS

• Provides cardiac support• Excellent gas exchange• Rapid stabilization

Page 29: Special Procedures

Disadvantages of Venoarterial ECLS

• Carotid artery ligation• Nonpulsatile flow• Reduced pulmonary blood flow• Lower myocardial oxygen delivery• Direct infusion of possible emboli into

arterial circulation• Central venous pressure inaccurate

Page 30: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Components of ECMO Circuit

• Venous blood drainage reservoir• Blood roller pump• Membrane oxygenator• Heat exchanger

Page 31: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Physiologic Complications• Bleeding• Volume problems• Blood pressure problems• Hematologic problems (anemia,

leukopenia, thrombocytopenia)• Infection

Page 32: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Technical Complications

• Pump failure• Rupture of tubing• Membrane failure• Cannula problems• Other mechanical failures

Page 33: Special Procedures

Extracorporeal Membrane Oxygenation (ECMO)

Overview

• Early method of rescue• Less important today with advent of

SRT, HFOV, and iNO• Still an important life support option in

some centers