11
International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected] Volume 5, Issue 3, March 2016 ISSN 2319 - 4847 Volume 5, Issue 3, March 2016 Page 18 ABSTRACT Assessing the groundwater quality of a region will be a great importance in the field of environmental and socio-economic management. Seasonal variations (Pre & Post monsoon during 2014) in groundwater quality are analyzed from 9 observation well points and the exact locations are recorded using GPS and groundwater quality theme maps are digitized using GIS software’s. All the samples are analyzed with respect to Bureau of India Standards (BIS) and World Health Organization (WHO). Lineaments are overlaid on land use/ land cover patterns using IRS-1D, PAN+LISSIII satellite image through GIS software’s to evaluate the possible threats/ locations of groundwater quality such as rock-water interactions, agro-chemicals and storage & movement of water. Ordinary kriging method is utilized in preparation of thematic maps of each parameter which provide better understanding of the present water quality scenario in the study area. The final results highlight the seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics technique. Keywords: Spatio-temporal variation, Water Quality, Kriging, Mysuru taluk and Geo-Informatics. 1. INTRODUCTION Groundwater is a critical component of the nation’s water resources. The adequate water supply in terms of both quantity and quality rises as increase in population and over demands/ exploitations, leading to water scarcity issues in many parts of the country (Sundara Kumar., 2010). The present study demonstrates the spatial distribution of groundwater quality and its changes over time either by naturally or under the influence of man (Wilkinson and Edworthy., 1981; Ikem, A. et al, 2002). Groundwater quality can be influenced directly and indirectly by microbiological processes which can transform both inorganic and organic constituents of groundwater through geochemical processes (Chapelle., 1993). Groundwater pollution occurs when used water is returned to the hydrological cycle (Basavarajappa and Manjunatha., 2015). Field visits have been carried out using a handheld GPS to check the conditions of each land use/ land cover categories and geological structures (lineaments) that controls the occurrence and movement of groundwater (Shankar et al., 2011; Manjunatha and Basavarajappa., 2015). Groundwater bodies are always less accessible than surface water bodies and technically difficult to derive a real picture. Groundwater contaminates mainly due to rapid increase in population, industrialization, mining operations, application of fertilizers in agricultural fields and other manmade activities (Rao et al., 2012). The spatial variation in groundwater quality maps of different parameters are derived using kriging tool in ArcGIS v10 by considering the spatial correlation between each sample points (Ella et al., 2001). 2. METHODS Mysuru taluk is situated in the northern part of Mysuru district. It is located between 12 0 07’05” to 12 0 27’13” N latitudes and 76 0 27’12” to 76 0 50’10” E longitudes covering an area of 809.6 Km 2 (Fig.1). The taluk has four hoblis namely Kasaba, Ilavala, Varuna and Jayapura. The climate is semiarid tropical and the average annual rainfall of 798 mm with 55 rainy days (2014). Area under cultivation is about 69,170 ha, forest occupies about 3,216 ha mainly Spatio-Temporal Assessment and Mapping of Groundwater Quality in Mysuru Taluk, Karnataka, India using Geo-Informatics Technique Vahid Sharifi 1 , S.Srikantaswamy 2 , Manjunatha M.C 3 , Javaid Ahmad Tali 4 1 Research Scholar, Department of Studies in Environmental Science, University of Mysore, Manasagangothri, Mysuru-570 006, Karnataka, India 2 Associate Professor, Department of Studies in Environmental Science, University of Mysore, Manasagangothri, Mysuru-570 006, Karnataka, India 3 Research Scholar, Department of Studies in Earth Science, Centre for Advanced Studies in Precambrian Geology, University of Mysore, Manasagangothri, Mysuru-570 006, Karnataka, India 4 Post-Doctorate Fellow, ICSSR, New Delhi

Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 18

ABSTRACT Assessing the groundwater quality of a region will be a great importance in the field of environmental and socio-economic management. Seasonal variations (Pre & Post monsoon during 2014) in groundwater quality are analyzed from 9 observation well points and the exact locations are recorded using GPS and groundwater quality theme maps are digitized using GIS software’s. All the samples are analyzed with respect to Bureau of India Standards (BIS) and World Health Organization (WHO). Lineaments are overlaid on land use/ land cover patterns using IRS-1D, PAN+LISSIII satellite image through GIS software’s to evaluate the possible threats/ locations of groundwater quality such as rock-water interactions, agro-chemicals and storage & movement of water. Ordinary kriging method is utilized in preparation of thematic maps of each parameter which provide better understanding of the present water quality scenario in the study area. The final results highlight the seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics technique. Keywords: Spatio-temporal variation, Water Quality, Kriging, Mysuru taluk and Geo-Informatics. 1. INTRODUCTION Groundwater is a critical component of the nation’s water resources. The adequate water supply in terms of both quantity and quality rises as increase in population and over demands/ exploitations, leading to water scarcity issues in many parts of the country (Sundara Kumar., 2010). The present study demonstrates the spatial distribution of groundwater quality and its changes over time either by naturally or under the influence of man (Wilkinson and Edworthy., 1981; Ikem, A. et al, 2002). Groundwater quality can be influenced directly and indirectly by microbiological processes which can transform both inorganic and organic constituents of groundwater through geochemical processes (Chapelle., 1993). Groundwater pollution occurs when used water is returned to the hydrological cycle (Basavarajappa and Manjunatha., 2015). Field visits have been carried out using a handheld GPS to check the conditions of each land use/ land cover categories and geological structures (lineaments) that controls the occurrence and movement of groundwater (Shankar et al., 2011; Manjunatha and Basavarajappa., 2015). Groundwater bodies are always less accessible than surface water bodies and technically difficult to derive a real picture. Groundwater contaminates mainly due to rapid increase in population, industrialization, mining operations, application of fertilizers in agricultural fields and other manmade activities (Rao et al., 2012). The spatial variation in groundwater quality maps of different parameters are derived using kriging tool in ArcGIS v10 by considering the spatial correlation between each sample points (Ella et al., 2001). 2. METHODS Mysuru taluk is situated in the northern part of Mysuru district. It is located between 12007’05” to 12027’13” N latitudes and 76027’12” to 76050’10” E longitudes covering an area of 809.6 Km2 (Fig.1). The taluk has four hoblis namely Kasaba, Ilavala, Varuna and Jayapura. The climate is semiarid tropical and the average annual rainfall of 798 mm with 55 rainy days (2014). Area under cultivation is about 69,170 ha, forest occupies about 3,216 ha mainly

Spatio-Temporal Assessment and Mapping of Groundwater Quality in Mysuru Taluk, Karnataka, India using Geo-Informatics

Technique

Vahid Sharifi1, S.Srikantaswamy2, Manjunatha M.C3, Javaid Ahmad Tali4

1Research Scholar, Department of Studies in Environmental Science, University of Mysore, Manasagangothri, Mysuru-570 006, Karnataka, India

2Associate Professor, Department of Studies in Environmental Science, University of Mysore,

Manasagangothri, Mysuru-570 006, Karnataka, India

3Research Scholar, Department of Studies in Earth Science, Centre for Advanced Studies in Precambrian Geology, University of Mysore, Manasagangothri, Mysuru-570 006, Karnataka, India

4Post-Doctorate Fellow, ICSSR, New Delhi

Page 2: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 19

concentrated in the western and southwestern part of the taluk. The major crops grown are cotton, ragi, vegetables and mango which need the application of fertilizers/ pesticides in large agricultural fields.

Fig.1. Location map of the study area

Fig.2. Observation well points map of the study area 3. METHODS & MATERIALS 3.1 METHODOLOGY Groundwater quality is assessed by measuring 14 different parameters including F- (Fluoride), NO3

- (Nitrate), HCO3-

(Bicarbonate), Cl- (Chloride), Ca2+ (Calcium), Mg2+ (Magnesium), Na+ (Sodium), SO42- (Sulphate), Fe (Iron), K+

(Potassium), TDS (Total Dissolved Solid), TH (Total Hardness), pH (potential of Hydrogen) and EC (Electrical conductivity) (Table.1; Table.2). The samples are collected from 9 well points in different parts of the study area during Pre-monsoon (April-2014) and Post-monsoon (Dec-2014) seasons which were analyzed for various physico-chemical properties with reference to BIS (Bureau of Indian Standards., 1991) and WHO (World Health Organization., 2004) to determine seasonal variation in water quality parameters (Basavarajappa and Manjunatha., 2015) (Table.3; Table.4). Within India, several groundwater related studies have been conducted to determine potential sites for groundwater evaluation (Satyanarayanan et al., 2007; Gupta and Srivastava., 2010) and groundwater quality mapping (Remesen and Panda., 2007; Nas and Berktay., 2010) using GIS. 3.2. MATERIALS Topomaps: 57D/7, 57D/8, 57D/11; 57D/12, 57D/13, 57D/14, 57D/15, 57D/16 of 1:50,000 scale. Source: Survey of India, Bangalore. Thematic maps: Observation well points map (Fig.2), Lineaments overlaid on agriculture map (Fig.2) and Spatial Distribution maps (Fig.3 – 7).

Page 3: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 20

Satellite data: Indian Remote Sensing (IRS)-1D, LISS-III (Resolution: 23.5m, year: 2008-09), PAN (year: 2005-06, Resolution: 5.8m); PAN+LISS-III (2.3m resolution). Sources of data: Bhuvan, NRSA, Hyderabad. Software analysis: ArcGIS v10 & PCI-Geomatica v10. GPS: A hand held GPS (Garmin-12) is used to demark the exact locations of observation well points in the study area. 4. LINEAMENTS OVERLAID ON LAND USE/ LAND COVER PATTERNS Lineaments and fractures controls the movement and storage of groundwater in hard rock terrain, are extracted by visual interpretation techniques on IRS- 1D, PAN+LISS-III satellite images through PCI-Geomatica v10 (Basavarajappa et al., 2012). Agricultural land covers an area of 598.58 Km2 which needs the heavy applications of agrochemicals, pesticides, fertilizers forming the basic contaminations to groundwater regions through seepage areas (lineaments). Lineaments overlaid on agricultural lands reveal the possible threats/ locations of groundwater through catchment, seepage, recharge, fracture zones (lineaments) (Fig.2) (Basavarajappa and Manjunatha., 2015).

Fig.3. Lineaments map of the study area 5. ASSESSMENT OF SEASONAL VARIATION (PRE AND POST-MONSOON) IN GROUNDWATER QUALITY 5.1 FLUORIDE Fluoride values ranges from 0.05 to 1.26 mg/L in pre-monsoon season with an average value 0.43. In post-monsoon, it ranges from 0.70 to 0.51 mg/L with an average of 0.26 mg/L (Fig.4). All the samples are within the permissible limit of WHO & BIS Standards. Sources of fluoride in bedrock aquifer systems include fluorite, apatite fluorapatite (Basavarajappa and Manjunatha., 2015). The variation of fluoride depends on the amount of soluble and insoluble fluoride in source rocks, rock-water interaction with rocks and soil temperature, rainfall, oxidation - reduction process (Mangukiya et al., 2012).

Fig.4. (a) Pre-monsoon and (b) Post-monsoon Fluoride distribution in the study area

Page 4: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 21

5.2 BICARBONATE Bicarbonate values in pre-monsoon ranges from 253.0 to 853.0 mg/L with an average value of 508.66 mg/L. In post- monsoon, it ranges from 514.0 to 750 mg/L with an average value of 621.88 mg/L. 5.3 NITRATE In the study area, nitrate values range from 8.0 to 70.0 mg/L with an average of 29.55 mg/L in during per-monsoon season. In post-monsoon, it ranges from 41.0 to 211.0 mg/L with an average value 124.33 mg/L (Fig.5). Almost 88% of nitrate percentage has been recorded based on the WHO Standards from pre-monsoon to post monsoon seasons. Nitrates themselves are relatively nontoxic, but high concentrations are due to the leaching/runoff from agricultural lands, contamination from human/animal wastes as a consequence of the oxidation of ammonia and similar sources by WHO (2004).

Fig.5. (a) Pre-monsoon and (b) Post-monsoon Nitrate distribution in the study area 5.4 CHLORIDE Chloride values range from 20.0 to 305.0 mg/L with an average of 105.88 mg/L in pre-monsoon season; in which 11% of total samples exceeds permissible limit with referenced to WHO Standards. During post-monsoon season, it ranges from 98.0 to 510.0 mg/L with an average of 235.66 mg/L; in which 44% of total samples exceeds WHO permissible limits (Fig.6). Chloride in drinking water originates from natural sources such as sewage, industrial effluents, urban runoff containing mainly saline intrusions (WHO., 2004). The high concentration of chloride is in groundwater is observed where the temperature is high and rainfall is less (Mangukiya et al., 2012).

Fig.6. (a) Pre-monsoon and (b) Post-monsoon Chloride distribution in the study area

Page 5: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 22

5.5 CALCIUM Calcium ranges from 35.0 to 138.0 mg/L with an average value of 78.22 mg/L during pre-monsoon season. In post-monsoon season, it ranges from 102.0 to 261.0 mg/L with an average of 145.33 mg/L (Fig.7). All the samples are observed to be within the limit of WHO & BIS standards in pre-monsoon season, while only one samples exceed its permissible limit and is recorded at Elwala observation well point.

Fig.7. (a) Pre-monsoon and (b) Post-monsoon Calcium distribution in the study area 5.6 MAGNESIUM In pre-monsoon season, the value of magnesium ranges from 0.0 to 87.0 mg/L with an average of 41.44 mg/L. But in post-monsoon season, it ranges from 1.0 to 137.0 mg/L with an average of 73.77 mg/ L (Fig.8). Almost 44% of total samples are exceeding WHO permissible limit in pre-monsoon season and rises to 66% in post-monsoon season. Natural water contains magnesium and calcium which affects the hardness of groundwater based on dissolved polyvalent metallic ions (Basavarajappa and Manjunatha., 2015).

Fig.8. (a) Pre-monsoon and (b) Post-monsoon Magnesium distribution in the study area 5.7 SODIUM Sodium values in pre-monsoon ranges from 27.0 to 210.0 mg/L with an average value of 98.44 mg/L. During, post- monsoon season, it ranges from 78.0 mg/L to 289.0 mg/L with an average value of 161.22 mg/L (Fig.9). Only one sample was exceeding its permissible limit in pre-monsoon season; while two samples exceed their limit in post-

Page 6: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 23

monsoon season with referenced to WHO Standards. Groundwater for irrigational needs could be gauged by the salinity-Sodium hazards (Balasubramanian and Sastri., 1987).

Fig.9. (a) Pre-monsoon and (b) Post-monsoon Sodium distribution in the study area

5.8 IRON The concentrations of iron in pre-monsoon season range from 0.02 to 2.09 mg/L with an average value of 0.26 mg/L; while in post-monsoon season ranges from 0.02 to 0.51 mg/L with an average of 0.09 mg/L (Fig.10). Only two samples were exceeding BIS permissible limit in pre-monsoon season; it has no effect in post-monsoon season. High dissolved iron concentrations can occur in groundwater when pyrite is exposed to oxygenated water or when ferric oxide or hydroxide minerals are in contact with reducing substances (Hem., 1985).

Fig.10. (a) Pre-monsoon and (b) Post-monsoon Iron distribution in the study area 5.9 SULPHATE The value in per-monsoon season ranges from 0.0 to 83.0 mg/L with an average of 38.33 mg/L; while in post-monsoon season, it ranges from 35.0 to 85.0 mg/L with an average of 67.33mg/L. All the samples are with the permissible limit of WHO and BIS Standards in both the seasons. The sulfate content in water is important in determining the suitability of water for public and industrial supplies. Higher concentration of sulphate in water can cause malfunctioning of alimentary canal and shows cathartic effect in human beings (Lenin Sunder et al., 2008). 5.10 POTASSIUM During pre-monsoon season, potassium concentrations ranges from 10.0 to 100.0 mg/L with an average concentration of 38.33 mg/L indicating 7 numbers of samples exceed their WHO permissible limit. In post-monsoon season, it ranges from 1.0 to 21.0 mg/L with an average of 10.77 mg/L indicating 4 number of samples exceed their permissible limit with referenced to WHO Standard (Fig.11).

Page 7: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 24

Fig.11. (a) Pre-monsoon and (b) Post-monsoon Potassium distribution in the study area 5.11 TOTAL DISSOLVED SOLID In pre-monsoon season, the value ranges from 266.0 to 1503 mg/L with an average of 710.44 mg/L; while in post-monsoon season, it ranges from 801.0 to 1724 mg/L with an average of 1177.0 mg/L. Only one sample was exceeding its permissible limit in pre-monsoon season, but it rises to 5 samples in post-monsoon season with referenced to WHO Standards (Fig.12). As groundwater moves and stays for a longer time along its flow path, increased in total dissolved concentrations and major ions normally occur (Norris et al., 1992) and higher TDS shows longer residence period of water (Davis and De Viest., 1966).

Fig.12. (a) Pre-monsoon and (b) Post-monsoon TDS distribution in the study area 5.13 TOTAL HARDNESS The value of total hardness in pre-monsoon season ranges from 172.0 to 692.0 mg/L with an average of 361.33 mg/L. In post-monsoon season, it ranges from 352.0 to 948.0 mg/L with an average value of 655.77 mg/L. Only two samples were exceeding their permissible limit, but it rises to seven samples during post-monsoon season with referenced to WHO Standards (Fig.13). Groundwater is much harder than surface water and depends most on geological and hydrological conditions (Narayana and Suresh., 1989). The hardness of water is mainly due to variation in calcium and magnesium (Mangukiya et al., 2012). The adverse effects of total hardness are formation of kidney stone and the heart diseases (Sastry and Rathee., 1998).

Page 8: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 25

Fig.13. (a) Pre-monsoon and (b) Post-monsoon Total Hardness distribution in the study area 5.12 POTENTIAL OF HYDROGEN (pH) In pre-monsoon season, the value of pH ranges from 6.98 to 8.83 mg/L with an average value of 8.31 mg/L. In post-monsoon season, it ranges from 6.74 to 7.43 mg/L with an average of 7.18 mg/L. Five samples are exceeding the permissible limit in pre-monsoon season, while in post-monsoon season all the samples record within the WHO permissible limit (Fig.14). Natural water turns alkalinity mainly due to the presence of bicarbonate & carbonate (Basavarajappa and Manjunatha., 2015) and other minor constituents include silicate, hydroxide, borates and certain organic compounds (Hem., 1985). Water having pH between 6 & 10 have no problem, but below this range causes corrosiveness in nature (Shankar et al., 2011).

Fig.14. (a) Pre-monsoon and (b) Post-monsoon pH distribution in the study area

5.14 ELECTRICAL CONDUCTIVITY In pre-monsoon season, EC values ranges from 496.0 to 2571.0 mg/L with an average of 1269.33 mg/L; while in post-monsoon season it ranges from 1426.0 to 2923 mg/L with an average of 2046.66 mg/L. EC is directly related to the concentration of ionized substance, excessive hardness and other mineral contamination in natural water (Johnson C. C., 1979).

Page 9: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 26

Table.1. Observed Groundwater quality values of PRE -monsoon seasons (2014) of the study area

Sl No

Observation Well points Latitude Longitude F- NO3- HCO3- Cl- Ca2+ Mg2+ Na+ SO4

2- Fe K+ TDS TH pH EC

1. Jayapura 12.2052 76.5531 1.26 16 478 36 59 29 94 30 0.05 20 553 264 8.83 991 2. Siddalingapura 12.3653 76.6613 0.09 35 505 143 96 31 124 46 2.09 40 798 364 8.27 1381 3. Devalapur 12.2246 76.7002 0.09 45 314 104 83 0 91 26 0.02 10 516 208 6.98 933 4. Alanahalli 12.2993 76.7014 0.09 8 253 20 35 21 27 0 0.04 10 266 172 8.64 496 5. Bhogadi 12.3050 76.5964 0.26 20 654 90 77 56 95 39 0.07 45 749 416 7.75 1437 6. Elwala 12.3562 76.5441 0.73 20 663 126 88 78 95 60 0.02 45 876 532 8.53 1608 7. Kadakola 12.1933 76.6653 0.05 70 853 305 138 87 210 83 0.02 100 1503 692 8.72 2571 8. Keelanapura 12.2530 76.8186 1.09 12 451 42 58 21 100 20 0.03 16 531 228 8.82 940 9. hebbal 12.3487 76.6123 0.26 40 407 87 70 50 50 41 0.02 59 602 376 8.32 1067

Table.2. Observed Groundwater quality values of POST -monsoon seasons (2014) of the study area

Sl No

Observation Well points Latitude Longitude F- NO3- HCO3- Cl- Ca2+ Mg2+ Na+ SO42- Fe K+ TDS TH pH EC

1. Jayapura 12.2052 76.5531 0.21 132 750 286 163 116 198 75 0.03 21 1436 872 7.31 2603 2. Siddalingapura 12.3653 76.6613 0.15 41 622 98 102 65 93 52 0.05 9 801 516 7.35 1469 3. Devalapur 12.2246 76.7002 0.07 77 514 104 107 46 115 71 0.02 9 816 452 7.43 1426 4. Alanahalli 12.2993 76.7014 0.51 67 544 171 107 77 105 68 0.51 1 898 576 7.35 1622 5. Bhogadi 12.3050 76.5964 0.28 211 706 283 160 137 120 75 0.04 9 1418 948 7.22 2451 6. Elwala 12.3562 76.5441 0.43 182 711 358 261 3 281 65 0.03 21 1596 684 6.91 2603 7. Kadakola 12.1933 76.6653 0.27 210 603 510 133 119 289 80 0.07 12 1724 802 6.74 2923 8. Keelanapura 12.2530 76.8186 0.25 143 554 168 120 100 78 85 0.05 12 1013 700 7.35 1787 9. hebbal 12.3487 76.6123 0.22 56 593 143 155 1 172 35 0.02 3 891 352 6.96 1536

Table.3 Comparison of observed values (PRE-monsoon) with Standard specifications for Groundwater as per WHO &

BIS Sl No

Parameters Min Max Average WHO Standards

Sample numbers exceeding

permissible limit

BIS Standards

Sample numbers exceeding

permissible limit 1. F- 0.05 1.26 0.43 1.5 -Nil- 1-1.5 -Nil- 2. NO3- 8 70 29.55 50 -Nil- 45-100 -Nil- 3. HCO3- 253 853 508.66 - - - - 4. Cl- 20 305 105.88 250 7 250-1000 -Nil- 5. Ca2+ 35 138 78.22 75-200 -Nil- 75-200 -Nil- 6. Mg2+ 0 87 41.44 50 5, 6, 7, 8 30-100 -Nil- 7. Na+ 27 210 98.44 200 7 - - 8. SO42- 0 83 38.33 250 -Nil- 200-400 -Nil- 9. Fe 0.02 2.09 0.26 - - 0.3-1 2

10. K+ 10 100 38.33 12 1, 2, 5, 6, 7, 8, 9 - - 11. TDS 266 1503 710.44 1000 7 500-2000 -Nil- 12. TH 172 692 361.33 500 6, 7 200-600 7 13. pH 6.98 8.83 8.31 6.5-8.5 1, 4, 6, 7, 8 6.5-8.5 1, 4, 6, 7, 8 14. EC 496 2571 1269.33 - - - -

Table.4 Comparison of observed values (POST-monsoon) with Standard specifications for Groundwater as per WHO

& BIS Sl No

Parameters Min Max Average WHO Standards

Sample numbers exceeding

permissible limit

BIS Standards Sample numbers exceeding

permissible limit 1. F- 0.07 0.51 0.26 1.5 -Nil- 1-1.5 -Nil- 2. NO3- 41 211 124.33 50 1, 3, 4, 5, 6, 7, 8,

9 45-100 1, 5, 6, 7, 8

3. HCO3- 514 750 621.88 - - - - 4. Cl- 98 510 235.66 250 1, 5, 6, 7 250-1000 -Nil-

Page 10: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 27

5. Ca2+ 102 261 145.33 75-200 6 75-200 6 6. Mg2+ 1 137 73.77 50 1, 2, 4, 5, 7, 8 30-100 1, 5, 7, 8 7. Na+ 78 289 161.22 200 6, 7 - - 8. SO42- 35 85 67.33 250 -Nil- 200-400 -Nil- 9. Fe 0.02 0.51 0.09 - - 0.3-1 -Nil-

10. K+ 1 21 10.77 12 1, 6, 7, 8 - - 11. TDS 801 1724 1177 1000 1, 5, 6, 7, 8 500-2000 -Nil- 12. TH 352 948 655.77 500 1, 2, 4, 5, 6, 7, 8 200-600 1, 5, 6, 7, 8 13. pH 6.74 7.43 7.18 6.5-8.5 -Nil- 6.5-8.5 -Nil- 14. EC 1426 2923 2046.66 - - - -

Table.5. Season-wise Rise and Fall analysis of Groundwater parameters based on WHO standards

Sl no Parameters PRE-MONSOON POST-MONSOON Season-wise Rise/ Fall 1. F-(mg/L) 0% 0% - - 2. NO3-(mg/L) 0% 88% Major rise 3. HCO3- - - - - 4. Cl-(mg/L) 11% 44% Major rise 5. Ca2+(mg/L) 0% 11% Rise 6. Mg2+(mg/L) 44% 66% Major rise 7. Na+(mg/L) 11% 22% Rise 8. SO42-( mg/L) 0% 0% - - 9. Fe - - - - 10. K+(mg/L) 77% 44% Major fall 11. TDS(mg/L 11% 55% Major rise 12. TH(mg/L) 22% 77% Major rise 13. pH 55% 0% Major fall 14. EC(μs/cm) - - - -

Fig.15. Line graph depicting Season-wise variation in Groundwater parameters

6. CONCLUSIONS Groundwater is affected both by its quality and quantity during recent years in the study area. Fluoride and sulphate remains unchanged throughout the year. Nitrate, chloride, magnesium, TDS and TH shows major rise in its values from pre-monsoon to post-monsoon seasons; while potassium and pH shows major fall in major parts of the study area. All the parameter values are well compared with BIS & WHO guidelines and spatial distribution of each parameter are digitized using ArcGIS v10. Mysuru taluk covers almost 73% of agricultural land and this land overlaid with lineaments act as a passage way for pesticides, fertilizers and other effluents directly to the groundwater. Geo-informatics tools are helpful in mapping and interpretation of various spatial variations of groundwater quality maps with cost effective by recording exact location using a handheld GPS. ACKNOWLEDGEMENT: The authors are indepthly thankful to Prof. H.T. Basavarajappa, DoS in Earth Science, UoM, Mysuru; Survey of India (SoI), CGWB, Bengaluru; Department of Mines and Geology, Mysuru; Bhuvan, ISRO-NRSC, Hyderabad.

Page 11: Spatio-Temporal Assessment and Mapping of Groundwater Quality … · seasonal variation in groundwater quality and its mapping of the study area using hi-tech tools of geoinformatics

International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected]

Volume 5, Issue 3, March 2016 ISSN 2319 - 4847

Volume 5, Issue 3, March 2016 Page 28

REFERENCE: [1.] Balasubramanian, A., Sastri, J.C.V., (1987). Studies on the quality of Groundwater of Tambraparni River Basin,

Tamil Nadu, India. Journal Association of Exploration Geophysics, Vol.8, Pp: 41-51. [2.] Basavarajappa H.T, Balasubramanian A, Pushpavathi K.N and Manjunatha M.C (2012). Mapping and integration

of Geological, Geomorphological landforms of Mysore district, Karnataka, India using Remote Sensing and GIS Techniques, Frontiers of Earth Science Research, Gulbarga University, Edited Vol.1, Pp: 164-175.

[3.] Basavarajappa H.T and M.C Manjunatha., (2015). Groundwater quality analysis in Precambrian rocks of Chitradurga district, Karnataka, India using Geo-informatics technique, Elsevier, Science, Direct, Aquatic Procedia, Vol.4, Pp: 1354-1365.

[4.] BIS (1991). Indian standard specification for drinking water, Bureau of Indian Standard, publication no. IS: 10501, New Delhi, India, Pp: 1-10.

[5.] Chapelle F.H. (1993). Groundwater Microbiology and Geochemistry, J. Wiley and Sons, New York, Pp: 424. [6.] Davis S.N and R.J.M. De Wiest (1966). Hydrogeology. John Wiley & Sons, New York, Vol. 463. [7.] Ella V.B, Melvin S.W and Kanwar R.S (2001). Spatial analysis of NO3–N concentration in glacial till, Trans

ASAE, Vol.44, No.2, Pp: 317–327. [8.] Gupta M and Srivastava P.K., (2010). Integrating GIS and Remote Sensing for identification of groundwater

potential zones in the hilly terrain of Pavagarh, Gujarath, India, Water Int., Vol.35, Pp: 233-245. [9.] Hem J.D., (1985). Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S.

Geological Survey, Water Supply, Pp: 2254. [10.] Ikem A., Osibanjo O., Shridar M.K.C and Sobande A (2002). Evaluation of groundwater quality characteristics

near two waste sites in Ibadan and Lagos, Nigeria. Water, Air, and Soil Pollution, Vol.140, Pp: 307-333. [11.] Johnson C. C. (1979). Land application of water-an accident waiting to happen Ground Water, Vol.17, No.1, Pp:

69-72. [12.] Lenin M. Sundar and Saseetharan M.K. (2008). Groundwater Quality in Coimbatore, Tamil Nadu along Noyyal

River,” Journal of Environmental Science and Engineering, Vol.50, No.3, Pp:187-190. [13.] Mangukiya Rupal, Bhattacharya Tanushree and Chakraborty Sukalyan (2012). Quality Characterization of

Groundwater using Water Quality Index in Surat city, Gujarat, India, International Research Journal of Environment Sciences, Vol.1, No.4, Pp: 14-23.

[14.] Manjunatha M.C and H.T. Basavarajappa (2015). Spatio-temporal variation in Groundwater quality analysis on Chitradurga district, Karnataka, India using Geo-informatics technique, Journal of International Academic Research for Multidisciplinary, Vol.3, Issue.11, Dec, Pp: 164-179.

[15.] Narayana A.C and Suresh G.C (1989). Chemical quality of groundwater of Mangalore city, Karnataka, Indian Journal of Environmental Health, Vol.31, Pp: 228-236.

[16.] Nas B and Berktay A., (2010). Groundwater quality mapping in urban groundwater using GIS, Environmental Monitoring Assessment, Vol.160, Pp: 215-227.

[17.] Norris, R.D., 1992. In-situ Bioremediation of Groundwater and Geological Material. A Review of Technologies, EPA/600/R-93/124 (NTIS PB93-215564). [Thirteen authors].

[18.] Rao, Mushini Venkata Subba, Vaddi Dhilleswara Rao and Bethapudi Samuel Anand Andrews (2012) Assessment of Quality of Drinking Water at Srikurmam in Srikakulam District’, Andhra Pradesh, India,” International Research Journal of Environmental Science, Vol.1, No.2, Pp:13-20.

[19.] Remesen R and Panda R.K., (2007). Groundwater quality mapping using GIS: a study from India’s Kapgari Watershed. Environmental Quality Management. Springer 16, Pp: 41-60.

[20.] Sastri K.V and Rathee P., (1988). Physico-chemical and microbiological characteristics of water of village Kanneli, (Dist. Rohtak) Haryana. Proc. Academic, Environmental Biology, Vol.7, Pp: 103-108.

[21.] Satyanarayanan M., Balaram V., Hussain M.S.A., Jemaili MARA., Rao TG., Mathur R., Dasaram B and Ramesh S.L., (2007). Assessment of groundwater quality in a structurally deformed granitic terrain in Hyderabad, India. Environmental Monitoring Assessment, Vol.131, Pp: 117-127.

[22.] Shankar K., Aravindan S and Rajendran, S., (2011). Assessment of Groundwater Quality in Paranavar River sub-Basin, Cuddalore district, Tamil Nadu, India, Advances in Applied Science Research, Vol.2, Pp: 92-103.

[23.] Sundar Kumar K., P. Sundar Kumar, M.J. Ratnakanth Babu and Ch. Hanumantha Rao (2010). “Assessment and Mapping of Ground Water Quality Using Geographical Information System”, International Journal of Engineering Science and Technology, Vol.2, No.11, Pp: 6035-6046.

[24.] WHO., (2004). Guidelines for drinking water quality, 3rd edition, World Health Organization, Geneva. [25.] Wilkinson W.B & Edworthy K.J (1981). Groundwater quality monitoring - money wasted? In: Quality of

Groundwater (Proc. Int. Symp;, Noordwijkerhout, March) Elsevier, Pp: 629-642.