43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sparsity Methods for Systems and Control Maximum Hands-off Control Masaaki Nagahara 1 1 The University of Kitakyushu [email protected] M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 19

Sparsity Methods for Systems and Control - Maximum Hands

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sparsity Methods for Systems and ControlMaximum Hands-off Control

Masaaki Nagahara1

1The University of [email protected]

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 1 / 19

Page 2: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 L0 norm and sparse control

2 A simple example of maximum hands-off control

3 General formulation of maximum hands-off control

4 Conclusion

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 2 / 19

Page 3: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 L0 norm and sparse control

2 A simple example of maximum hands-off control

3 General formulation of maximum hands-off control

4 Conclusion

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 3 / 19

Page 4: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0 norm of a function

The support of a function u(t), t ∈ [0, T]:

supp(u) ≜ {t ∈ [0, T] : u(t) , 0}.

The L0 norm of a function u(t):

∥u∥0 ≜ µ(supp(u)

),

µ(S) is the Lebesgue measure (i.e. the length) of a subset S ⊂ [0, T].L0 norm: the total length of time durations on which the signaltakes nonzero values.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 19

Page 5: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0 norm of a function

The support of a function u(t), t ∈ [0, T]:

supp(u) ≜ {t ∈ [0, T] : u(t) , 0}.

The L0 norm of a function u(t):

∥u∥0 ≜ µ(supp(u)

),

µ(S) is the Lebesgue measure (i.e. the length) of a subset S ⊂ [0, T].L0 norm: the total length of time durations on which the signaltakes nonzero values.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 19

Page 6: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0 norm of a function

The support of a function u(t), t ∈ [0, T]:

supp(u) ≜ {t ∈ [0, T] : u(t) , 0}.

The L0 norm of a function u(t):

∥u∥0 ≜ µ(supp(u)

),

µ(S) is the Lebesgue measure (i.e. the length) of a subset S ⊂ [0, T].L0 norm: the total length of time durations on which the signaltakes nonzero values.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 19

Page 7: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0 norm of a function

The support of a function u(t), t ∈ [0, T]:

supp(u) ≜ {t ∈ [0, T] : u(t) , 0}.

The L0 norm of a function u(t):

∥u∥0 ≜ µ(supp(u)

),

µ(S) is the Lebesgue measure (i.e. the length) of a subset S ⊂ [0, T].L0 norm: the total length of time durations on which the signaltakes nonzero values.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 4 / 19

Page 8: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example: L0 norm of a function

The L0 norm

∥u∥0 � µ(supp(u)) � t1 + (T − t2) � T − (t2 − t1).

0

T

u(t) = 0

t

u(t)

t1

t2

If ∥u∥0 is much smaller than the total length T (i.e., ∥u∥0 ≪ T),then the signal is said to be sparse.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 19

Page 9: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example: L0 norm of a function

The L0 norm

∥u∥0 � µ(supp(u)) � t1 + (T − t2) � T − (t2 − t1).

0

T

u(t) = 0

t

u(t)

t1

t2

If ∥u∥0 is much smaller than the total length T (i.e., ∥u∥0 ≪ T),then the signal is said to be sparse.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 5 / 19

Page 10: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Practical benefits of sparsity in control

Let us consider the sparse control signal u(t), t ∈ [0, T].Actuators as electric motors need energy to generate power.If the control u(t) is sparse, we can stop energy supply to theactuator over the time interval [t1 , t2].Such a control is called a hands-off control.

This is also known as coasting.

We can also reduce CO or CO2 emissions, noise, and vibrations.

0

T

u(t) = 0

t

u(t)

t1

t2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 19

Page 11: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Practical benefits of sparsity in control

Let us consider the sparse control signal u(t), t ∈ [0, T].Actuators as electric motors need energy to generate power.If the control u(t) is sparse, we can stop energy supply to theactuator over the time interval [t1 , t2].Such a control is called a hands-off control.

This is also known as coasting.

We can also reduce CO or CO2 emissions, noise, and vibrations.

0

T

u(t) = 0

t

u(t)

t1

t2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 19

Page 12: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Practical benefits of sparsity in control

Let us consider the sparse control signal u(t), t ∈ [0, T].Actuators as electric motors need energy to generate power.If the control u(t) is sparse, we can stop energy supply to theactuator over the time interval [t1 , t2].Such a control is called a hands-off control.

This is also known as coasting.

We can also reduce CO or CO2 emissions, noise, and vibrations.

0

T

u(t) = 0

t

u(t)

t1

t2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 19

Page 13: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Practical benefits of sparsity in control

Let us consider the sparse control signal u(t), t ∈ [0, T].Actuators as electric motors need energy to generate power.If the control u(t) is sparse, we can stop energy supply to theactuator over the time interval [t1 , t2].Such a control is called a hands-off control.

This is also known as coasting.

We can also reduce CO or CO2 emissions, noise, and vibrations.

0

T

u(t) = 0

t

u(t)

t1

t2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 19

Page 14: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Practical benefits of sparsity in control

Let us consider the sparse control signal u(t), t ∈ [0, T].Actuators as electric motors need energy to generate power.If the control u(t) is sparse, we can stop energy supply to theactuator over the time interval [t1 , t2].Such a control is called a hands-off control.

This is also known as coasting.

We can also reduce CO or CO2 emissions, noise, and vibrations.

0

T

u(t) = 0

t

u(t)

t1

t2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 19

Page 15: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Practical benefits of sparsity in control

Let us consider the sparse control signal u(t), t ∈ [0, T].Actuators as electric motors need energy to generate power.If the control u(t) is sparse, we can stop energy supply to theactuator over the time interval [t1 , t2].Such a control is called a hands-off control.

This is also known as coasting.

We can also reduce CO or CO2 emissions, noise, and vibrations.

0

T

u(t) = 0

t

u(t)

t1

t2

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 6 / 19

Page 16: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Examples of hands-off control

Start-stop system in vehiclesHybrid carsElectric locomotives

1. https://www.carprousa.com/Understanding-Vehicle-StartStop-Systems/a/3

2. https://en.wikipedia.org/wiki/Hybrid_vehicle

3. https://en.wikipedia.org/wiki/Electric_locomotive

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 7 / 19

Page 17: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 L0 norm and sparse control

2 A simple example of maximum hands-off control

3 General formulation of maximum hands-off control

4 Conclusion

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 8 / 19

Page 18: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple example: rocket

r(0) = ξ1 rocket

r(0) = ξ2 r(t), r(t)

r

m F (t)

Control objective: Given T > 0, find F(t), 0 ≤ t ≤ T, such that

r(T) � 0, Ûr(T) � 0.

System model: m Ür(t) � F(t) (Newton’s second law of motion)State variable:

x(t) ≜[r(t)Ûr(t)

]⇒ Ûx(t) �

[Ûr(t)Ür(t)

]�

[0 10 0

]x(t) +

[0

m−1

]u(t).

Control: u(t) � F(t) that we can choose under |u(t)| ≤ Umax.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 19

Page 19: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple example: rocket

r(0) = ξ1 rocket

r(0) = ξ2 r(t), r(t)

r

m F (t)

Control objective: Given T > 0, find F(t), 0 ≤ t ≤ T, such that

r(T) � 0, Ûr(T) � 0.

System model: m Ür(t) � F(t) (Newton’s second law of motion)State variable:

x(t) ≜[r(t)Ûr(t)

]⇒ Ûx(t) �

[Ûr(t)Ür(t)

]�

[0 10 0

]x(t) +

[0

m−1

]u(t).

Control: u(t) � F(t) that we can choose under |u(t)| ≤ Umax.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 19

Page 20: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple example: rocket

r(0) = ξ1 rocket

r(0) = ξ2 r(t), r(t)

r

m F (t)

Control objective: Given T > 0, find F(t), 0 ≤ t ≤ T, such that

r(T) � 0, Ûr(T) � 0.

System model: m Ür(t) � F(t) (Newton’s second law of motion)State variable:

x(t) ≜[r(t)Ûr(t)

]⇒ Ûx(t) �

[Ûr(t)Ür(t)

]�

[0 10 0

]x(t) +

[0

m−1

]u(t).

Control: u(t) � F(t) that we can choose under |u(t)| ≤ Umax.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 19

Page 21: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple example: rocket

r(0) = ξ1 rocket

r(0) = ξ2 r(t), r(t)

r

m F (t)

Control objective: Given T > 0, find F(t), 0 ≤ t ≤ T, such that

r(T) � 0, Ûr(T) � 0.

System model: m Ür(t) � F(t) (Newton’s second law of motion)State variable:

x(t) ≜[r(t)Ûr(t)

]⇒ Ûx(t) �

[Ûr(t)Ür(t)

]�

[0 10 0

]x(t) +

[0

m−1

]u(t).

Control: u(t) � F(t) that we can choose under |u(t)| ≤ Umax.M. Nagahara (Univ of Kitakyushu) Sparsity Methods 9 / 19

Page 22: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maximum hands-off control

Control system (rocket)

Ûx(t) �[0 10 0

]x(t) +

[01

]u(t), x(0) �

[11

]For simplicity, we assume m � 1, ξ1 � 1, ξ2 � 1, Umax � 1.

Feasible controlFix T > 0. Find a feasible control u(t), t ∈ [0, T] that drives the statefrom x(0) to x(T) � [0, 0]⊤ that satisfies |u(t)| ≤ 1, for all t ∈ [0, T].

Maximum hands-off control problemFind a feasible control that minimizes the L0 norm of u:

J0(u) � µ(supp(u)) �∫ T

0|u(t)|0dt (the length of the support)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 19

Page 23: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maximum hands-off control

Control system (rocket)

Ûx(t) �[0 10 0

]x(t) +

[01

]u(t), x(0) �

[11

]For simplicity, we assume m � 1, ξ1 � 1, ξ2 � 1, Umax � 1.

Feasible controlFix T > 0. Find a feasible control u(t), t ∈ [0, T] that drives the statefrom x(0) to x(T) � [0, 0]⊤ that satisfies |u(t)| ≤ 1, for all t ∈ [0, T].

Maximum hands-off control problemFind a feasible control that minimizes the L0 norm of u:

J0(u) � µ(supp(u)) �∫ T

0|u(t)|0dt (the length of the support)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 19

Page 24: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Maximum hands-off control

Control system (rocket)

Ûx(t) �[0 10 0

]x(t) +

[01

]u(t), x(0) �

[11

]For simplicity, we assume m � 1, ξ1 � 1, ξ2 � 1, Umax � 1.

Feasible controlFix T > 0. Find a feasible control u(t), t ∈ [0, T] that drives the statefrom x(0) to x(T) � [0, 0]⊤ that satisfies |u(t)| ≤ 1, for all t ∈ [0, T].

Maximum hands-off control problemFind a feasible control that minimizes the L0 norm of u:

J0(u) � µ(supp(u)) �∫ T

0|u(t)|0dt (the length of the support)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 10 / 19

Page 25: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0 norm and L1 norm

L0 norm:

J0(u) � µ(supp(u)) �∫ T

0|u(t)|0dt

L1 norm

J1(u) �∫ T

0|u(t)|dt ,

−1 0 1

u

|u||u|01

L(u)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 19

Page 26: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0 norm and L1 norm

L0 norm:

J0(u) � µ(supp(u)) �∫ T

0|u(t)|0dt

L1 norm

J1(u) �∫ T

0|u(t)|dt ,

−1 0 1

u

|u||u|01

L(u)

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 11 / 19

Page 27: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L1 optimal control

Control system (rocket)

Ûx(t) �[0 10 0

]x(t) +

[01

]u(t), x(0) �

[11

]L1-optimal controlFix T > 0. Find a feasible control u(t), t ∈ [0, T] that drives the statefrom x(0) to x(T) � [0, 0]⊤, that satisfies |u(t)| ≤ 1, ∀ t ∈ [0, T], and thatminimizes the L1 norm of u:

J1(u) �∫ T

0|u(t)|dt .

Also known as fuel optimal control.A convex optimization problem.A closed-form solution is obtained.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 19

Page 28: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L1 optimal control

Control system (rocket)

Ûx(t) �[0 10 0

]x(t) +

[01

]u(t), x(0) �

[11

]L1-optimal controlFix T > 0. Find a feasible control u(t), t ∈ [0, T] that drives the statefrom x(0) to x(T) � [0, 0]⊤, that satisfies |u(t)| ≤ 1, ∀ t ∈ [0, T], and thatminimizes the L1 norm of u:

J1(u) �∫ T

0|u(t)|dt .

Also known as fuel optimal control.A convex optimization problem.A closed-form solution is obtained.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 19

Page 29: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L1 optimal control

Control system (rocket)

Ûx(t) �[0 10 0

]x(t) +

[01

]u(t), x(0) �

[11

]L1-optimal controlFix T > 0. Find a feasible control u(t), t ∈ [0, T] that drives the statefrom x(0) to x(T) � [0, 0]⊤, that satisfies |u(t)| ≤ 1, ∀ t ∈ [0, T], and thatminimizes the L1 norm of u:

J1(u) �∫ T

0|u(t)|dt .

Also known as fuel optimal control.A convex optimization problem.A closed-form solution is obtained.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 19

Page 30: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L1 optimal control

Control system (rocket)

Ûx(t) �[0 10 0

]x(t) +

[01

]u(t), x(0) �

[11

]L1-optimal controlFix T > 0. Find a feasible control u(t), t ∈ [0, T] that drives the statefrom x(0) to x(T) � [0, 0]⊤, that satisfies |u(t)| ≤ 1, ∀ t ∈ [0, T], and thatminimizes the L1 norm of u:

J1(u) �∫ T

0|u(t)|dt .

Also known as fuel optimal control.A convex optimization problem.A closed-form solution is obtained.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 12 / 19

Page 31: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple example

L1-optimal control u∗(t) and trajectory x∗(t) [Athans and Falb, 1966]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

u(t

)

Optimal Control

0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

state−space trajectory

t=0

t=T

u∗(t) ≡ 0 over [3 −√

10/2, 3 +√

10/2] ≈ [1.4, 4.6]u∗(t) is sparse (∥u∗∥0 � | supp(u∗)| ≈ 1.84 < 5 � T)In fact, it is the sparsest (i.e., maximum hands-off control).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 19

Page 32: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple example

L1-optimal control u∗(t) and trajectory x∗(t) [Athans and Falb, 1966]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

u(t

)

Optimal Control

0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

state−space trajectory

t=0

t=T

u∗(t) ≡ 0 over [3 −√

10/2, 3 +√

10/2] ≈ [1.4, 4.6]u∗(t) is sparse (∥u∗∥0 � | supp(u∗)| ≈ 1.84 < 5 � T)In fact, it is the sparsest (i.e., maximum hands-off control).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 19

Page 33: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple example

L1-optimal control u∗(t) and trajectory x∗(t) [Athans and Falb, 1966]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

u(t

)

Optimal Control

0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x2

state−space trajectory

t=0

t=T

u∗(t) ≡ 0 over [3 −√

10/2, 3 +√

10/2] ≈ [1.4, 4.6]u∗(t) is sparse (∥u∗∥0 � | supp(u∗)| ≈ 1.84 < 5 � T)In fact, it is the sparsest (i.e., maximum hands-off control).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 13 / 19

Page 34: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 L0 norm and sparse control

2 A simple example of maximum hands-off control

3 General formulation of maximum hands-off control

4 Conclusion

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 14 / 19

Page 35: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0-optimal control problem

L0-optimal control problemFor the linear time-invariant system

Ûx(t) � Ax(t) + bu(t), t ≥ 0, x(0) � ξ ∈ Rd ,

find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

J0(u) � ∥u∥0 �

∫ T

0|u(t)|0dt

subject tox(T) � 0,

and∥u∥∞ ≤ 1.

This is difficult!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 19

Page 36: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L0-optimal control problem

L0-optimal control problemFor the linear time-invariant system

Ûx(t) � Ax(t) + bu(t), t ≥ 0, x(0) � ξ ∈ Rd ,

find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

J0(u) � ∥u∥0 �

∫ T

0|u(t)|0dt

subject tox(T) � 0,

and∥u∥∞ ≤ 1.

This is difficult!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 15 / 19

Page 37: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L1-optimal control

L1-optimal control problemFor the linear time-invariant system

Ûx(t) � Ax(t) + bu(t), t ≥ 0, x(0) � ξ ∈ Rd ,

find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

J1(u) � ∥u∥1 �

∫ T

0|u(t)|dt

subject tox(T) � 0,

and∥u∥∞ ≤ 1.

This is easy!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 19

Page 38: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L1-optimal control

L1-optimal control problemFor the linear time-invariant system

Ûx(t) � Ax(t) + bu(t), t ≥ 0, x(0) � ξ ∈ Rd ,

find a control {u(t) : t ∈ [0, T]} with T > 0 that minimizes

J1(u) � ∥u∥1 �

∫ T

0|u(t)|dt

subject tox(T) � 0,

and∥u∥∞ ≤ 1.

This is easy!M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 19

Page 39: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bang-off-bang control

TheoremIf (A, b) is controllable and A is nonsingular, then the L1 optimal control u(t)takes ±1 or 0 for almost all t ∈ [0, T] (if it exists).

A control that takes ±1 or 0 is called a bang-off-bang control.

0

T t

u(t)

t1

t2

0

t

Ttt

1

1

−1

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 17 / 19

Page 40: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bang-off-bang control

TheoremIf (A, b) is controllable and A is nonsingular, then the L1 optimal control u(t)takes ±1 or 0 for almost all t ∈ [0, T] (if it exists).

A control that takes ±1 or 0 is called a bang-off-bang control.

0

T t

u(t)

t1

t2

0

t

Ttt

1

1

−1

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 17 / 19

Page 41: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Equivalence between L0 and L1 optimal controls

TheoremAssume that there exists an L1-optimal control that is bang-off-bang. Then itis also L0 optimal.

TheoremAssume that there exists at least one L1-optimal control. Assume also that(A, b) is controllable and A is non-singular. Then there exists at least oneL0-optimal control, and the set of L0-optimal controls is equivalent to the set ofL1-optimal controls.

0

T t

u(t)

t1

t2

0

t

Ttt

1

1

−1

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 19

Page 42: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Equivalence between L0 and L1 optimal controls

TheoremAssume that there exists an L1-optimal control that is bang-off-bang. Then itis also L0 optimal.

TheoremAssume that there exists at least one L1-optimal control. Assume also that(A, b) is controllable and A is non-singular. Then there exists at least oneL0-optimal control, and the set of L0-optimal controls is equivalent to the set ofL1-optimal controls.

0

T t

u(t)

t1

t2

0

t

Ttt

1

1

−1

1

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 18 / 19

Page 43: Sparsity Methods for Systems and Control - Maximum Hands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusion

Maximum hands-off control is described as L0-optimal control.Under the assumption of non-singularity, that is, (A, b) iscontrollable and A is nonsingular, L0-optimal control is equivalentto L1-optimal control.Maximum hands-off control is a ternary signal that takes values of±1 and 0. Such a ternary control is called a bang-off-bang control.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 19 / 19