19
Fall 11 WRIT 340 Aubertin, Section 66806 | Illumin Assignment Modern bowling alleys typically house ultraviolet and neon lights, disco balls, arcade game machines, shiny metallic bowling balls, glossy bowling pins, computerized score display screens, bowling ball feeders, lane bumpers alongside gutters, and automated pin setters. However, the sport of bowling did not always involve such advanced equipment and environment—the earliest bowling games were so primitive that they only utilized sticks and stones. Very rapidly, though, technological advancements have transformed bowling into the popular recreational activity that it is today.

Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Embed Size (px)

Citation preview

Page 1: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Fall 11

WRIT 340 Aubertin, Section 66806 | Illumin Assignment

Modern bowling alleys typically house ultraviolet and neon lights, disco balls, arcade game machines, shiny metallic bowling balls, glossy bowling pins, computerized score display screens, bowling ball feeders, lane bumpers alongside gutters, and automated pin setters. However, the sport of bowling did not always involve such advanced equipment and environment—the earliest bowling games were so primitive that they only utilized sticks and stones. Very rapidly, though, technological advancements have transformed bowling into the popular recreational activity that it is today.

Celia KungCelia Kung is a senior majoring in Computer Engineering and Computer Science. From a young age, she has enjoyed bowling for fun with friends, and her curiosity in the mechanics behind the pinsetting and ball-returning processes have inspired the topic of this article.

Page 2: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Figure 0: Pin boys manually organizing pins in the standard tenpin triangular formation.

Kung 1

Introduction

Imagine playing a game of bowling, where instead of glossy bowling balls patterned with

swirly streaks of color, you were rolling down the lane a wooden ball, which is not perfectly

spherical. Assuming you were able to knock any of the wooden pins on the other end of the lane,

rather than having the ball automatically dispensed directly back to a place where you could pick

it up when you are ready for your next bowl attempt, imagine that you had to remain alert

because an employee would roll the ball back in your direction at any time. While this is going

on, imagine that the pins you had perhaps just knocked over were being manually repositioned

by employees just so that you could bowl another frame. In addition, instead of looking up at the

monitor to check your updated score, imagine that you had to calculate and keep track of your

score mentally.

This procedure is

typical of

bowling games

in the early

1800s, when

bowling was first

introduced to

America.

Because of the labor involved, at the time, bowling was not very widespread. Since its

origination, however, it has developed into a popular recreational activity for all ages, and this

Page 3: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 2

expansion can primarily be attributed to the engineering practices applied over the years. Today,

bowling is one of the most popular pastimes.

Brief History: How the Ball Got Rolling

In the 1930s, Sir Flinders Petrie, a British anthropologist, discovered a collection of

what turned out to be different types of bowling balls and pins inside a the grave of a child from

3200 BC, which indicates that bowling has been around for over 5,200 years. Bowling became

particularly popular in the United States during the 1800s, when Europeans started to bring their

own variations of bowling to America [7]. As popularity of ninepin bowling increased, people

began to gamble on the sport, and this led to an 1841 Connecticut law prohibiting people to own

ninepins bowling lanes. Thus, tenpin bowling emerged as a way for people to bypass the law by

simply adding an extra bowling pin to the game [10]. At this time, the bowling balls were made

of lignum vitae, a hard type of wood, and the pins were made of hard rock maple and were not

well standardized [2]. Also, early forms of bowling involved manual pin resetting, where hired

pin boys would line each of the pins by hand after each throw. Bowling ball and pin designs, as

well as pin resetting mechanisms, have developed greatly over the years from the early means.

The current bowling ball is made from a combination of plastic, urethane, reactive resin, hybrid

reactive, and particle materials [8]. Bowling pins are now made of maple wood pieces, are

dipped in latex to prevent cracking, and then glossed with a protective coat [2]. Pin boys have

also since been replaced by automatic pinsetter and ball feeder machines. All of these

advancements have transformed the way people engage in bowling today and were only made

possible by engineering.

Rollin’, Rollin’, Rollin’

Page 4: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 3

The first official bowling balls that were ever rolled were made from lignum vitae, a type

of dense wood; however, bowlers found that these balls would chip easily. Thus, in 1905, the

Brunswick Corporation introduced a new rubberized ball, which was the mainstream type of

bowling ball until it was replaced in the 1970s by the polyester bowling ball. Manufacturers then

discovered that balls made from urethane required less maintenance, were more powerful, and

offered the greatest hook, or curve, in rolling it down the lane. As manufacturers continued to

improve bowling ball design, they began to experiment with the inner cores and surface layers of

balls. They recognized that balls coated with reactive resin performed best on the lanes, and

these bowling balls are the most widely used type today [6].

Figure 1: Bowling balls made from lignum vitae, rubber, polyester, and urethane (from left to right). Early bowling balls were made from lignum vitae, a wooden material that chipped easily. The rubberized bowling ball was introduced by Brunswick and was the most prominent type of bowling ball used for decades. The cheaper polyester bowling ball replaced the rubberized model and was popular for a short time, until it was superseded by the urethane ball. Bowling balls made from urethane were a stronger and a more powerful alternative to the polyester type and required less maintenance.

Page 5: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 4

The current bowling ball design is effective because the reactive resin covering the ball is

porous, and this property allows the ball to absorb the oil it collects as it rolls down the lane. This

is important because the absorption of oil into the pores keeps the ball’s surface dry so that the

ball can maintain its hooking potential since the friction between ball and lane is not affected

over time [4]. Reactive resin is made from a mixture of urethane and other undisclosed

ingredients to generate the porous surface, as shown in Figure 3, but ball manufacturers do not

reveal much detail on the remaining composition of bowling balls [11]. The type of material

composing the bowling ball’s exterior surface, also known as coverstock, is most influential in

determining the way the ball makes contact with the oil lanes and ultimately affects the ball’s

hooking potential. However, an equally important property of bowling ball motion is the force

and spin with which the ball moves, and this is influenced mainly by the ball’s interior design.

Figure 2: Today, most bowling balls are coated with reactive resin, which provides for even greater hook and power due to the material’s absorption ability.

Page 6: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Figure 2: Various types of bowling ball cores with different weight distributions affect the ball's motion.

Kung 5

While the approximate sixty-five million bowlers who throw balls down the lanes today

might not realize it, each bowling ball has a complex core that influences the way it rolls. The

core ensures that on each revolution, a different surface of the ball makes contact with the lane,

thus giving the ball a unique spin [9]. The various types of core are each made of different

densities and materials

and can be selected

depending on the amount

of curve or spin and

power a bowler prefers

his ball to have. Core

type affects the spin or

curve because each type has a unique distribution of weight inside the ball, which determines

how easy it is for the ball to rotate. For example, the heavier or more dense the core is, the

quicker the ball can revolve, whereas the lighter or less dense the core is, the longer it will take

for the ball to rotate and gain speed as it travels down the lane [11]. The availability of many

different core types by manufacturers allows a bowling enthusiast to purchase the type that best

suits his bowling style.

Page 7: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 6

Today, personalized bowling balls are so mainstream that professional bowlers are not

the only ones who own them—any bowling enthusiast can purchase one from bowling shops, or

even at a local bowling alley. Most casual bowlers are not too particular in choosing a specific

type of core, but rather, they seek bowling balls with custom-sized and custom-placed finger

holes for optimized grip comfort. While the size and location of these drilled finger holes can

slightly affect the ball’s dynamics, a bowler’s grip on the ball can influence the amount of force

and hook he exerts in his throw.

Bowling balls have changed drastically over the years, as manufacturers continued to

research and produce new chemicals and materials to optimize the bowling ball’s energy

efficiency and manipulate the motion of the ball by taking advantage of its physical properties.

The fine-tuned engineering process of producing bowling balls enables manufacturers to deliver

standardized and perfectly spherical balls. In addition, the ability to personalize bowling balls

can also be attributed to specialized machines that drill through the bowling ball’s shell to create

finger holes suited to a bowler’s grip. In the earliest forms of bowling, players simply threw

stones or wooden balls at sticks without being able to grip the ball from the inside, and thus

bowlers had less control over the swing. Such advancements in the fields of chemistry, physics,

and engineering contributed greatly to the evolution of bowling, making it a more organized

sporting activity.

Let the Pins Fall Where They May

As the bowling ball design developed over time, with it transformed the bowling pin

design as well. Most of the earlier bowling pins were made from hard rock maple, which was

difficult to standardize, due to the varying wood densities. Additionally, when the American

Machine and Foundry (AMF) began to distribute automatic pinsetter machines in 1946, these

Page 8: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 7

machines would often damage the pins, causing them to crack or splinter. In effect, the cracked

and splintered pins would then cause damage to the automatic pinsetter machines, which were

extremely costly. Therefore, in 1954, Vulcan Manufacturing introduced the Vulcanate, a brand

of bowling pins. These pins were similar to the standard solid pins, but the difference is that they

were sawed in half and glued back together with a piece of maple lying in between the halves.

This idea inspired other manufacturers to build pins out of multiple pieces of wood rather than

single solid blocks, and this design, which is used today, proves to be most durable and less

prone to splitting [2]. After the pieces of wood are laminated together, the bowling pins are

finally coated with plastic material that protects the wood from denting on impact with bowling

balls.

Figure 3: Modern bowling pins are built from multiple pieces of wood laminated together and then coated with plastic and gloss.

Technology has allowed for refinement of the entire process of producing bowling pins

so that they are standardized, making bowling more consistent. Also, though the shape and

structure of bowling pins have not changed much over time, the improvements in pin material

quality have resulted in smoother overall operation of bowling. The rigid but polished coat

around the densely packed wooden pieces make the bowling pin strong enough to withstand

continual impact by bowling balls, as well as by the automatic pin setter machines.

Pickup Artist: The Automatic Pinsetter

Page 9: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 8

Of the technological advances that bowling has seen over the centuries, the automatic

pinsetter is one the greatest feats. This invention in 1936 by Gottfried Schmidt diminished the

need for pin boys to manually line the pins before each frame; furthermore, the automatic

pinsetter creates a consistent alignment of pins every time, thus making bowling a fairer and

quicker game [3].

Figure 4: Side view of a pinsetter showing the pin distributor, pin elevator, pin table, and sweep.

Page 10: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Figure : The pin elevator carries pins from the conveyor belt up to the pin distributor.

Kung 9

The automatic pinsetter consists of

four main parts: sweep, pin elevator,

pin distributor, and pin table. It starts

when a bowling ball is rolled down

the lane; when the ball reaches the

pins the end of the lane, a scanner

camera detects which pins have been

hit. At the same time, a sweep lowers

its arm in front of the pins to protect

the pinsetter from any balls that might be thrown down the lane during the pin resetting process.

The camera then interfaces with a system that calculates the bowler’s score and sends the

information to a computerized screen, which allows bowlers to see this updated score. A pin

table, or a metal rack with ten holes (one for each pin), lowers on top of the pins to pick up the

standing pins and lifts them upward so that the knocked pins can be swept out of the way. The

sweep, still in the lowered position, then pulls the fallen pins back toward a conveyor belt, which

carries the pins into a pin elevator that is responsible for carrying pins up to the pin distributor.

Next, the sweep moves back into its forward guarding position, in preparation for the remaining

pins to be re-lowered. The pin table drops these pins into their positions on the lane and rises

back to its original location, in which the pin distributor begins to fill the pin table with a full set

of ten pins in anticipation for the next frame. While the pins are being reset, the bowling ball is

also in the back pit of the lane and is being transported on a conveyor system underneath the

lane, being sent back to the bowler so that the entire process can be repeated on his next bowl

[1].

Page 11: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Figure : Scores are automatically computed after each frame and displayed on computerized screens.

Kung 10

The technological breakthrough of automatic pinsetters has allowed for more efficient

and accurate bowling. Because the cameras count the remaining standing pins and relay this

information to a system that calculates the running scores and displays them on electronic

screens, scoring is much more accurate as well. Therefore, not only does the machine save labor

for bowling alley employees, it also saves bowlers a lot of time, as they do not have to wait as

long for the pins to be reset

and do not have to spend

time calculating and noting

their own scores. With

computerized equipment

doing most of the work, the

process becomes less of a laborious task and more of a leisurely and recreational activity for

bowlers.

Technology Strikes

The advancements made to bowling balls, pins, automatic pinsetters, and the sport itself

can be greatly attributed to technology. Changes in bowling ball composition can be greatly

attributed to chemistry, as manufacturers experimented with various mixtures over the years to

find the optimal compounds; physics brought about improvements in bowling pin structure;

mechanics gave rise to automatic pinsetters; electronic scoring has only been made possible

through computer science. Without these developments in chemistry, physics, mechanics, and

computer science, bowlers would not be able to hook and curve their balls as accurately as they

can, pins would not be standardized, pin alignment and formation would not be consistent, and

consequently the different bowling techniques would not work as effectively. These

Page 12: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 11

improvements have made bowling much more precise, even allowing for it to become a

recognized sport. However, aside from the accuracy and precision that are mostly of importance

to professional bowlers, other benefits from these technological enhancements have facilitated

the transformation of bowling into a recreational activity for all ages. Personalized bowling ball

patterns and customized finger holes and ball weight enable young children to start bowling at

almost any age. Additionally, bowlers do not even have to know how to calculate bowling

scores, since a system automatically computes and maintains scores, which are then displayed to

the bowler. The greatest contribution that these technological developments have offered is that

they have allowed bowling to be so easily accessible that it has become one of the most popular

pastimes today.

References

[1] Brannan, Shel. "How Bowling Pinsetters Work." HowStuffWorks

"Entertainment" HowStuffWorks. Web. 05 Nov. 2011.

<http://entertainment.howstuffworks.com/pinsetter.htm>.

[2] Cavette, Michael. "How Bowling Pin Is Made - Material, Manufacture, Making, Used, Parts,

Structure, Product, Industry, Machine, Raw Materials, Design, the Manufacturing

Process of Bowling Pin." How Products Are Made. Made How. Web. 05 Nov. 2011.

<http://www.madehow.com/Volume-4/Bowling-Pin.html>.

[3] Karl, Alexander. "The History of Bowling Lanes." EHow | How to Videos, Articles & More -

Discover the Expert in You. | EHow.com. EHow.com. Web. 05 Nov. 2011.

<http://www.ehow.com/facts_6851424_history-bowling-lanes.html>.

Page 13: Spare Me the Details! - Illumin - Volume XVIII Issue IIillumin.usc.edu/.../submissions/59/WRIT340IlluminFinal.docx · Web viewThe sweep, still in the lowered position, then pulls

Kung 12

[4] Siefers, Nick. "Core Properties." Bowlingdigital.com | The Whole World of International

Bowling. Bowlingdigital.com, 22 Apr. 2007. Web. 05 Nov. 2011.

<http://www.bowlingdigital.com/bowl/node/2097>.

[5] Siefers, Nick. "Understanding the Relationship between Core and Cover

Stock." Bowlingdigital.com | The Whole World of International Bowling.

Bowlingdigital.com, 22 Apr. 2007. Web. 05 Nov. 2011.

<http://www.bowlingdigital.com/bowl/node/2324>.

[6] Unknown. "History of Bowling Balls." Kingpin Bowling Balls. Kingpin Bowling Balls. Web.

5 Nov. 2011. <http://www.kingpinbowlingballs.com/history-bowling-balls>.

[7] Unknown. "History of Bowling." History of Bowling. International Bowling Museum and

Hall of Fame. Web. 04 Nov. 2011.

<http://www.bowlingmuseum.com/Visit/HistoryofBowling.aspx>.

[8] Unknown. "How Bowling Balls Are Made." Bowlingball.com: It's Where Bowlers Go.

Bowlingball.com. Web. 05 Nov. 2011. <http://www.bowlingball.com/BowlVersity/how-

bowling-balls-are-made>.

[9] Unknown. "Pick the Best Bowling Ball | Core and Grip Affect Bowling Ball." Bowling Tips |

Secrets and Guide for Better Bowling. Help With Bowling. Web. 05 Nov. 2011.

<http://helpwithbowling.com/help-pick-bowling-ball.php>.

[10] Unknown. "The Game History." All About Bowling. TenpinBowling.org. Web. 04 Nov.

2011. <http://www.tenpinbowling.org/view.php?page=the_game.history>.

[11] Wolf, Lauren. "Bowling Balls." Chemical & Engineering News 86.27 (2008): 31. Print.