25
Space-Time Coding Space-Time Coding Branka Vucetic and Jinhong Yuan c 2003 John Wiley & Sons, Ltd ISBN: 0-470-84757-3

Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

  • Upload
    jinhong

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Space-Time Coding

Space-Time Coding Branka Vucetic and Jinhong Yuanc© 2003 John Wiley & Sons, Ltd ISBN: 0-470-84757-3

Page 2: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Space-Time Coding

Branka VuceticUniversity of Sydney, Australia

Jinhong YuanUniversity of New South Wales, Australia

Page 3: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Copyright c© 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): [email protected] our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted inany form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except underthe terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by theCopyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission inwriting of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, JohnWiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed [email protected], or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject mattercovered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. Ifprofessional advice or other expert assistance is required, the services of a competent professional should besought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appearsin print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Vucetic, Branka.Space-time Coding / Branka Vucetic, Jinhong Yuan.

p. cm.Includes bibliographical references and index.ISBN 0-470-84757-3 (alk. paper)1. Signal processing—Mathematics. 2. Coding theory. 3. Iterative methods

(Mathematics) 4. Wireless communication systems. I. Yuan, Jinhong, 1969– II. Title.

TK5102.92.V82 2003621.382′2—dc21

2003043054

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-84757-3

Typeset in 10/12pt Times from LATEX files supplied by the author, processed by Laserwords Private Limited,Chennai, IndiaPrinted and bound in Great Britain by TJ International Ltd, Padstow, CornwallThis book is printed on acid-free paper responsibly manufactured from sustainable forestryin which at least two trees are planted for each one used for paper production.

Page 4: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Contents

List of Acronyms xi

List of Figures xiii

List of Tables xxiii

Preface xxv

1 Performance Limits of Multiple-Input Multiple-Output WirelessCommunication Systems 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 MIMO System Capacity Derivation . . . . . . . . . . . . . . . . . . . . . . 41.4 MIMO Channel Capacity Derivation for Adaptive Transmit

Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.5 MIMO Capacity Examples for Channels with Fixed Coefficients . . . . . . 91.6 Capacity of MIMO Systems with Random Channel Coefficients . . . . . . 13

1.6.1 Capacity of MIMO Fast and Block Rayleigh Fading Channels . . . 141.6.2 Capacity of MIMO Slow Rayleigh Fading Channels . . . . . . . . . 221.6.3 Capacity Examples for MIMO Slow Rayleigh Fading Channels . . 22

1.7 Effect of System Parameters and Antenna Correlationon the Capacity of MIMO Channels . . . . . . . . . . . . . . . . . . . . . 251.7.1 Correlation Model for LOS MIMO Channels . . . . . . . . . . . . 281.7.2 Correlation Model for a Rayleigh MIMO Fading Channel . . . . . . 301.7.3 Correlation Model for a Rician MIMO Channel . . . . . . . . . . . 351.7.4 Keyhole Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361.7.5 MIMO Correlation Fading Channel Model with Transmit

and Receive Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . 391.7.6 The Effect of System Parameters on the Keyhole Propagation . . . 41

2 Space-Time Coding Performance Analysis and Code Design 492.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492.2 Fading Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.1 Multipath Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 502.2.2 Doppler Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502.2.3 Statistical Models for Fading Channels . . . . . . . . . . . . . . . . 50

Page 5: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

vi Contents

2.3 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542.3.1 Diversity Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 542.3.2 Diversity Combining Methods . . . . . . . . . . . . . . . . . . . . . 552.3.3 Transmit Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Space-Time Coded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 642.5 Performance Analysis of Space-Time Codes . . . . . . . . . . . . . . . . . 65

2.5.1 Error Probability on Slow Fading Channels . . . . . . . . . . . . . 662.5.2 Error Probability on Fast Fading Channels . . . . . . . . . . . . . . 72

2.6 Space-Time Code Design Criteria . . . . . . . . . . . . . . . . . . . . . . . 752.6.1 Code Design Criteria for Slow Rayleigh Fading Channels . . . . . . 752.6.2 Code Design Criteria for Fast Rayleigh Fading Channels . . . . . . 782.6.3 Code Performance at Low to Medium SNR Ranges . . . . . . . . . 81

2.7 Exact Evaluation of Code Performance . . . . . . . . . . . . . . . . . . . . 82

3 Space-Time Block Codes 913.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913.2 Alamouti Space-Time Code . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1 Alamouti Space-Time Encoding . . . . . . . . . . . . . . . . . . . . 913.2.2 Combining and Maximum Likelihood Decoding . . . . . . . . . . . 933.2.3 The Alamouti Scheme with Multiple Receive Antennas . . . . . . . 943.2.4 Performance of the Alamouti Scheme . . . . . . . . . . . . . . . . . 95

3.3 Space-Time Block Codes (STBC) . . . . . . . . . . . . . . . . . . . . . . . 993.3.1 Space-Time Block Encoder . . . . . . . . . . . . . . . . . . . . . . 99

3.4 STBC for Real Signal Constellations . . . . . . . . . . . . . . . . . . . . . 1003.5 STBC for Complex Signal Constellations . . . . . . . . . . . . . . . . . . . 1033.6 Decoding of STBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043.7 Performance of STBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083.8 Effect of Imperfect Channel Estimation on Performance . . . . . . . . . . . 1123.9 Effect of Antenna Correlation on Performance . . . . . . . . . . . . . . . . 113

4 Space-Time Trellis Codes 1174.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174.2 Encoder Structure for STTC . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.1 Generator Description . . . . . . . . . . . . . . . . . . . . . . . . . 1184.2.2 Generator Polynomial Description . . . . . . . . . . . . . . . . . . . 1204.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Design of Space-Time Trellis Codes on Slow Fading Channels . . . . . . . 1224.3.1 Optimal STTC Based on the Rank & Determinant Criteria . . . . . 1234.3.2 Optimal STTC Based on the Trace Criterion . . . . . . . . . . . . . 125

4.4 Performance Evaluation on Slow Fading Channels . . . . . . . . . . . . . . 1284.4.1 Performance of the Codes Based

on the Rank & Determinant Criteria . . . . . . . . . . . . . . . . . 1284.4.2 Performance of the Codes Based on the Trace Criterion . . . . . . . 1314.4.3 Performance Comparison for Codes Based

on Different Design Criteria . . . . . . . . . . . . . . . . . . . . . . 1314.4.4 The Effect of the Number of Transmit Antennas

on Code Performance . . . . . . . . . . . . . . . . . . . . . . . . . 135

Page 6: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Contents vii

4.4.5 The Effect of the Number of Receive Antennason Code Performance . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.6 The Effect of Channel Correlation on Code Performance . . . . . . 1394.4.7 The Effect of Imperfect Channel Estimation

on Code Performance . . . . . . . . . . . . . . . . . . . . . . . . . 1394.5 Design of Space-Time Trellis Codes on Fast Fading Channels . . . . . . . . 1394.6 Performance Evaluation on Fast Fading Channels . . . . . . . . . . . . . . 143

5 Space-Time Turbo Trellis Codes 1495.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1.1 Construction of Recursive STTC . . . . . . . . . . . . . . . . . . . 1505.2 Performance of Recursive STTC . . . . . . . . . . . . . . . . . . . . . . . . 1525.3 Space-Time Turbo Trellis Codes . . . . . . . . . . . . . . . . . . . . . . . 1535.4 Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.1 Decoder Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 1585.5 ST Turbo TC Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5.1 Comparison of ST Turbo TC and STTC . . . . . . . . . . . . . . . 1615.5.2 Effect of Memory Order and Interleaver Size . . . . . . . . . . . . 1615.5.3 Effect of Number of Iterations . . . . . . . . . . . . . . . . . . . . . 1625.5.4 Effect of Component Code Design . . . . . . . . . . . . . . . . . . 1625.5.5 Decoder EXIT Charts . . . . . . . . . . . . . . . . . . . . . . . . . 1665.5.6 Effect of Interleaver Type . . . . . . . . . . . . . . . . . . . . . . . 1665.5.7 Effect of Number of Transmit and Receive Antennas . . . . . . . . 1675.5.8 Effect of Antenna Correlation . . . . . . . . . . . . . . . . . . . . . 1705.5.9 Effect of Imperfect Channel Estimation . . . . . . . . . . . . . . . . 1705.5.10 Performance on Fast Fading Channels . . . . . . . . . . . . . . . . 170

6 Layered Space-Time Codes 1856.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1856.2 LST Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1866.3 LST Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.3.1 QR Decomposition Interference Suppression Combined with Inter-ference Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3.2 Interference Minimum Mean Square Error (MMSE) SuppressionCombined with Interference Cancellation . . . . . . . . . . . . . . . 193

6.3.3 Iterative LST Receivers . . . . . . . . . . . . . . . . . . . . . . . . 1966.3.4 An Iterative Receiver with PIC . . . . . . . . . . . . . . . . . . . . 1976.3.5 An Iterative MMSE Receiver . . . . . . . . . . . . . . . . . . . . . 2076.3.6 Comparison of the Iterative MMSE and the Iterative

PIC-DSC Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096.4 Comparison of Various LST Architectures . . . . . . . . . . . . . . . . . . 211

6.4.1 Comparison of HLST Architectures with Various Component Codes 213

7 Differential Space-Time Block Codes 2237.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2237.2 Differential Coding for a Single Transmit Antenna . . . . . . . . . . . . . . 224

Page 7: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

viii Contents

7.3 Differential STBC for Two Transmit Antennas . . . . . . . . . . . . . . . . 2257.3.1 Differential Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 2257.3.2 Differential Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 2287.3.3 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . 230

7.4 Differential STBC with Real Signal Constellations for Threeand Four Transmit Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 2327.4.1 Differential Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 2327.4.2 Differential Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 2347.4.3 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . 237

7.5 Differential STBC with Complex Signal Constellations for Threeand Four Transmit Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 2377.5.1 Differential Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 2377.5.2 Differential Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 2387.5.3 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . 239

7.6 Unitary Space-Time Modulation . . . . . . . . . . . . . . . . . . . . . . . . 2397.7 Unitary Group Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8 Space-Time Coding for Wideband Systems 2458.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2458.2 Performance of Space-Time Coding on Frequency-Selective

Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2458.2.1 Frequency-Selective Fading Channels . . . . . . . . . . . . . . . . . 2458.2.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.3 STC in Wideband OFDM Systems . . . . . . . . . . . . . . . . . . . . . . 2498.3.1 OFDM Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 2498.3.2 STC-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.4 Capacity of STC-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . 2548.5 Performance Analysis of STC-OFDM Systems . . . . . . . . . . . . . . . . 2558.6 Performance Evaluation of STC-OFDM Systems . . . . . . . . . . . . . . . 258

8.6.1 Performance on A Single-Path Fading Channel . . . . . . . . . . . 2588.6.2 The Effect of The Interleavers on Performance . . . . . . . . . . . . 2598.6.3 The Effect of Symbol-Wise Hamming Distance

on Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2598.6.4 The Effect of The Number of Paths on Performance . . . . . . . . . 260

8.7 Performance of Concatenated Space-Time CodesOver OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2618.7.1 Concatenated RS-STC over OFDM Systems . . . . . . . . . . . . . 2618.7.2 Concatenated CONV-STC over OFDM Systems . . . . . . . . . . . 2628.7.3 ST Turbo TC over OFDM Systems . . . . . . . . . . . . . . . . . . 262

8.8 Transmit Diversity Schemes in CDMA Systems . . . . . . . . . . . . . . . 2648.8.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648.8.2 Open-Loop Transmit Diversity for CDMA . . . . . . . . . . . . . . 2658.8.3 Closed-Loop Transmit Diversity for CDMA . . . . . . . . . . . . . 2668.8.4 Time-Switched Orthogonal Transmit Diversity (TS-OTD) . . . . . . 2678.8.5 Space-Time Spreading (STS) . . . . . . . . . . . . . . . . . . . . . 2698.8.6 STS for Three and Four Antennas . . . . . . . . . . . . . . . . . . . 270

Page 8: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Contents ix

8.9 Space-Time Coding for CDMA Systems . . . . . . . . . . . . . . . . . . . 2738.10 Performance of STTC in CDMA Systems . . . . . . . . . . . . . . . . . . . 274

8.10.1 Space-Time Matched Filter Detector . . . . . . . . . . . . . . . . . 2768.10.2 Space-Time MMSE Multiuser Detector . . . . . . . . . . . . . . . . 2788.10.3 Space-Time Iterative MMSE Detector . . . . . . . . . . . . . . . . 2818.10.4 Performance Simulations . . . . . . . . . . . . . . . . . . . . . . . . 282

8.11 Performance of Layered STC in CDMA Systems . . . . . . . . . . . . . . . 286

Index 297

Page 9: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

List of Acronyms

3GPP 3rd Generation Partnership ProjectAPP a posteriori probabilityAWGN additive white Gaussian noiseBER bit error rateBPSK binary phase shift keyingCCSDS Consultative Committee for Space Data Systemsccdf complementary cumulative distribution functioncdf cumulative distribution functionCDMA code division multiple accessCRC cyclic redundancy checkCSI channel state informationDAB digital audio broadcastingDFT discrete Fourier transformDLST diagonal layered space-timeDLSTC diagonal layered space-time codeDOA direction of arrivalDPSK differential phase-shift keyingDS-CDMA direct-sequence code division multiple accessDSC decision statistics combiningDSSS direct-sequence spread spectrumDVB digital video broadcastingEGC equal gain combiningEIR extrinsic information ratioEXIT extrinsic information transfer chartFDMA frequency division multiple accessFER frame error rateFFT fast Fourier transformGCD greatest common divisorGSM global system for mobileHLST horizontal layered space-timeHLSTC horizontal layered space-time codeISI intersymbol interferenceLDPC low density parity checkLLR log-likelihood ratioLMMSE linear minimum mean square error

Page 10: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xii List of Acronyms

LOS line-of-sightLST layered space-timeLSTC layered space-time codeM-PSK M-ary phase-shift keyingMAI multiple access interferenceMAP maximum a posterioriMGF moment generating functionMF matched filterMIMO multiple-input multiple-outputML maximum likelihoodMLSE maximum likelihood sequence estimationMMSE minimum mean square errorMRC maximum ratio combiningOFDM orthogonal frequency division multiplexingOTD orthogonal transmit diversitypdf probability density functionPIC parallel interference cancelerPN pseudorandom numberPSK phase shift keyingQAM quadrature amplitude modulationQPSK quadrature phase-shift keyingrms root mean squareRSC recursive systematic convolutionalSER symbol error rateSISO soft-input soft-outputSNR signal-to-noise ratioSOVA soft-output Viterbi algorithmSTC space-time codeSTBC space-time block codeSTTC space-time trellis codeSTS space-time spreadingSVD singular value decompositionTCM trellis coded modulationTDMA time division multiple accessTLST threaded layered space-timeTLSTC threaded layered space-time codeTS-OTD time-switched orthogonal transmit diversityTS-STC time-switched space-time codeUMTS universal mobile telecommunication systemsVA Viterbi algorithmVBLAST vertical Bell Laboratories layered space-timeVLST vertical layered space-timeVLSTC vertical layered space-time codeWCDMA wideband code division multiple accessWLAN wireless local area networkZF zero forcing

Page 11: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

List of Figures

1.1 Block diagram of a MIMO system . . . . . . . . . . . . . . . . . . . . . 2

1.2 Block diagram of an equivalent MIMO channel if nT > nR . . . . . . . 6

1.3 Block diagram of an equivalent MIMO channel if nR > nT . . . . . . . 6

1.4 Channel capacity curves for receive diversity on a fast and block Rayleighfading channel with maximum ratio diversity combining . . . . . . . . . 17

1.5 Channel capacity curves for receive diversity on a fast and block Rayleighfading channel with selection diversity combining . . . . . . . . . . . . . 17

1.6 Channel capacity curves for uncoordinated transmit diversity on a fast andblock Rayleigh fading channel . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Channel capacity curves obtained by using the bound in (1.76), for aMIMO system with transmit/receive diversity on a fast and block Rayleighfading channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Normalized capacity bound curves for a MIMO system on a fast andblock Rayleigh fading channel . . . . . . . . . . . . . . . . . . . . . . . 20

1.9 Achievable capacities for adaptive and nonadaptive transmit powerallocations over a fast MIMO Rayleigh channel, for SNR of 25 dB, thenumber of receive antennas nR = 1 and nR = 2 and a variable numberof transmit antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.10 Achievable capacities for adaptive and nonadaptive transmit powerallocations over a fast MIMO Rayleigh channel, for SNR of 25 dB, thenumber of receive antennas nR = 4 and nR = 8 and a variable numberof transmit antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.11 Capacity curves for a MIMO slow Rayleigh fading channel with eighttransmit and eight receive antennas with and without transmit poweradaptation and a variable SNR . . . . . . . . . . . . . . . . . . . . . . . 22

1.12 Capacity per antenna ccdf curves for a MIMO slow Rayleigh fadingchannel with constant SNR of 15 dB and a variable number of antennas . 24

1.13 Capacity per antenna ccdf curves for a MIMO slow Rayleigh fadingchannel with a constant number of antennas nT = nR = 8 and a variableSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.14 Capacity per antenna ccdf curves for a MIMO slow Rayleigh fadingchannel with a large number of antennas nR = nT = n = 64 (solid line),32 (next to the solid line) and 16 (second to the solid line) and a variableSNR of 0, 5, 10, 15 and 20 dB . . . . . . . . . . . . . . . . . . . . . . . 25

Page 12: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xiv List of Figures

1.15 Analytical capacity per antenna ccdf bound curves for a MIMO slowRayleigh fading channel with a fixed SNR of 15 dB and a variable numberof transmit/receive antennas . . . . . . . . . . . . . . . . . . . . . . . . 26

1.16 Analytical capacity per antenna ccdf bound curves for a MIMO slowRayleigh fading channel with 8 transmit/receive antennas and variableSNRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.17 Achievable capacity for a MIMO slow Rayleigh fading channel for 1%outage, versus SNR for a variable number of transmit/receive antennas . 27

1.18 Propagation model for a LOS nonfading system . . . . . . . . . . . . . 291.19 Propagation model for a MIMO fading channel . . . . . . . . . . . . . . 311.20 Correlation coefficient in a fading MIMO channel with a uniformly

distributed direction of arrival α . . . . . . . . . . . . . . . . . . . . . . 321.21 Correlation coefficient in a fading MIMO channel with a Gaussian

distributed direction of arrival and the standard deviation σ = αrk, wherek = 1/2

√3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.22 Average capacity in a fast MIMO fading channel for variable antennaseparations and receive antenna angle spread with constant SNR of 20 dBand nT = nR = 4 antennas . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.23 Capacity ccdf curves for a correlated slow fading channel, receive antennaangle spread of 1◦ and variable antenna element separations . . . . . . . 34

1.24 Capacity ccdf curves for a correlated slow fading channel, receive antennaangle spread of 5◦ and variable antenna element separations . . . . . . . 35

1.25 Capacity ccdf curves for a correlated slow fading channel, receive antennaangle spread of 40◦ and variable antenna element separations . . . . . . . 35

1.26 Ccdf capacity per antenna curves on a Rician channel with nR = nT = 3and SNR = 20 dB, with a variable Rician factor and fully correlatedreceive antenna elements . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.27 Ccdf capacity per antenna curves on a Rician channel with nR = nT = 3and SNR = 20 dB, with a variable Rician factor and independent receiveantenna elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.28 A keyhole propagation scenario . . . . . . . . . . . . . . . . . . . . . . . 381.29 Propagation model for a MIMO correlated fading channel with receive

and transmit scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . 401.30 Probability density functions for normalized Rayleigh (right curve) and

double Rayleigh distributions (left curve) . . . . . . . . . . . . . . . . . . 431.31 Capacity ccdf obtained for a MIMO slow fading channel with receive

and transmit scatterers and SNR = 20 dB (a) Dr = Dt = 50 m, R =1000 km, (b) Dr = Dt = 50 m, R = 50 km, (c) Dr = Dt = 100 m,R = 5 km, SNR = 20 dB; (d) Capacity ccdf curve obtained from (1.30)(without correlation or keyholes considered) . . . . . . . . . . . . . . . . 43

1.32 Average capacity on a fast MIMO fading channel for a fixed range ofR = 10 km between scatterers, the distance between the receive antennaelements 3λ, the distance between the antennas and the scatterers Rt =Rr = 50 m, SNR = 20 dB and a variable scattering radius Dt = Dr . . . 44

2.1 The pdf of Rayleigh distribution . . . . . . . . . . . . . . . . . . . . . . 522.2 The pdf of Rician distributions with various K . . . . . . . . . . . . . . 53

Page 13: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

List of Figures xv

2.3 Selection combining method . . . . . . . . . . . . . . . . . . . . . . . . . 562.4 Switched combining method . . . . . . . . . . . . . . . . . . . . . . . . . 572.5 Maximum ratio combining method . . . . . . . . . . . . . . . . . . . . . 572.6 BER performance comparison of coherent BPSK on AWGN and Rayleigh

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592.7 BER performance of coherent BPSK on Rayleigh fading channels with

MRC receive diversity; the top curve corresponds to the performancewithout diversity; the other lower curves correspond to systems with 2,3, 4, 5 and 6 receive antennas, respectively, starting from the top . . . . 60

2.8 Delay transmit diversity scheme . . . . . . . . . . . . . . . . . . . . . . . 622.9 BER performance of BPSK on Rayleigh fading channels with transmit

diversity; the top curve corresponds to the performance without diversity,and the bottom curve indicates the performance on AWGN channels; thecurves in between correspond to systems with 2, 3, 4, 5, 6, 7, 8, 9, 10,15, 20 and 40 transmit antennas, respectively, starting from the top . . . 63

2.10 A baseband system model . . . . . . . . . . . . . . . . . . . . . . . . . . 632.11 Trellis structures for 4-state space-time coded QPSK with 2 antennas . . 792.12 FER performance of the 4-state space-time trellis coded QPSK with 2

transmit antennas, Solid: 1 receive antenna, Dash: 4 receive antennas . . 802.13 Trellis structure for a 4-state QPSK space-time code with two antennas . 842.14 Pairwise error probability of the 4-state QPSK space-time trellis code with

two transmit and one receive antenna . . . . . . . . . . . . . . . . . . . . 852.15 Pairwise error probability of the 4-state QPSK space-time trellis code with

two transmit and two receive antennas . . . . . . . . . . . . . . . . . . . 852.16 Average bit error rate of the 4-state QPSK space-time trellis code with

two transmit antennas and one and two receive antennas . . . . . . . . . 86

3.1 A block diagram of the Alamouti space-time encoder . . . . . . . . . . . 923.2 Receiver for the Alamouti scheme . . . . . . . . . . . . . . . . . . . . . 933.3 The BER performance of the BPSK Alamouti scheme with one and two

receive antennas on slow Rayleigh fading channels . . . . . . . . . . . . 973.4 The FER performance of the BPSK Alamouti scheme with one and two

receive antennas on slow Rayleigh fading channels . . . . . . . . . . . . 983.5 The FER performance of the QPSK Alamouti scheme with one and two

receive antennas on slow Rayleigh fading channels . . . . . . . . . . . . 983.6 Encoder for STBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993.7 Bit error rate performance for STBC of 3 bits/s/Hz on Rayleigh fading

channels with one receive antenna . . . . . . . . . . . . . . . . . . . . . 1083.8 Symbol error rate performance for STBC of 3 bits/s/Hz on Rayleigh fading

channels with one receive antenna . . . . . . . . . . . . . . . . . . . . . 1093.9 Bit error rate performance for STBC of 2 bits/s/Hz on Rayleigh fading

channels with one receive antenna . . . . . . . . . . . . . . . . . . . . . 1103.10 Symbol error rate performance for STBC of 2 bits/s/Hz on Rayleigh fading

channels with one receive antenna . . . . . . . . . . . . . . . . . . . . . 1103.11 Bit error rate performance for STBC of 1 bits/s/Hz on Rayleigh fading

channels with one receive antenna . . . . . . . . . . . . . . . . . . . . . 111

Page 14: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xvi List of Figures

3.12 Symbol error rate performance for STBC of 1 bits/s/Hz on Rayleigh fadingchannels with one receive antenna . . . . . . . . . . . . . . . . . . . . . 111

3.13 Performance of the STBC with 2 bits/s/Hz on correlated slow Rayleighfading channels with two transmit and two receive antennas . . . . . . . 113

3.14 Performance of the STBC with 2 bits/s/Hz on correlated slow Rayleighfading channels with two transmit and two receive antennas . . . . . . . 114

4.1 Encoder for STTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184.2 STTC encoder for two transmit antennas . . . . . . . . . . . . . . . . . . 1204.3 Trellis structure for a 4-state space-time coded QPSK with 2 antennas . . 1214.4 The boundary for applicability of the TSC and the trace criteria . . . . . 1234.5 Performance comparison of the QPSK codes based on the rank &

determinant criteria on slow fading channels with two transmit and onereceive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.6 Performance comparison of the QPSK codes on slow fading channels withtwo transmit and one receive antennas . . . . . . . . . . . . . . . . . . . 129

4.7 Performance comparison of the QPSK codes based on the rank &determinant criteria on slow fading channels with three transmit and onereceive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.8 Performance comparison of the QPSK codes based on the rank &determinant criteria on slow fading channels with four transmit and onereceive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.9 Performance comparison of the 8-PSK codes based on the rank &determinant criteria on slow fading channels with two transmit and onereceive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.10 Performance comparison of the QPSK codes based on the trace criterionon slow fading channels with two transmit and two receive antennas . . . 132

4.11 Performance comparison of the QPSK codes based on the trace criterionon slow fading channels with three transmit and two receive antennas . . 132

4.12 Performance comparison of the QPSK codes based on the trace criterionon slow fading channels with four transmit and two receive antennas . . 133

4.13 Performance comparison of the 8-PSK codes based on the trace criterionon slow fading channels with two transmit and two receive antennas . . . 133

4.14 Performance comparison of the 8-PSK codes based on the trace criterionon slow fading channels with three transmit and two receive antennas . . 134

4.15 Performance comparison of the 8-PSK codes based on the trace criterionon slow fading channels with four transmit and two receive antennas . . 134

4.16 Performance comparison of the 32-state QPSK codes with three transmitantennas based on different criteria on slow fading channels . . . . . . . 135

4.17 Performance comparison of the 32-state QPSK codes based on the tracecriterion with two, three and four transmit antennason slow fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.18 Performance comparison of the 64-state QPSK codes based on the tracecriterion with two, three and four transmit antennason slow fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Page 15: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

List of Figures xvii

4.19 Performance comparison of the 8-state 8-PSK codes based on the tracecriterion with two, three and four transmit antennason slow fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.20 Performance comparison of the 16-state 8-PSK codes based on the tracecriterion with two, three and four transmit antennason slow fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.21 Performance comparison of the 4-state QPSK STTCon slow fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.22 Performance comparison of the 8-state 8-PSK STTCon slow fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.23 Performance of the 16-state QPSK code on correlated slow Rayleighfading channels with two transmit and two receive antennas . . . . . . . 140

4.24 Performance of the 16-state QPSK code on slow Rayleigh fading channelswith two transmit and two receive antennas and imperfectchannel estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.25 Performance comparison of the 4 and 16-state QPSK STTC on fast fadingchannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.26 Performance of the QPSK STTC on fast fading channels with two transmitand one receive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.27 Performance of the QPSK STTC on fast fading channelswith three transmit and one receive antennas . . . . . . . . . . . . . . . . 145

4.28 Performance of the 8-PSK STTC on fast fading channels with two transmitand one receive antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.29 Performance of the 8-PSK STTC on fast fading channels with threetransmit and one receive antennas . . . . . . . . . . . . . . . . . . . . . . 146

4.30 Performance of the 8-PSK STTC on fast fading channelswith four transmit and one receive antennas . . . . . . . . . . . . . . . . 146

5.1 A feedforward STTC encoder for QPSK modulation . . . . . . . . . . . 1505.2 Recursive STTC encoder for QPSK modulation . . . . . . . . . . . . . . 1515.3 Recursive STTC encoder for M-ary modulation . . . . . . . . . . . . . . 1525.4 FER performance comparison of the 16-state recursive and feedforward

STTC on slow fading channels . . . . . . . . . . . . . . . . . . . . . . . 1535.5 BER performance comparison of the 16-state recursive and feedforward

STTC on slow fading channels . . . . . . . . . . . . . . . . . . . . . . . 1545.6 Encoder for ST trellis coded modulation . . . . . . . . . . . . . . . . . . 1555.7 Turbo TC decoder with parity symbol puncturing . . . . . . . . . . . . . 1565.8 Block diagram of an iterative decoder . . . . . . . . . . . . . . . . . . . 1595.9 EXIT chart for the iterative decoder of the rate 1/3 CCSDS turbo code . 1605.10 The encoder for the rate 1/3 CCSDS turbo code . . . . . . . . . . . . . 1615.11 FER performance of QPSK ST turbo TC with variable memory order of

component codes, two transmit and receive antennas and the interleaversize of 130 symbols on slow fading channels . . . . . . . . . . . . . . . 162

5.12 FER performance of QPSK ST turbo TC with variable memory order ofcomponent codes, two transmit and two receive antennasand the interleaver size of 1024 symbols on slow fading channels . . . . 163

Page 16: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xviii List of Figures

5.13 FER performance of QPSK ST turbo TC with variable memory order ofcomponent codes, four transmit and two receive antennasand the interleaver size of 130 symbols on slow fading channels . . . . . 163

5.14 FER performance of a 4-state QPSK ST turbo TC with variable numberof iterations, two transmit and two receiveantennas and the interleaver size of 130 symbols on slow fading channels 164

5.15 FER performance comparison betweena 4-state QPSK STTC and a 4-state QPSK ST turbo TC with two transmitand two receive antennas and the interleaver size of 130 on slow fadingchannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.16 FER performance comparison between an 8-state QPSK STTC and an8-state QPSK ST turbo TC with two transmit and two receive antennasand the interleaver size of 130 on slow fading channels . . . . . . . . . . 165

5.17 FER performance comparison of QPSK ST turbo TC with the 4-statecomponent codes from Table 4.5, from [15] in a system with two transmitand two receive antennas and the interleaver size of 130 symbols on slowfading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.18 FER performance of 8-state QPSK ST turbo TC with variable feedbackpolynomials of the component codes, two transmit and two receiveantennas and the interleaver size of 130 symbols on slow Rayleigh fadingchannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.19 EXIT chart for the 8-state QPSK ST turbo TC with the optimumand non-optimum feedback polynomials, two transmit and two receiveantennas and the interleaver size of 130 on slow Rayleigh fading channelsfor Eb/No of 1 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.20 FER performance of the 4-state QPSK ST turbo TC with two transmitand two receive antennas, bit and symbol interleavers and the interleaversize of 130 for both interleavers, on slow Rayleigh fading channels . . . 168

5.21 FER performance of 4-state QPSK ST turbo TC and STTC with a variablenumber of transmit and two receive antennas, S-random symbolinterleavers of size 130, ten iterations, on slow Rayleigh fading channels 168

5.22 FER performance of 8 and 16-state 8-PSK ST turbo TC with a variablenumber of transmit and two receive antennas, S-random symbolinterleavers of memory 130, ten iterations, on slowRayleigh fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.23 FER performance of 4-state 8-PSK ST turbo TC with a variable numberof receive and two transmit antennas, S-random symbol interleavers ofsize 130, on slow Rayleigh fading channels . . . . . . . . . . . . . . . . 169

5.24 FER performance comparison of QPSK ST turbo TC with the 4-statecomponent code from Table 4.5, with uncorrelated and correlated receiveantennas in a system with two transmit and two receive antennas and theinterleaver size of 130 symbols on slow fading channels . . . . . . . . . 170

5.25 FER performance comparison of QPSK ST turbo TC with the 4-statecomponent code from Table 4.5, with ideal and imperfect channelestimation in a system with two transmit and two receive antennas andthe interleaver size of 130 symbols on slow fading channels . . . . . . . 171

Page 17: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

List of Figures xix

5.26 FER performance comparison between a 16-state QPSK STTCand a 16-state QPSK ST turbo TC with interleaver size of 1024 on fastfading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.27 FER performance of QPSK ST turbo TC with variable memory componentcodes from Table 4.5, in a system with two transmit and two receiveantennas and the interleaver size of 130 symbols on fastfading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.28 FER performance of QPSK ST turbo TC with variable memory componentcodes from Table 4.7, in a system with four transmit and two receiveantennas and the interleaver size of 130 symbolson fast fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.29 FER performance of QPSK ST turbo TC with the 4-state component codefrom Table 4.7, in a system with four transmit and four receive antennasand a variable interleaver size on fast fading channels . . . . . . . . . . . 173

5.30 BER performance of QPSK ST turbo TC with the 4-state component codefrom Table 4.7, in a system with four transmit and four receive antennasand a variable interleaver size on fast fading channels . . . . . . . . . . . 174

5.31 FER performance of QPSK ST turbo TC with the 4-state component codefrom Table 4.5, in a system with two transmit and two receive antennasand an interleaver size of 130 symbols on correlatedfast fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.32 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1755.33 A rate 1/2 memory order 2 RSC encoder . . . . . . . . . . . . . . . . . . 1775.34 State transition diagram for the (2,1,2) RSC code . . . . . . . . . . . . . 1775.35 Trellis diagram for the (2,1,2) RSC code . . . . . . . . . . . . . . . . . . 1785.36 Graphical representation of the forward recursion . . . . . . . . . . . . . 1825.37 Graphical representation of the backward recursion . . . . . . . . . . . . 182

6.1 A VLST architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1866.2 LST transmitter architectures with error control coding; (a) an HLST

architecture with a single code; (b) an HLST architecture with separatecodes in each layer; (c) DLST and TLST architectures . . . . . . . . . . 187

6.3 VLST detection based on combined interference suppressionand successive cancellation . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.4 V-BLAST example, nT = 4, nR = 4, with QR decomposition, MMSEinterference suppression and MMSE interference suppression/successivecancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.5 Block diagrams of iterative LSTC receivers; (a) HLST with a singledecoder; (b) HLST with separate decoders; (c) DLSTand TLST receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.6 Block diagram of an iterative receiver with PIC-STD . . . . . . . . . . . 1986.7 Block diagram of an iterative receiver with PIC-DSC . . . . . . . . . . . 2016.8 FER performance of HLSTC with nT = 6, nR = 2, R = 1/2, BPSK, a

PIC-STD and PIC-DSC detection on a slow Rayleigh fading channel . . 2036.9 FER performance of HLSTC with nT = 4, nR = 2, R = 1/2, BPSK,

the PIC-STD and the PIC-DSC detection on a slowRayleigh fading channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Page 18: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xx List of Figures

6.10 Effect of variance estimation for an HLSTC with nT = 6, nR = 2,R = 1/2, BPSK and a PIC-DSC receiver on a slow Rayleigh fadingchannel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.11 Effect of variance estimation on an HLSTC with nT = 8, nR = 2,R = 1/2, BPSK and PIC-DSC detection on a slow Rayleighfading channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.12 FER performance of HLSTC with nT = 4, nR = 4, R = 1/2, BPSK,PIC-STD and PIC-DSC detection on a slow Rayleigh fading channel . . 206

6.13 Performance of an HLSTC (4, 4), R = 1/2 with BPSK modulation on atwo path slow Rayleigh fading channel with PIC-STD detection . . . . . 206

6.14 Block diagram of an iterative MMSE receiver . . . . . . . . . . . . . . . 2076.15 FER performance of a HLSTC with nT = 8, nR = 2, R = 1/2, iterative

MMSE and iterative PIC-DSC receivers, BPSK modulation on a slowRayleigh fading channel . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.16 Performance of a HLSTC with nT = 4, nR = 4, R = 1/2, iterative MMSEand iterative PIC receivers, BPSK modulation on a slow Rayleigh fadingchannel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.17 Performance comparison of three different LST structures with the (2,1,2)convolutional code as a constituent code for (nT , nR) = (2, 2) . . . . . . 211

6.18 Performance comparison of three different LST structures with the (2,1,5)convolutional code as a constituent code for (nT , nR) = (2, 2) . . . . . . 212

6.19 Performance comparison of three different LST structures with the (2,1,2)convolutional code as a constituent code for (nT , nR) = (4, 4) . . . . . . 212

6.20 Performance comparison of three different LST structures with the (2,1,5)convolutional code as a constituent code for (nT , nR) = (4, 4) . . . . . . 213

6.21 Performance comparison of LST-c with convolutional and LDPC codesfor (nT , nR) = (4, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.22 Performance comparison of LST-b and LST-c with turbo codesas a constituent code for (nT , nR) = (4, 4) . . . . . . . . . . . . . . . . . 215

6.23 Performance comparison of LST-b and LST-c with turbo codesas a constituent code for (nT , nR) = (4, 8) . . . . . . . . . . . . . . . . . 216

6.24 Performance comparison of LST-a with different interleaver sizes 252 and1024 for (nT , nR) = (4, 4) . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.25 Performance comparison of LST-a with different interleaver sizes 252 and1024 for (nT , nR) = (4, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.1 A differential STBC encoder . . . . . . . . . . . . . . . . . . . . . . . . 2257.2 A differential STBC decoder . . . . . . . . . . . . . . . . . . . . . . . . 2307.3 Performance comparison of the coherent and differential STBC with BPSK

and two transmit antennas on slow fading channels . . . . . . . . . . . . 2317.4 Performance comparison of the coherent and differential STBC with QPSK

and two transmit antennas on slow fading channels . . . . . . . . . . . . 2317.5 Performance comparison of the coherent and differential STBC

with 8-PSK and two transmit antennas on slow fading channels . . . . . 2327.6 Performance comparison of the coherent and differential BPSK STBC

with three transmit and one receive antenna on slow Rayleigh fadingchannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Page 19: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

List of Figures xxi

7.7 Performance comparison of the coherent and differential BPSK STBCwith four transmit and one receive antenna on slowRayleigh fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.8 Performance comparison of the coherent and differential QPSK STBCwith three transmit antennas on slow Rayleigh fading channels . . . . . . 240

7.9 Performance comparison of the coherent and differential QPSK STBCwith four transmit antennas on slow Rayleigh fading channels . . . . . . 240

7.10 A differential space-time modulation scheme . . . . . . . . . . . . . . . . 2417.11 A differential space-time group code . . . . . . . . . . . . . . . . . . . . 2437.12 A differential space-time receiver . . . . . . . . . . . . . . . . . . . . . . 243

8.1 A basic OFDM system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2508.2 An OFDM system employing FFT . . . . . . . . . . . . . . . . . . . . . 2518.3 An STC-OFDM system block diagram . . . . . . . . . . . . . . . . . . . 2528.4 Outage capacity for MIMO channels with OFDM modulation and the

outage probability of 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2558.5 Performance of STC-OFDM on a single-path fading channel . . . . . . . 2588.6 Performance of STC-OFDM on a two-path equal-gain fading channel with

and without interleavers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2598.7 An STTC encoder structure . . . . . . . . . . . . . . . . . . . . . . . . . 2608.8 Performance of STC-OFDM with various number of states on a two-path

equal-gain fading channel . . . . . . . . . . . . . . . . . . . . . . . . . . 2608.9 Performance of STC-OFDM on various MIMO fading channels . . . . . 2618.10 Performance of concatenated RS-STC over OFDM systems . . . . . . . . 2628.11 Performance of concatenated CONV-STC over OFDM systems . . . . . 2638.12 Performance of ST turbo TC over OFDM systems . . . . . . . . . . . . . 2638.13 An open-loop transmit diversity . . . . . . . . . . . . . . . . . . . . . . . 2658.14 A closed-loop transmit diversity . . . . . . . . . . . . . . . . . . . . . . . 2678.15 A time-switched orthogonal transmit diversity . . . . . . . . . . . . . . . 2688.16 A space-time spreading scheme . . . . . . . . . . . . . . . . . . . . . . . 2698.17 Block diagram of a space-time trellis coded CDMA transmitter . . . . . . 2758.18 Block diagram of the space-time matched filter receiver . . . . . . . . . . 2778.19 Block diagram of the STTC MMSE receiver . . . . . . . . . . . . . . . . 2798.20 Block diagram of the space-time iterative MMSE receiver . . . . . . . . 2828.21 Error performance of an STTC WCDMA system

on a flat fading channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 2838.22 FER performance of an STTC WCDMA system on frequency-selective

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2848.23 BER performance of an STTC WCDMA system on frequency-selective

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2848.24 FER performance of an STTC WCDMA system with the iterative MMSE

receiver on a flat fading channel . . . . . . . . . . . . . . . . . . . . . . 2858.25 FER performance of an STTC WCDMA system with the iterative MMSE

receiver on a two-path Rayleigh fading channel . . . . . . . . . . . . . . 2858.26 Block diagram of a horizontal layered CDMA space-time

coded transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Page 20: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xxii List of Figures

8.27 Block diagram of a horizontal layered CDMA space-time coded iterativereceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

8.28 BER performance of a DS-CDMA system with (4,4) HLSTC in a two-pathRayleigh fading channel, Eb/N0 = 9 dB . . . . . . . . . . . . . . . . . . 290

8.29 FER performance of a DS-CDMA system with HLSTC in a two-pathRayleigh fading channel, Eb/N0 = 9 dB . . . . . . . . . . . . . . . . . . 291

8.30 FER performance of IPIC-STD and IPIC-DSC in a synchronous CDMAwith orthogonal Walsh codes of length 16, with K = 16 users and (6,2)and (4,2) HLSTC on a two-path Rayleigh fading channel . . . . . . . . . 292

Page 21: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

List of Tables

4.1 Upper bound of the rank values for STTC . . . . . . . . . . . . . . . . . 1234.2 Optimal QPSK STTC with two transmit antennas for slow fading channels

based on rank & determinant criteria . . . . . . . . . . . . . . . . . . . . 1244.3 Optimal QPSK STTC with three and four transmit antennas for slow

fading channels based on rank & determinant criteria . . . . . . . . . . . 1254.4 Optimal 8-PSK STTC with two transmit antennas for slow fading channels

based on rank & determinant criteria . . . . . . . . . . . . . . . . . . . . 1254.5 Optimal QPSK STTC with two transmit antennas for slow fading channels

based on trace criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264.6 Optimal QPSK STTC with three transmit antennas for slow fading

channels based on trace criterion . . . . . . . . . . . . . . . . . . . . . . 1264.7 Optimal QPSK STTC with four transmit antennas for slow fading channels

based on trace criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274.8 Optimal 8-PSK STTC with two transmit antennas for slow fading channels

based on trace criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274.9 Optimal 8-PSK STTC codes with three transmit antennas for slow fading

channels based on trace criterion . . . . . . . . . . . . . . . . . . . . . . 1274.10 Optimal 8-PSK STTC codes with four transmit antennas for slow fading

channels based on trace criterion . . . . . . . . . . . . . . . . . . . . . . 1284.11 Optimal QPSK STTC with two transmit antennas for fast

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1414.12 Optimal QPSK STTC with three transmit antennas for fast

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424.13 Optimal 8-PSK STTC with two transmit antennas for fast

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424.14 Optimal 8-PSK STTC codes with three transmit antennas for fast

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434.15 Optimal 8-PSK STTC codes with four transmit antennas for fast

fading channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1 Comparison of convolutional and LDPC code distances . . . . . . . . . . 2136.2 Performance comparison of convolutional and the LDPC codes . . . . . . 214

7.1 Transmitted symbols for a differential scheme . . . . . . . . . . . . . . . 228

Page 22: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xxiv List of Tables

8.1 Parameters for system environments . . . . . . . . . . . . . . . . . . . . 2838.2 Spectral efficiency of CDMA HLST systems with random sequences

and interference free performance . . . . . . . . . . . . . . . . . . . . . . 2918.3 Spectral efficiency of HLST CDMA systems with orthogonal sequences

and interference free performance . . . . . . . . . . . . . . . . . . . . . . 292

Page 23: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Preface

This book is intended to provide an introductory coverage of the subject of space-timecoding. It has arisen from our research, short continuing education courses, lecture seriesand consulting for industry. Its purpose is to provide a working knowledge of space-timecoding and its application to wireless communication systems.

With the integration of Internet and multimedia applications in next generation wirelesscommunications, the demand for wide-band high data rate communication services is grow-ing. As the available radio spectrum is limited, higher data rates can be achieved only bydesigning more efficient signaling techniques. Recent research in information theory hasshown that large gains in capacity of communication over wireless channels are feasible inmultiple-input multiple output (MIMO) systems [1][2]. The MIMO channel is constructedwith multiple element array antennas at both ends of the wireless link. Space-time cod-ing is a set of practical signal design techniques aimed at approaching the informationtheoretic capacity limit of MIMO channels. The fundamentals of space-time coding havebeen established by Tarokh, Seshadri and Calderbank in 1998 [3]. Space-time coding andrelated MIMO signal processing soon evolved into a most vibrant research area in wirelesscommunications.

Space-time coding is based on introducing joint correlation in transmitted signals in boththe space and time domains. Through this approach, simultaneous diversity and codinggains can be obtained, as well as high spectral efficiency. The initial research focused ondesign of joint space-time dependencies in transmitted signals with the aim of optimizingthe coding and diversity gains. Lately, the emphasis has shifted towards independent multi-antenna transmissions with time domain coding only, where the major research challengeis interference suppression and cancellations in the receiver.

The book is intended for postgraduate students, practicing engineers and researchers. Itis assumed that the reader has some familiarity with basic digital communications, matrixanalysis and probability theory.

The book attempts to provide an overview of design principles and major space-timecoding techniques starting from MIMO system information theory capacity bounds andchannel models, while endeavoring to pave the way towards complex areas such as applica-tions of space-time codes and their performance evaluation in wide-band wireless channels.Abundant use is made of illustrative examples with answers and performance evaluationresults throughout the book. The examples and performance results are selected to appeal tostudents and practitioners with various interests. The second half of the book is targeted ata more advanced reader, providing a research oriented outlook. In organizing the material,we have tried to follow the presentation of theoretical material by appropriate applications

Page 24: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

xxvi Preface

in wireless communication systems, such as code division multiple access (CDMA) andorthogonal frequency division multiple access(OFDMA).

A consistent set of notations is used throughout the book. Proofs are included only whenit is felt that they contribute sufficient insight into the problem being addressed.

Much of our unpublished work is included in the book. Examples of some new materialare the performance analysis and code design principles for space-time codes that are moregeneral and applicable to a wider range of system parameters than the known ones. Thesystem structure, performance analysis and results of layered and space-time trellis codesin CDMA and OFDMA systems have not been published before.

Chapters 1 and 6 were written by Branka Vucetic and Chapters 3 and 7 by Jinhong Yuan.Chapter 8 was written by Jinhong Yuan, except that the content in the last two sections wasjoint work of Branka Vucetic and Jinhong Yuan. Most of the content in Chapters 2, 4 and5 was joint work by Branka Vucetic and Jinhong Yuan, while the final writing was done byJinhong Yuan for Chapters 2 and 4 and Branka Vucetic for Chapter 5.

Acknowledgements

The authors would like to express their appreciation for the assistance received during thepreparation of the book. The comments and suggestions from anonymous reviewers haveprovided essential guidance in the early stages of the manuscript evolution. Mr SiavashAlamouti, Dr Hayoung Yang, Dr Jinho Choi, A/Prof Tadeusz Wysocki, Dr Reza Nakhai, MrMichael Dohler, Dr Graeme Woodward and Mr Francis Chan proofread various parts of themanuscript and improved the book by many comments and suggestions. We would also liketo thank Prof Vahid Tarokh, Dr Akihisa Ushirokawa, Dr Arie Reichman and Prof. RuifengZhang for constructive discussions. We thank the many students, whose suggestions andquestions have helped us to refine and improve the presentation. Special thanks go to JoseManuel Dominguez Roldan for the many graphs and simulation results he provided forChapter 1. Contributions of Zhuo Chen, Welly Firmanto, Yang Tang, Ka Leong Lo, SlavicaMarinkovic, Yi Hong, Xun Shao and Michael Kuang in getting performance evaluationresults are gratefully acknowledged. Branka Vucetic would like to express her gratitudeto Prof Hamid Aghvami, staff and postgraduate students at King’s College London, forthe creative atmosphere during her study leave. She benefited from a close collaborationwith Dr Reza Nakhai and Michael Dohler. The authors warmly thank Maree Belleli for herassistance in producing some of the figures.

We owe special thanks to the Australian Research Council, NEC, Optus and other com-panies whose support enabled graduate students and staff at Sydney University and theUniversity of New South Wales to pursue continuing research in this field.

Mark Hammond, senior publishing editor from John Wiley, assisted and motivated us inall phases of the book preparation.

We would like to thank our families for their support and understanding during the timewe devoted to writing this book.

Bibliography

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels”, European Transactions onTelecommunications, vol. 10, no. 6, Nov./Dec. 1999, pp. 585–595.

Page 25: Space-Time Coding (Vucetic/Space-Time Coding) || Front Matter

Preface xxvii

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading envi-ronment when using multiple antennas”, Wireless Personal Communications, vol. 6,1998, pp. 311–335.

[3] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data ratewireless communication: performance criterion and code construction”, IEEE Trans.Inform. Theory, vol. 44, no. 2, Mar. 1998, pp. 744–765.