26
Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

Embed Size (px)

Citation preview

Page 1: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

Space Systems Engineering: Management Module

Management Module

Space Systems Engineering, version 1.0

Management Module

Space Systems Engineering, version 1.0

Page 2: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

2Space Systems Engineering: Management Module

Module Purpose: Management

To discuss the differences between a project manager’s responsibility and that of a systems engineer by highlighting the key responsibilities of the manager.

To introduce two key management documents: the project plan and the systems engineering management plan.

To understand two types of workforce management: in-line and matrix.

Page 3: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

3Space Systems Engineering: Management Module

Project ManagementA Humorous Example

It seems there was a customer in a pet shop who was interested in acquiring a parrot. And, so the shopkeeper pointed to three kinds of similar looking parrots that were situated on a perch together. They were basically identical, and he inquired about the price of the parrots.

And, the shopkeeper said, “Well, the parrot on the left cost $500.” And, he thought that was a remarkable price for a parrot, and asked about why. And, the shopkeeper said, “Well, that parrot on the left has great computer skills. So, he knows how to run a computer.”

And, he inquired about the second parrot, and was told that the second parrot was a thousand dollars, because, not only did he possess all the skills that the first parrot had, but he could also do math and physics.

And, when he inquired about the third – of course, he’s increasingly concerned about these prices, he inquired about the third parrot, he discovered the third parrot was priced at two thousand dollars. And, when he asked the shopkeeper why, what special skills does this third parrot posses, the shopkeeper said, “Well, to be honest with you, I’ve never seen him do anything. But, the other parrots tend to defer to him, and they call him the ‘project manager’.”

Page 4: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

4Space Systems Engineering: Management Module

The Project Manager’s Role

Manage and Control the Project

Maintain oversight of all Project activities

Review and report technical, schedule and financial status

Ensure timely detection and correction of problems

Assess cost/work progress against plans

Ensure that all work complies with institutional, sponsor, and any other applicable policies, requirements and practices

Manage and Control the Project Risk

Assess progress and develop projections (technical, schedule, cost)

Ensure timely detection and mitigation of threats

Control and guard scope

The decision authority who must balance the project’s 3 variables: technical, cost, and schedule.

Page 5: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

5Space Systems Engineering: Management Module

How Does the Project Manager Deliver?

Start with a realistic product

Select a talented team

Motivate the team

Clear communications internal and external to the project

Ask penetrating questions

Track the schedule and cost

Prioritize work

Carefully manage margins

Understand and balance risk across the system

Note: for a government project,• Create a viable acquisition strategy• Maintain good contractor relations

Page 6: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

6Space Systems Engineering: Management Module

In Comparison, What is a Systems Engineer Responsible for?

The Many Roles…

1. Requirements owner

2. System designer

3. System analyst

4. Validation / Verification engineer

5. Logistics / operations engineer

6. Glue among the subsystems

7. Customer interface

8. Technical manager

9. Information manager

10. Process engineer

11. Coordinator

12. Classified ads system engineer

Source: Twelve Roles of Systems Engineers, Sarah Sheard

Page 7: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

Space Systems Engineering: Management Module

Management Documents

Project Plan

Systems Engineering Management Plan

Page 8: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

8Space Systems Engineering: Management Module

Project Plan

Requirements

Activities

Schedule

ResourcesStaff, materials, facilities

WorkBreakdownStructure

Time-phased Budget

Baseline

The document that establishes the project’s baseline for implementation, signed by the project manager and his/her management chain.

Defines: Who? What? When? How? How much?

Page 9: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

Space Systems Engineering: Management Module

Pause and Learn Opportunity

Review an example Project Plan with the class, using the James Webb Space Telescope (JWST) Draft Project Plan.

Reference document: DRAFT JWST Program-Project Plan (in process - 30 Oct).doc

Page 10: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

10Space Systems Engineering: Management Module

Systems Engineering Management Plan(SEMP)

The SEMP is the subordinate document to the Project Plan

The SEMP defines for all project participants how the project will be technically managed within the constraints established by the Project Plan.

All other technical documents, such as a configuration management plan, depend on the SEMP and must comply with it.

For a NASA-managed project, the civil servant systems engineering team will produce the primary SEMP.

• Each contractor involved in the project will produce a contract-unique SEMP that describes how it will manage in accordance with both its contract and the NASA project’s technical management practices.

For additional information on the contents of a SEMP, see the NASA Systems Engineering Handbook, 2007, Appendix J: SEMP Content Outline. (and backup slides for example SEMP outline.)

Also see the JWST SEMP for an example (JWST_000872 SEMP Baseline.doc).

Page 11: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

Space Systems Engineering: Management Module

People Management

Direct Project-Line Management

Matrix Management

Page 12: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

12Space Systems Engineering: Management Module

Traditional Project/Product-Line Organization

Characterized as a project or product managed as a self-sufficient organization relative to the entire system design life cycle. Each project will contain its own management structure, its own engineering function, its own production capability, its own support function, and so on. The project manager has the authority and the responsibility for all aspects of the project, whether it is a success or a failure.

Page 13: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

13Space Systems Engineering: Management Module

Matrix Organization Structure

Page 14: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

14Space Systems Engineering: Management Module

Matrix Organization Characteristics

Functional organizations, such as engineering or safety, “own” the personnel with expertise in particular areas.

The functional organizations assign technical personnel from their pool to specific projects as those projects identify their skill needs.

Both the project manager and the functional division manager agree to the duration of the assignment, the tasks to be accomplished, and the basis for the individual’s performance review.

Proven to be the most effective use of technical personnel. Project management only pays for the personnel on an as-needed basis; has access to broad talent pool; can phase work assignments with project life cycle.

Common approach for large projects; used predominantly at NASA Centers responsible for development projects.

Page 15: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

15Space Systems Engineering: Management Module

Interview with Dr. John Matheron Management of the COBE Mission

NASA ASK Magazine, 2007

COHEN: What kinds of problems—other than engineering realities—did you face?

MATHER: Some were organizational. We had something called “matrix management,” which we love and hate. The good thing about it is there’s a huge pool of talent you can draw on. The bad thing is those people are not yours. When you want their time, they may be busy doing something that someone else said was important. We had a cartoon that showed two boats with lots of oarsmen. Matrix management is people paddling in every direction and no manager at the end of the boat. The other one is project management the way project managers like to do it: they know who’s in the boat; there’s a guy at the end beating a drum; everybody is paddling in the same direction. Our problem wasn’t about scientists versus engineers. It was engineers, managers, and everybody fighting over a scarce resource.

John MatherNobel Prize Winner, Physics, 2006COBE Project Scientist

Page 16: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

16Space Systems Engineering: Management Module

One way to look at it…

From an Interview with NASA Administrator, Mike Griffin on “The True Challenge of Project Management”

See http://pmperspectives.gsfc.nasa.gov/2007/2006/truechallenge.htm Based on Mike Griffin’s remarks at the 2006 PM Challenge (March 21, 2006).

Dr. Griffin continued that “systems engineering and project management are opposite sides of the same coin. To talk about one without the other is flawed.

The losses of Challenger and Columbia, the Hubble Space Telescope’s flawed optics, Mars Observer, Mars Climatology Observer ‘99, Mars Polar Lander, Genesis - all of these programs’ issues were due to failures in project management and systems engineering. They all must be looked at as learning experiences, to learn as much from them as possible so we can repeat as few of them as possible.”

Page 17: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

17Space Systems Engineering: Management Module

Module Summary: Management

A Project Manager’s roles and responsibilities are different from those of the Project Systems Engineer. The manager is continuously balancing the three project variables of cost, schedule and technical content.

The Project Plan documents the project baseline for implementation. It includes the work breakdown structure, the associated activities, the resources required to accomplish the work, and the planned schedule for completing the work.

The Systems Engineering Management Plan (SEMP) is the project’s guiding technical document. All subordinate technical documents, like a requirements document or test plan, must follow the guidelines of the project SEMP.

Companies and government agencies usually use two different approaches to managing their workforce. In-line management means the responsible workforce directly reports to the project manager. Matrix management means the majority of the workforce is assigned temporarily to a project for a fixed period of time for a specified task.

Page 18: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

Space Systems Engineering: Management Module

Backup Slides for Management Module

Page 19: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

19Space Systems Engineering: Management Module

SEMP Contents Outline (1/4)

Title Page• Systems Engineering Management Plan• System Name or Identifier

Table of ContentsScope

• Purpose of the System• Summary and Purpose of SEMP• Relation to other plans and schedules such as the Integrated Master Plan

(IMP), Integrated Master Schedule (IMS), and Earned Value Management System (EVMS)

• The following statement: “This SEMP is the plan for the complete, integrated technical effort. Nothing herein shall relieve the Contractor of meeting the requirements of the Contract.”

Applicable Documents• Government Documents to include contractual requirements documents or

specifications• Non-government Documents to include any applicable from independent

standards organizations• Corporate Documents

Page 20: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

20Space Systems Engineering: Management Module

SEMP Contents Outline (2/4)

Systems Engineering Process and Responsibilities for its Implementation Description of the Contractor’s systems engineering process activities to be

accomplished during the contract to include the iterative nature of the process application in the form of narratives, supplemented as appropriate by graphical presentations, detailing the contractor’s processes and procedures for completing the systems engineering effort• Requirements Analysis• Functional Analysis and Allocation• Synthesis• Systems Analysis and Control to include Control and Manage to include trade

studies, cost-effectiveness analyses• Risk Management• Configuration Management• Interface Management• Data Management• Technical Performance Measurements (TPMs) – initial list, criteria for changing the

list, update schedule, responsibility for monitoring, and relationship to risk management

• Technical Reviews and Audits

Page 21: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

21Space Systems Engineering: Management Module

SEMP Contents Outline (3/4)

Description of products and results• Decision Database – describe development, implementation, life-cycle

accessibility, and life-cycle maintenance including how traceability of the information will be accomplished

• Specifications (or equivalent) and configuration baselines – describe development, measures of completeness, verifiability, traceability, and how and when controlled

Verification Planning – planning for verifying all requirements to include identification, configuration control, and maintenance of accuracy/precision of all verification tools

Organizational responsibilities, authority, and means of accountability for implementing the process under the Contract

Work authorization – methods for opening work packages under the EVMS, closure, and authorization of changes

Subcontractor technical effort – description of the level of subcontractor participation in the technical effort as well as the role of systems engineering in subcontractor and vendor selection and management

Page 22: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

22Space Systems Engineering: Management Module

SEMP Contents Outline (4/4)

Transitioning Critical Technologies• Criteria for assessing and transitioning technologies• Evolutionary/spiral acquisition strategies

Integration of the Systems Engineering Activities• How management plans and schedules (such as the IMP and IMS)

and the EVMS will be used to plan, organize, direct, monitor and control the systems engineering activities

• Systems Engineering Tools• Approach and process for system integration and test

Additional Systems Engineering Activities

Notes• Glossary of terms used in the SEMP

Appendices – each appendix shall be referenced in the main body of the SEMP where the data would otherwise have been provided.

Page 23: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

23Space Systems Engineering: Management Module

Interview with Dr. John Matheron Management of the COBE Mission

NASA ASK Magazine

Additional excerpt from John Mather’s interview:

Tony Fragomeni, the observatory manager, used to sit at the end of the table with a plastic baseball bat and make sure he heard from the right people. Running meetings well is a tremendously important skill: how to hear from all the people so that you don’t miss good ideas; how to send people away knowing something’s going to happen. You have to say, “I understand that this is the decision.” Absolute clarity is required. If you dither around and put off the decision for another week, you’d better have a plan for what you’re going to do instead. Drawing decisions out of discussions and actions out of ideas is the secret for getting anything done.

Page 24: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

24Space Systems Engineering: Management Module

Interview with Dr. John Matheron Management of the COBE Mission

NASA ASK Magazine

Additional excerpt from John Mather’s interview:

The challenge for management, though, is deciding whether they can afford to put a person on a project full time. The project manager says, “I need to know who’s on my project all the time. If someone completes a particular job, I’ve got something else for him to do.” The matrix manager says, “If that person’s job is done, I want him to work on another project.” It’s hard to cope with matrix management flexibility if you’re a project manager. The lesson learned on matrix management is it’s OK, but assign people full time and make sure they know whom they’re working for during big blocks of time. In the earliest days of COBE, we had people charging a tenth of their time. They were able to go to a meeting, but they didn’t have time to produce anything useful. A tenth really equals zero. It drove us crazy, and I don’t think it made those people happy.

Page 25: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

25Space Systems Engineering: Management Module

Keys to SuccessAdvise to University Nanosatellite Program

according to Air Force Research Lab

Administrative and student leadership• Roles and communication

Organized mission and requirements approach• Thought processes, logical planning, and team buy-in

Good systems engineering practices• Set up a good foundation early

Personnel management• Know your strengths and weaknesses

Technical challenges can be time-consuming – but poor project management can absolutely devastate your schedule!

It is far more likely that your program will fail due to management problems than due to technical/engineering roadblocks!

Page 26: Space Systems Engineering: Management Module Management Module Space Systems Engineering, version 1.0

26Space Systems Engineering: Management Module

DEFINITIONS:

• System – The combination of elements that function together to produce the capability required to meet a need. The elements include all hardware, software, equipment, facilities, personnel, processes, and procedures needed for this purpose.*

• Systems Engineering – A disciplined approach for the definition, implementation, integration and operation of a system (product or service). The emphasis is on achieving stakeholder functional, physical and operational performance requirements in the intended use environments over its planned life within cost and schedule constraints. Systems engineering includes the engineering processes and technical management processes that consider the interface relationships across all elements of the system, other systems or as a part of a larger system.*

• The discipline of systems engineering uses techniques and tools appropriate for use by any engineer with responsibility for designing a system as defined above. That includes subsystems.

• Project Management – The process of planning, applying, and controlling the use of funds, personnel, and physical resources to achieve a specific result.

System, Systems Engineering, and Project Management

*NASA NPG 7120.5D