87
David Mauro, KBR / NASA Ames Research Center [email protected] 1 Space Mission Concept Design at the NASA Ames Mission Design Center (MDC) Stanford University David Mauro, KBR / NASA Ames Research Center

Space Mission Concept Design

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Space Mission Concept Design

David Mauro, KBR / NASA Ames Research Center [email protected] 1

Space Mission Concept Design

at the NASA Ames Mission Design Center (MDC)

Stanford University

David Mauro, KBR / NASA Ames Research Center

Page 2: Space Mission Concept Design

Agenda

2David Mauro, KBR / NASA Ames Research Center [email protected]

• Space Mission Concept Design at NASA Ames• What the Ames MDC is• A framework for space mission ideas – The Concept Maturity Levels• Aeolus: an example of a mission concept study for Mars• Lessons learned and tips

• Overview on how to design a spacecraft telecommunication subsystem• Overview on the main design considerations• The Link Budget

• Summary & Conclusion

Page 3: Space Mission Concept Design

Mission Design Center - What is it?

https://www.nasa.gov/centers/ames/engineering/mission-design-center/about

3David Mauro, KBR / NASA Ames Research Center [email protected]

Page 4: Space Mission Concept Design

Credit: Amanda Waltz

Page 5: Space Mission Concept Design

5David Mauro, KBR / NASA Ames Research Center [email protected]

Page 6: Space Mission Concept Design

A framework for space mission ideas

The Concept Maturity Levels

From: Space Mission Concept Development Using Concept Maturity Levels, Wessen et al., 2013

6David Mauro, KBR / NASA Ames Research Center [email protected]

Page 7: Space Mission Concept Design

7David Mauro, KBR / NASA Ames Research Center [email protected]

Aeolus: an example of a mission concept study for

Mars

Page 8: Space Mission Concept Design

8

CML 1

“Cocktail Napkin”

David Mauro, KBR / NASA Ames Research Center [email protected]

Aeolus: an example of a mission concept study for

Mars

Page 9: Space Mission Concept Design

9

CML 1

“Cocktail Napkin”

David Mauro, KBR / NASA Ames Research Center [email protected]

Aeolus: an example of a mission concept study for

Mars

Page 10: Space Mission Concept Design

10

CML 1

“Cocktail Napkin”

David Mauro, KBR / NASA Ames Research Center [email protected]

Aeolus: an example of a mission concept study for

Mars

Page 11: Space Mission Concept Design

11

CML 1

“Cocktail Napkin”

David Mauro, KBR / NASA Ames Research Center [email protected]

Opportunity December 2011 (Credit NASA)

Aeolus: an example of a mission concept study for

Mars

Page 12: Space Mission Concept Design

CML 1: Initial Cartoon

Meaningfulness & Uniqueness

Identify Knowledge Gaps

State Broad Science Objective

One-sentence description of measurement(s)

12David Mauro, KBR / NASA Ames Research Center [email protected]

Page 13: Space Mission Concept Design

CML 1

“Cocktail Napkin”

CML 2

Feasibility

Does any

solution

exist?

Aeolus: an example of a mission concept study for

Mars

13David Mauro, KBR / NASA Ames Research Center [email protected]

Page 14: Space Mission Concept Design

CML 2: Feasibility Study

Resource CBE

Volume45 x 35 x 52

cm Total Launch Mass 37.6 kg

Total Power 53 W

Spacecraft Delta-V 237.5 m/sSolid State Data Storage (Vol)

8GB

Data Throughput (UHF Downlink)

1Mbps

Draft of Science Traceability Matrix

Mission Architecture – main elements

Environmental driving parameters

Identify required tech development

Launch opportunities

Delta-V calculations

Orbital solutions

Mission ops

Spacecraft CAD model

Rough cost estimate

Rough schedule

Initial risks & mitigation identified

Future trades identified

14David Mauro, KBR / NASA Ames Research Center [email protected]

Page 15: Space Mission Concept Design

Develop Feasible Mission Architecture

Link Budget

Orbital Mechanic

Power Budget

Propellant budget

ADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost

15David Mauro, KBR / NASA Ames Research Center [email protected]

Page 16: Space Mission Concept Design

Mission Concept

Launch

16David Mauro, KBR / NASA Ames Research Center [email protected]

Page 17: Space Mission Concept Design

Mission Concept

LaunchCruise 15 months

17David Mauro, KBR / NASA Ames Research Center [email protected]

Page 18: Space Mission Concept Design

Mission Concept

LaunchCruise 15 months

NeMO LTT10 months

18David Mauro, KBR / NASA Ames Research Center [email protected]

Page 19: Space Mission Concept Design

Mission Concept

LaunchAeolus Stowed

Cruise 15 months

NeMO LTT10 months

19David Mauro, KBR / NASA Ames Research Center [email protected]

Page 20: Space Mission Concept Design

Mission Concept

AeolusDeploy

LaunchAeolus Stowed

Cruise 15 months

NeMO LTT10 months

20David Mauro, KBR / NASA Ames Research Center [email protected]

Page 21: Space Mission Concept Design

Mission Concept

Orbit Transfer

AeolusDeploy

LaunchAeolus Stowed

Cruise 15 months

NeMO LTT10 months

21David Mauro, KBR / NASA Ames Research Center [email protected]

Page 22: Space Mission Concept Design

Mission Concept

Orbit Transfer

AeolusDeploy

LaunchAeolus Stowed

Cruise 15 months

NeMO LTT10 months

Commiss. 3 months

22David Mauro, KBR / NASA Ames Research Center [email protected]

Page 23: Space Mission Concept Design

Mission Concept

Orbit Transfer

AeolusDeploy

LaunchAeolus Stowed

Cruise 15 months

NeMO LTT10 months

Science24 months

Commiss. 3 months

23David Mauro, KBR / NASA Ames Research Center [email protected]

Page 24: Space Mission Concept Design

Mission Concept

Science24 months

Orbit Transfer

AeolusDeploy

LaunchAeolus Stowed

Cruise 15 months

NeMO LTT10 months

Commiss. 3 months

Decommission

Total Mission Duration

52 months

24David Mauro, KBR / NASA Ames Research Center [email protected]

Page 25: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

25David Mauro, KBR / NASA Ames Research Center [email protected]

Page 26: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

26David Mauro, KBR / NASA Ames Research Center [email protected]

Page 27: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

27David Mauro, KBR / NASA Ames Research Center [email protected]

Page 28: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

28David Mauro, KBR / NASA Ames Research Center [email protected]

Page 29: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

29David Mauro, KBR / NASA Ames Research Center [email protected]

Page 30: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

30David Mauro, KBR / NASA Ames Research Center [email protected]

Page 31: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

31David Mauro, KBR / NASA Ames Research Center [email protected]

Page 32: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

32David Mauro, KBR / NASA Ames Research Center [email protected]

Page 33: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

33David Mauro, KBR / NASA Ames Research Center [email protected]

Page 34: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

34David Mauro, KBR / NASA Ames Research Center [email protected]

Page 35: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

35David Mauro, KBR / NASA Ames Research Center [email protected]

Page 36: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

36David Mauro, KBR / NASA Ames Research Center [email protected]

Page 37: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

37David Mauro, KBR / NASA Ames Research Center [email protected]

Page 38: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

38David Mauro, KBR / NASA Ames Research Center [email protected]

Page 39: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

39David Mauro, KBR / NASA Ames Research Center [email protected]

Page 40: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

40David Mauro, KBR / NASA Ames Research Center [email protected]

Page 41: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

41David Mauro, KBR / NASA Ames Research Center [email protected]

Page 42: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

42David Mauro, KBR / NASA Ames Research Center [email protected]

Page 43: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

43David Mauro, KBR / NASA Ames Research Center [email protected]

Page 44: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

44David Mauro, KBR / NASA Ames Research Center [email protected]

Page 45: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

45David Mauro, KBR / NASA Ames Research Center [email protected]

Page 46: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

46David Mauro, KBR / NASA Ames Research Center [email protected]

Page 47: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

47David Mauro, KBR / NASA Ames Research Center [email protected]

Page 48: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

48David Mauro, KBR / NASA Ames Research Center [email protected]

Page 49: Space Mission Concept Design

Develop Feasible Mission Architecture

Orbital Mechanic

Power BudgetADCS

CAD Visualization

Mass Budget

Data Budget

Concept of Operations

Science

Risks & Tech Dev

Cost Link Budget 𝐸𝑏

𝑁𝑜𝑑𝐵 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 𝑆𝑝𝑎𝑐𝑒, 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔, 𝑐𝑎𝑏𝑙𝑒𝑠 +

G

T− dataratedB + 228.6

Propellant budget

∆𝑉 = 𝑔 ∙ 𝐼𝑠𝑝 ∙ ln𝑀𝑓𝑖𝑛𝑎𝑙

𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑙

49David Mauro, KBR / NASA Ames Research Center [email protected]

Page 50: Space Mission Concept Design

50

CML 1

“Cocktail Napkin”

CML 2

FeasibilityCML 3

Expanded Trade

SpaceDoes any

solution

exist?

What other

solutions

exist?

Aeolus: an example of a mission concept study for

Mars

50David Mauro, KBR / NASA Ames Research Center [email protected]

Page 51: Space Mission Concept Design

CML 3: Expanded Trade Space

Divergent Phase:

Explore different mission architectures

primary vs. secondary

launch options

number of spacecrafts

et cetera

Convergent Phase:

Identify rejection criteria & pick

architectures to pursue.

Iteration:

Repeat CML 2 as needed on

selected architectures

51David Mauro, KBR / NASA Ames Research Center [email protected]

Page 52: Space Mission Concept Design

52

CML 1

“Cocktail Napkin”

CML 2

FeasibilityCML 3

Expanded Trade

Space

CML 4

Point Design

Does any

solution

exist?

What other

solutions

exist?

What is a good

approach, given our

circumstances?

Aeolus: an example of a mission concept study for

Mars

52David Mauro, KBR / NASA Ames Research Center [email protected]

Page 53: Space Mission Concept Design

CML 4: Point Design

53

Power analysis

Thermal analysis

Schedule

Science Traceability Matrix

Mission Architecture

Driving environmental parameters

Launch vehicle

Delta-V calculations

Orbital solution

Radiation Analysis

Mission ops

Identify required tech development

Spacecraft CAD model

Power Analysis

Thermal Analysis

Better Cost Estimate

Refined Schedule

Risks Matrix & Mitigation

53David Mauro, KBR / NASA Ames Research Center [email protected]

Page 54: Space Mission Concept Design

CML 4: Point Design

54

Science Traceability Matrix

Mission Architecture

Driving environmental parameters

Launch vehicle

Delta-V calculations

Orbital solution

Radiation Analysis

Mission ops

Identify required tech development

Spacecraft CAD model

Power Analysis

Thermal Analysis

Better Cost Estimate

Refined Schedule

Risks Matrix & Mitigation

2 weeks operational cycle

54David Mauro, KBR / NASA Ames Research Center [email protected]

Page 55: Space Mission Concept Design

CML 4: Point Design

55

Refined orbit design

Science Traceability Matrix

Mission Architecture

Driving environmental parameters

Launch vehicle

Delta-V calculations

Orbital solution

Radiation Analysis

Mission ops

Identify required tech development

Spacecraft CAD model

Power Analysis

Thermal Analysis

Better Cost Estimate

Refined Schedule

Risks Matrix & Mitigation

55David Mauro, KBR / NASA Ames Research Center [email protected]

Page 56: Space Mission Concept Design

CML 4: Point Design

56

Refined Flight system capabilitiesScience Traceability Matrix

Mission Architecture

Driving environmental parameters

Launch vehicle

Delta-V calculations

Orbital solution

Radiation Analysis

Mission ops

Identify required tech development

Spacecraft CAD model

Power Analysis

Thermal Analysis

Better Cost Estimate

Refined Schedule

Risks Matrix & Mitigation

+X (along track)

-Y (cross-track)

+Z (Zenith)

56David Mauro, KBR / NASA Ames Research Center [email protected]

Page 57: Space Mission Concept Design

Maturation of a Concept from CML 1 to CML 4

CML 1

CML 2

CML 4

57David Mauro, KBR / NASA Ames Research Center [email protected]

Page 58: Space Mission Concept Design

Lessons learned

58David Mauro, KBR / NASA Ames Research Center [email protected]

Page 59: Space Mission Concept Design

Science & Engineering

Lessons learned

59David Mauro, KBR / NASA Ames Research Center [email protected]

Page 60: Space Mission Concept Design

Science & Engineering

Programmatic Constraints

Lessons learned

60David Mauro, KBR / NASA Ames Research Center [email protected]

Page 61: Space Mission Concept Design

Science & Engineering Team Dynamics

Programmatic Constraints

Lessons learned

61David Mauro, KBR / NASA Ames Research Center [email protected]

Page 62: Space Mission Concept Design

Science & Engineering Team Dynamics

Programmatic Constraints

Life

Lessons learned

62David Mauro, KBR / NASA Ames Research Center [email protected]

Page 63: Space Mission Concept Design

• Meeting Ground Rules

Practical tips and best practices

63David Mauro, KBR / NASA Ames Research Center [email protected]

Page 64: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

Practical tips and best practices

64David Mauro, KBR / NASA Ames Research Center [email protected]

Page 65: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

Practical tips and best practices

65David Mauro, KBR / NASA Ames Research Center [email protected]

Page 66: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

Practical tips and best practices

66David Mauro, KBR / NASA Ames Research Center [email protected]

Page 67: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

• Action Items: assign & review

Practical tips and best practices

67David Mauro, KBR / NASA Ames Research Center [email protected]

Page 68: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

• Action Items: assign & review

• Do meetings only if needed

Practical tips and best practices

68David Mauro, KBR / NASA Ames Research Center [email protected]

Page 69: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

• Action Items: assign & review

• Do meetings only if needed

• Scrum Wall

Practical tips and best practices

69David Mauro, KBR / NASA Ames Research Center [email protected]

Page 70: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

• Action Items: assign & review

• Do meetings only if needed

• Scrum Wall

Practical tips and best practices

70David Mauro, KBR / NASA Ames Research Center [email protected]

Page 71: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

• Action Items: assign & review

• Do meetings only if needed

• Scrum Wall

• Include Cost & Schedule early in the process

Practical tips and best practices

71David Mauro, KBR / NASA Ames Research Center [email protected]

Page 72: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

• Action Items: assign & review

• Do meetings only if needed

• Scrum Wall

• Include Cost & Schedule early in the process

• No to “NO” and the power of positive language

Practical tips and best practices

72David Mauro, KBR / NASA Ames Research Center [email protected]

Page 73: Space Mission Concept Design

• Meeting Ground Rules

• Check out smartphone/tablet/pc at the door unless working session

• Prepare meeting in advance:

• Agenda & expected outcome

• Assign preliminary work

• Brainstorming: use diverse options

• Action Items: assign & review

• Do meetings only if needed

• Scrum Wall

• Include Cost & Schedule early in the process

• No to “NO” and the power of positive language

• Awareness of Team Dynamics & Life

Practical tips and best practices

73David Mauro, KBR / NASA Ames Research Center [email protected]

Page 74: Space Mission Concept Design

Spacecraft Telecomm Sub-System

74David Mauro, KBR / NASA Ames Research Center [email protected]

Page 75: Space Mission Concept Design

Spacecraft Telecomm Sub-System

75David Mauro, KBR / NASA Ames Research Center [email protected]

Page 76: Space Mission Concept Design

Spacecraft Telecomm Sub-System

76David Mauro, KBR / NASA Ames Research Center [email protected]

Uplink / Command

Page 77: Space Mission Concept Design

Spacecraft Telecomm Sub-System

77David Mauro, KBR / NASA Ames Research Center [email protected]

Uplink / Command

Downlink / Telemetry

Page 78: Space Mission Concept Design

Spacecraft Telecomm Sub-System

78David Mauro, KBR / NASA Ames Research Center [email protected]

RadioTx / Rx

TX

RX

Uplink / Command

Downlink / Telemetry

Page 79: Space Mission Concept Design

Spacecraft Telecomm Sub-System

79David Mauro, KBR / NASA Ames Research Center [email protected]

RadioTx / Rx

TX

RX

Uplink / Command

Downlink / Telemetry

Link Margin = 𝐸𝑏

𝑁𝑜𝑑𝐵 received -

𝐸𝑏

𝑁𝑜𝑑𝐵 required

Page 80: Space Mission Concept Design

Spacecraft Telecomm Sub-System

80David Mauro, KBR / NASA Ames Research Center [email protected]

RadioTx / Rx

TX

RX

Uplink / Command

Downlink / Telemetry

Link Margin = 𝐸𝑏

𝑁𝑜𝑑𝐵 received -

𝐸𝑏

𝑁𝑜𝑑𝐵 required

• Aim to a value of 6dB or 10 dB for early concept

•𝐸𝑏

𝑁𝑜𝑑𝐵 required is a function of channel coding/modulation. It is the

threshold value of energy in order for the bit to be received.

• BPSK modulation with no channel coding has a Eb/No required ~ 9.6 dB for example

Page 81: Space Mission Concept Design

Spacecraft Telecomm Sub-System

81David Mauro, KBR / NASA Ames Research Center [email protected]

RadioTx / Rx

TX

RX

Uplink / Command

Downlink / Telemetry

𝐸𝑏

𝑁𝑜𝑑𝐵 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 +

G

T− dataratedB + 228.6

Link Margin = 𝐸𝑏

𝑁𝑜𝑑𝐵 received -

𝐸𝑏

𝑁𝑜𝑑𝐵 required

Page 82: Space Mission Concept Design

Spacecraft Telecomm Sub-System

82David Mauro, KBR / NASA Ames Research Center [email protected]

RadioTx / Rx

TX

RX

Uplink / Command

Downlink / Telemetry

𝑆𝑝𝑎𝑐𝑒 𝐿𝑜𝑠𝑠 𝑑𝐵 = 147.55 − 20log(𝑅𝑎𝑛𝑔𝑒,𝑚) − 20log(𝐹𝑟𝑒𝑞, 𝐻𝑧)

𝐸𝑏

𝑁𝑜𝑑𝐵 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝐸𝐼𝑅𝑃 + 𝐿𝑜𝑠𝑠𝑒𝑠 +

G

T− dataratedB + 228.6

Link Margin = 𝐸𝑏

𝑁𝑜𝑑𝐵 received -

𝐸𝑏

𝑁𝑜𝑑𝐵 required

Page 83: Space Mission Concept Design

How to do a Link Budget

𝑆𝑝𝑎𝑐𝑒 𝐿𝑜𝑠𝑠 𝑑𝐵 = 147.55 − 20log(𝑅𝑎𝑛𝑔𝑒,𝑚) − 20log(𝐹𝑟𝑒𝑞, 𝐻𝑧)

Link Margin = 𝐸𝑏

𝑁𝑜𝑑𝐵 received -

𝐸𝑏

𝑁𝑜𝑑𝐵 required

EIRP = W RF Out dB + Antenna Gain dB – Cable Loss dB

83David Mauro, KBR / NASA Ames Research Center [email protected]

Page 84: Space Mission Concept Design

84David Mauro, KBR / NASA Ames Research Center [email protected]

Summary & Conclusion

Page 85: Space Mission Concept Design

85David Mauro, KBR / NASA Ames Research Center [email protected]

Summary & Conclusion

Page 86: Space Mission Concept Design

86David Mauro, KBR / NASA Ames Research Center [email protected]

Summary & Conclusion

Page 87: Space Mission Concept Design

87David Mauro, KBR / NASA Ames Research Center [email protected]

Summary & Conclusion