22
Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker , T. Eichner, M. Fuchs, F. Grüner, U. Schramm, R. Weingartner, D. Habs Experimental Status Self acceleration: Visual explanation Renormalization of the electron mass GPT: The applied calculation method Retardation Simulating 2 GeV, 1 nC Point 2 Point and Poisson-Solver still differ Convergence of Point 2 Point Simulation Benchmark: Energy conservation assuming mass renormalization

Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Space Charge in High CurrentLower Energy Electron Bunches

Seminar DESY, 29.05.2007, S. Becker,T. Eichner, M. Fuchs, F. Grüner, U. Schramm,

R. Weingartner, D. Habs

● Experimental Status

● Self acceleration:

– Visual explanation

– Renormalization of the electron mass

● GPT: The applied calculation method

● Retardation

● Simulating 2 GeV, 1 nC

– Point 2 Point and Poisson-Solver still differ

– Convergence of Point 2 Point

● Simulation Benchmark: Energy conservation assuming mass renormalization

Page 2: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Experimental Status: Beam transport

Quadrupoles:

- Aperture 6 mm (5 mm effective)- Field gradient 503 T/m

Measurements at MaMi Mainz:

Page 3: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Experimental Status: Undulator

Test Undulator:

- 60 Periods- 5 mm period length- 0.9 T field on axis at a gap of 2.5 mm

1st Harmonic 3rd Harmonic

Measurements at MaMi Mainz:

Page 4: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

laser pulse

~ 1 µm only!!~ nC charge

typical length scale = plasma wavelength

Experimental Status: Electron acceleration

Electron acceleration at MQP:

Page 5: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Experimental Status: Electron acceleration

Page 6: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

● σx = σ

y = σ

z = 1 µm

● Charge: 1.25 nC -> I = 150 kA● Initial distribution: Gaussian

“Extreme” case:

The Regime:

Self Acceleration

Page 7: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Self Acceleration

Considering a beam expansion due to emittance > 0, neglecting space charge.Beam evolves “Pythagorean”Particles have uncorrelated energies

s= 2

2⋅L

Considering a beam propagation with no emittance, neglecting space charge.

Page 8: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Self Acceleration

z ' = ⋅ zDue to relativistic contraction, the longitudinal dimension becomes larger:

Considering a Coulomb explosion: Assuming x = y = z in the lab frame.

= 260

“Explosion” is transversal dominated.

Page 9: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Self Acceleration

Considering a beam expansion with no emittance, respecting space charge.

Electrons off axishave to gain speed,hence gain energyto “keep up” with theelectrons on axis.

Page 10: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Self Acceleration

Quantitative approach: Compressing electrons correspondsto a gain of potential energy,which can be expressed in terms of a mass:

E = m c2

me

The self field can be considered as a mass itself,which “dissolves” as the beam expands:

m f

E f = m f c2 =U '

Momentum before Expansion:

Momentum after Expansion:

Page 11: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Total energy in theelectrons' mean rest frame:

E ' = E0E f = m0c2E f = m0m f c

2

E ' = m' c2 = ' m0 c2

Potential energy leads to a mass of the field: E f = m f c2

Mean Lorentz factor due to Coulomb explosion:

' = 1m f

m0

Electron's rest frame:

E = 0m' c2 = 0m0c

2⋅1m f

m0

E = 0 ' m0c2 = m0c

2

= 0⋅ '

Laboratory frame: Electron bunch leaves the plasma with 0

Total energy:

after potential energy “released”Kinetic energy gainsby a factor of : '

after potential energy “released”

Mass Renormalization

(All energies E are normalized on one electron)

Potential energy in average is estimated to be of the order of 74 keV / electron

Page 12: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Self Acceleration: Lab Frame

Space charge (in the mean rest frame) acts transversally.

Where does the longitudinal momentum come from in the Laboratory Frame?

F E=d pdt

∥I

B =0I

2R

F res

Page 13: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

GPT

● GPT adapts time steps dynamically -> energy conservation● Calculation precision is defined by relative momentum changes

stepwise● Space charge is considered point to point using Lorentz

transformation. Calculation time t ~ N²

For equation of motion:

Interaction in rest frame:

From Lorentz transformations:

Page 14: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Discussion of limitations due toRetardation Effects

"Event horizon"

Going to the electron bunch's mean rest frame:

~ 1

r2

The contribution of close neighbors is strongest

Assuming the bunch is “born” instantaneously- fields did not “spread” yet:

Page 15: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Discussion of limitations due toRetardation Effects

Possibilities of respecting retardation in calculations:

Interaction is described in terms of

Possible solution:Interaction only on case of " r' < Event Horizon "

Page 16: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Simulating 2 GeV, 1 nC

time=2e-009

Avg(G) = 4014.32 Std(G) = 12.0781

0.599582 0.599584 0.599586 0.599588GPT z

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

G

Result of Poisson-Solver:after propagation of 60cm:

=4014/=0.003

E=2 GeV=3880 /=0.001

Initial distribution:

time=2e-009

Avg(G) = 4026.51 Std(G) = 17.1934

0.599582 0.599584 0.599586 0.599588GPT z

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

G

=4027 /=0.0044

Result of Point2Pointafter propagation of 60cm:

Page 17: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Simulating 2 GeV, 1 nC

Simulation of designedbeam line for E = 2 GeV

Triplet focusing-Waist at approx. 5m

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5

G P T a v g z

0

2 0

4 0

6 0

8 0

stdG

z

3.000 macro particles1.8%

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5

G P T a v g z

0

2 0

4 0

6 0

8 0

std

G

z

10.000 macro particles 1.1%

Due to adaptive time steps,scaling is worse than

t ~ n2

Did not reach convergence

-> End of Point 2 Point ?!

Page 18: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5

G P T a v g z

0

2 0

4 0

6 0

8 0

std

G

Simulating 2 GeV, 1 nC

GPT-Poisson solver:

Energy spread decreases!

TODO: Try other solvers:

ASTRA

Page 19: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Simulation Benchmark: Energy conservationassuming mass renormalization

"Benchmark test" for the "extreme case": 130 MeV 1.2 nC: σx = σ

y = σ

z = 1 µm

0 1 0 2 0 3 0 4 0 5 00 , 0 0

0 , 0 1

0 , 0 2

0 , 0 3

0 , 0 4

0 , 0 5

0 , 0 6

0 , 0 7

0 , 0 8

Ek i n

Up o t

Up o t

+ Ek i n

E/

Me

V

t / a . u .

R e s t - F r a m e P 2 P

Mean rest frame:

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

E/

Me

V

z / m

Ek i n

Up o t

Up o t

+ Ek i n

P 2 P

Laboratory frame:

Point 2 Point:

Page 20: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

simulation Benchmark: Energy conservationassuming mass renormalization

"Benchmark test" for 2 GeV 1.0 nC: σx = σ

y = σ

z = 1 µm

0 , 0 0 , 5 1 , 0 1 , 5 2 , 02 0 6 0

2 0 6 5

2 0 7 0

2 0 7 5

2 0 8 0

E/

Me

V

z / m

P 2 P

Ek i n

+ Ep o t

Ek i n

Point 2 Point

0 1 2 3 4 5

2 0 6 2

2 0 6 4

2 0 6 6

2 0 6 8

2 0 7 0

2 0 7 2

2 0 7 4

2 0 7 6

2 0 7 8

2 0 8 0

2 0 8 2

Ek i n

+ Ep o t

Ek i n

E/

Me

V

z / m

P o i s s o n - S o l v e r

Poisson-Solver

Page 21: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

U ' = 180

∑i≠ j

qi q j∣r ' i−r ' j∣

rx '=r xr y '=r yr z '=z r x

pz=zm0 cz '≈ pz /m0 c

simulation Benchmark: Energy conservationassuming mass renormalization

Calculation of potential energy:Lorentz Transformation into mean beam rest frame:

E pot = zU '

Page 22: Space Charge in High Current Lower Energy Electron Bunches · Space Charge in High Current Lower Energy Electron Bunches Seminar DESY, 29.05.2007, S. Becker, T. Eichner, M. Fuchs,

Summary

Thank you !!!

● Experimental Status

● Self acceleration:

– Visual explanation

– Renormalization of the electron mass

● GPT: The applied calculation method

● Retardation

● Simulating 2 GeV, 1 nC

– Point 2 Point and Poisson-Solver still differ

– Convergence of Point 2 Point

● Simulation Benchmark: Energy conservation assuming mass renormalization