60
7/31/2019 Sonic -2000 http://slidepdf.com/reader/full/sonic-2000 1/60 SONIC THEORY

Sonic -2000

Embed Size (px)

Citation preview

Page 1: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 1/60

SONIC THEORY

Page 2: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 2/60

Sonic energy is generated and detected by devices called

transducers. By definition, a transducer is a “device thatis actuated by power from one system to supply power

in any other form to a second system” ; i.e. , a

transducer converts energy from one form to another. In

sonic logging, the conversion is electrical to acousticenergy (transmitters) or acoustic to electrical energy (

receivers).

Two types of transducers are typically used for logging: 1.

2.

Page 3: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 3/60

CREST 

TROUGH 

SINUSOIDAL WAVE TRAIN

A

B

C   A   M

   P   L   I   T   U   D

   E

TIMEE

F

G

HD

T

T

T

T=PERIOD OF THE WAVE 

Page 4: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 4/60

THE WAVELENGTH 

A

B

C   A   M

   P   L   I   T   U   D

   E

DISPLACEMENT (POSITION)E

F

G

HD

SINUSOIDAL WAVE TRAIN

Page 5: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 5/60

PROPERTIES OF WAVES

••

 

attenuation  

Page 6: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 6/60

ACOUSTIC WAVES

Page 7: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 7/60

SONIC MONOPOLE THEORY

Page 8: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 8/60

COMPRESSIONAL WAVE

DIRECTION OFPROPAGATION

DIRECTION OF

PARTICLE

DISPLACEMENT

RAREFACTION

COMPRESSION

COMPRESSION

RAREFACTION

Page 9: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 9/60

SHEAR WAVE

DIRECTION OF

PROPAGATION

DIRECTION OF

PARTICLE

DISPLACEMENT

Page 10: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 10/60

THE COMPRESSIONAL AND SHEARVELOCITIES

vK 

v

K BULK MODULUS

SHEAR MODULUS

 BULK DENSITY 

 p

s

( / )4 31/ 2

1/ 2

 

  

 

  

 

  

Page 11: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 11/60 

 

 

 

 

 A

F  Modulus

 Angleor Volume Length

Strain

Parameter Parameter inChangeStrain

 Area

ForceStress

Strain

Stress Modulus

,,

ELASTIC MODULI

Page 12: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 12/60

FORCE =F 

FORCE  FORCE 

VOLUMETRIC DEFORMATION

V  A

FV  MODULUS BULK K 

Page 13: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 13/60

FORCE =  F

FORCE =  F

 

l

l

SHEARING DEFORMATION

l A

Fl

ll

 AF 

Tan

 AF  MODULUSSHEAR

 / 

 /  / 

 

 

Page 14: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 14/60

 Rock/ 

 Fluid 

 Mineral Density

(gm/cc)

Young’s

 Modulus

 Bulk

 Modulus

Shear

 Modulus

 Poisson’s

 Ratio

Sandstone Quartz 2.65 0.92 (Mbars) 0.370 (Mbars) 0.424 (Mbars) 0.09

 Limestone Calcite 2.71 0.89 0.732 0.342 0.30

 Dolomite CaMg

(CO3)2

2.87 1.66 0.820 0.500 0.25

Oil  n( CH2) 0.85 - 0.014 0.0 -

Water H2O 1.00 - 0.023 0.0 -Gas - 0.001 - 1.5x10

-60.0 -

MECHANICAL PROPERTIES OF

DIFFERENT MATERIALS

SHEAR WAVE

Page 15: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 15/60

SHEAR WAVE 

PROPAGATION 

Page 16: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 16/60

CYLINDRICAL DEFORMATION

and POISSON’S RATIO 

FORCE

l

l

FORCE

strainallongitudin

strainlateral

 

Page 17: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 17/60

SONIC VELOCITIES AND

POISSON’S RATIO 

 RatiosPoisson

v

v

 p

s

s

 p

'

)2 / 1(

12 / 1

 

  

 

  

  

  

Velocity Ratio

Page 18: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 18/60

SNELL’S LAW ANALYSIS 

normal

angle of

incident

angle ofrefraction 

BOREHOLE

FORMATIONi

v

vr 

 f 

bsinsin

Page 19: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 19/60

SNELL’S LAW REPRESENTATION OF

SONIC WAVE PROPAGATION

M1 M2

C

r s

is

r s

M1 M2

A

r Pi

M1 M2

B

r pr s

ip

Page 20: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 20/60

SNELL’S LAW ANALYSIS 

For wave propagation down the

borehole wall, =90 degress ( sin =1)

so that we now obtain:

sini

v

vcritical

 f 

b

angle ofincidenti 

BOREHOLE

FORMATION

angle of

refraction

SONIC WAVE PROPAGATION

Page 21: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 21/60

SONIC WAVE PROPAGATION

T

R1

R2

ipis

st  pt 

S wave

P wave 

ip =CRITICAL

COMPRESSIONAL

ANGLE

Is=CRITICAL

SHEAR

ANGLE

CRITICALLY

REFRACTED

COMPRESSIONAL

AND SHEAR

WAVES

Page 22: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 22/60

 QUESTION:

CAN Vf  BE GREATER

THAN Vb ?

Page 23: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 23/60

 

Page 24: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 24/60

SONIC DIPOLE THEORY 

HALLIBURTON

Page 25: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 25/60

12 in

12 in

MONO TRANS

DIPOLE TRANS

MONO

RECVSDIPOLE

RECVS

12 in

LFDT

ISOLATOR

Page 26: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 26/60

FLEXURAL WAVE

Page 27: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 27/60

DISPERSION PLOT IN A

SLOW SANDSTONE

0 5 10 15291

265

241

222

   I  n  v  e  r  s  e   d

  p   h  a  s  e   d  v

  e   l  o  c   i   t  y

s/ft

Frequency (khz)

tflexuralvs frequency

tshear 

ts

Page 28: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 28/60

 p

 f  pV V criticali )(sin

For critically refracted

compressional waves:

SONIC WAVE PROPAGATIONAL

Page 29: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 29/60

 

SONIC WAVE PROPAGATIONAL

PATHS

T

R1

R2

TOOL BODY

BOREHOLE

FLUID

ALTERED

(DAMAGED ZONE)

UNALTERED

(UNDAMAGED)

ZONE

Page 30: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 30/60

GUIDED WAVES

•  

 

Page 31: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 31/60

THE LEAKY AND NORMAL MODES

Both the Leaky and Normal

modes are produced by

constructive interferencebetween reflected waves at

the borehole wall and body

waves traveling down the

formation 

Page 32: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 32/60

Stoneley waves are generatedalong the borehole wall, essentially

by flexing of the wall caused byinteraction of the formation and theborehole fluid

Page 33: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 33/60

STONELEY

WAVE

PROPAGATION

PORE FLUID COMPRESSED

Page 34: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 34/60

BOREHOLE

MUDCAKE

STONELEY WAVE PROPAGATIONPORE FLUID COMPRESSED

WHICH CAUSES MOVEMENT

INTO FORMATION

Page 35: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 35/60

b

smud mud tubestoneley

t t t t 

t OF TERMS IN 

    

22

STONELEY WAVE VELOCITY

AT LOW FREQUENCY

Page 36: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 36/60

TOTAL ACOUSTIC WAVEFORM

P wave

Leaky mode

S wave Stoneley

wave

Normal Mode

time

Page 37: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 37/60

Page 38: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 38/60

Time(microseconds)

A

B

C

 

CENTRALIZED TOOL WITH NO WASHOUT

Page 39: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 39/60

T

R1

R2

tR1 

tR2 

A

B

C

D

E

tR2= A+B+D+E

tR1

=A+B+C

A,B,C,D,E,=TRAVEL TIMES

tR2 - tR1 = A+B+D+E -(A+B+C)

tR2 - tR1 = D+(E-C)

ASSUME

E=C

tR2 - tR1 = D

 t 2

 D

 s acin

 t t Δt 

R1 R2

TIME TRANSIT 

CENTRALIZED TOOL WITH NO WASHOUT

SLOWNESS

INVERSE

PHASE

VELOCITY

ACOUTIC SIGNAL AT TWO RECEIVERS

pacing

Page 40: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 40/60

ACOUTIC SIGNAL AT TWO RECEIVERS

THE ZERO CROSSING THRESHOLD TECHNIQUE 

pacing

Page 41: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 41/60

TR

R1

R2

B

A

CD

E

A

B

CD

E

REASONS FOR

BOREHOLE

COMPENSATIONS

CAVED HOLE

(WASHOUT)

TOOL TILT

BOREHOLE COMPENSATION SONIC

Page 42: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 42/60

BOREHOLE COMPENSATION SONIC

(BCDT)

TR

R2

TR

R1

3 FT

2 FT

3 FT

Page 43: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 43/60

t3

TR

R2

TR

R1

t1

t4

t2

BOREHOLE

COMPENSATION

CAVED HOLE

)2

Page 44: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 44/60

 

BOREHOLE

COMPENSATION

TOOL TILT

t1

t3 

t2 

t4 

 ft 

t t t t 

t c 2

)(

2 / 1

2143

TR

DEPTH DERIVED BOREHOLE

Page 45: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 45/60

Z=1 ft

10 ft

TR

R1

R2

t4 

B

TR

R1

R2

t1 

t2 

C

DEPTH DERIVED BOREHOLE

COMPENSATION

DTRCVR = (t2-t1)/z

TR

R1

R2

t3

A

TR 

R1

R2DTXMIT = (t4-t3 )/z

DT(BHC) = (DTXMIT+DTRCVR)/2

TR

DEPTH DERIVED BOREHOLE

Page 46: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 46/60

Z=1 ft

10 ft

TR

R1

R2

t1 

t2 

C

DEPTH DERIVED BOREHOLE

COMPENSATION

TR

R1

R2

A,B 

TR 

R1

R2

t3

t4

TR

DEPTH DERIVED BOREHOLE

Page 47: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 47/60

TR

R1

R2

t1 

t2 

C

DEPTH DERIVED BOREHOLE

COMPENSATION

TR

R1

R2

t3

A,B 

TR 

R1

R2

t4

Page 48: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 48/60

 

TR

R2

TR

R1

BOREHOLE

COMPENSATION

CAVED HOLE

THE WYLLIE TIME -AVERAGE

Page 49: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 49/60

THE WYLLIE TIME -AVERAGE

EQUATION

1- f f

1MATRIX FLUID

THE WYLLIE TIME-AVERAGE

Page 50: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 50/60

THE WYLLIE TIME-AVERAGE

EQUATION 

t t t 

s o lv in g fo r p o r o sity

t t 

t t 

 f m a

sm a

 f m a

lo g

lo g

( )

f f 

f f 

1

The fluid in the zone of interest is

typically mud filtrate

is usually considered 189 u sec/ft f t

Page 51: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 51/60

The presence of gas in the pore space of a

rock will increase the sonic transit time over

its value in the same liquid-saturated rock.Because of the increase in tlog (cycle

skipping may also add to this effect), the

sonic porosity is optimistic if gas is present inthe flushed zone (using the Wyllie equation,

the input value for tf will be too low).

CYCLE SKIPPING

Page 52: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 52/60

THRESHOLD LEVEL 

E4 

E1

E2 

E3 

E3 

E1

E2 E4 

E1

E2 

CYCLE SKIPPING

Page 53: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 53/60

GAS EFFECT ON SONIC TOOL RESPONSE

As has already been stated,the presence of gas in the pore spaceof a rock will increase the sonic transit time over its value in the

same liquid-saturated rock. Gas is very compressible; when it

replaces pore liquid, it lower the rock rigidity more than its

density and decreases Sonic velocity. 

The decrease in velocity is almost negligible in deeper low-

porosity formations where pore volume is low and compaction

pressure is high, which means that pore fluid contributes little

to rock rigidity. However, it can be as high as 40 % in shallow,

high -porosity formations where pore volume is large and

compaction pressure is minimum-in which case pore fluid has a

much larger contribution to formation rigidity.

Page 54: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 54/60

COMPACTION CORRECTION

 p

s

1

tt

tt

mafluid

malog

 

 

 

 

100

Shale p t C 

EFFECTIVE POROSITY

Page 55: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 55/60

EFFECTIVE POROSITY

When shale is present in the formation,

the effective porosity can be calculated

from

  

  

  

  

ma fl

mashsh

shma fl

maeff 

t t 

t t V t t t 

t t  100logf 

Here t sh is from the adjacent (nearby)shale

Page 56: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 56/60

Lithology

Sandstone 55.6

Limestone 47.5Dolomites 43.5

) / ( ft st ma  

TYPICAL DELTA-t MATRIX VALUES

f

Page 57: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 57/60

Primary

porositySecondary

porosity(Vugs,or 

fractures)

PRIMARY and 

SECONDARY  POROSITY

 D

 sec

Page 58: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 58/60

OFFSET 8 FEET = LONG SPACED TOOL

Potential for deeper investigation

LONG SPACED VS SHORT SPACED TOOLS

OFFSET < 8 FEET = SHORT SPACED TOOL

TRANS

REC

OFFSET

Can make measurements in larg

LARGE BOREHOLE EFFECT

Page 59: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 59/60

LARGE BOREHOLE EFFECT

TR

R1

A

B

A

B

TR

R1

TR

R1

TR

R1

TR

R1

TR

R1

A

B

A

B

Page 60: Sonic -2000

7/31/2019 Sonic -2000

http://slidepdf.com/reader/full/sonic-2000 60/60