3
Solution to practice problem Week 3 Simplifying the problem, I can represent it as follows: Let us consider element 1: There are two degrees of freedom at each node A and B in the global truss coordinate system. Lets call them ! and ! at node A and ! and ! at node B as shown in the figure below. The global coordinate system is shown as XY using the dashed lines. Given the transformation matrix = !" !" 0 0 0 0 !" !" where, !" = and !" = and is the orientation to the global coordinate system., we can easily find the global stiffness matrix for element 1 as follows: ! = ! ! [] where ! = !" ! 1 1 1 1 For element 1, !" ! = 7.55, and = Element 1 Element 2 Node A Node B Node C = 36.869° Element 1 Node A Node B ! ! ! ! X Y

Solution to Practice Problem Week 3

  • Upload
    wafseh

  • View
    221

  • Download
    0

Embed Size (px)

DESCRIPTION

Linear modelling solution from tudelft sOLUTION OF WEEKE 3

Citation preview

Page 1: Solution to Practice Problem Week 3

Solution  to  practice  problem  Week  3    Simplifying  the  problem,  I  can  represent  it  as  follows:                                                                                                              Let  us  consider  element  1:    There  are  two  degrees  of  freedom  at  each  node  A  and  B  in  the  global  truss  coordinate  system.  Lets  call  them  𝑢!  and  𝑣!  at  node  A  and  𝑢!  and  𝑣!  at  node  B  as  shown  in  the  figure  below.                        The  global  coordinate  system  is  shown  as  XY  using  the  dashed  lines.    

Given  the  transformation  matrix   𝜆 =  𝑙!" 𝑚!" 0 00 0 𝑙!" 𝑚!"

 where,  𝑙!" = 𝑐𝑜𝑠𝜃  and  𝑚!" = 𝑠𝑖𝑛𝜃  and  𝜃  is  the  orientation  to  the  global  coordinate  system.,  we  can  easily  find  the  global  stiffness  matrix  for  element  1  as  follows:    

𝐾! = 𝜆 ! 𝑘! [𝜆]  

where     𝑘! = !"!

1 −1−1 1  

For  element  1,  !"!= 7.5𝑒5,  and  𝜃 = 0°  

 

Element  1  

Element  2  

Node  A   Node  B  

Node  C  

𝜃 = 36.869°      

Element  1  Node  A   Node  B  

𝑢!  

𝑣!  

𝑢!  

𝑣!  

X  

Y  

Page 2: Solution to Practice Problem Week 3

∴ 𝜆 =  1 0 0 00 0 1 0    

                                                                         𝑢! 𝑣! 𝑢! 𝑣!    

and,   𝐾! = 7.5𝑒51 0 −1 00 0 0 0−10

00

1 00 0

   

𝑢!𝑣!𝑢!𝑣!

 

 Now,  let  us  consider  element  2  with  degrees  of  freedom  at  each  node  as  𝑢!  and  𝑣!  at  node  C  and  𝑢!  and  𝑣!  at  node  B  and  𝜃 = 36.869°.    Substituting  in  the  same  equation  of  𝜆  and  𝐾,  we  get,                                                                                                                                𝑢!                  𝑣!              𝑢!            𝑣!  

𝐾! = 6𝑒50.65 0.48 −0.65 −0.480.48 0.35 −0.48 −0.35−0.65−0.48

−0.48−0.35

0.65 0.480.48 0.35

   

𝑢!𝑣!𝑢!𝑣!

 

 Now,  the  global  stiffness  matrix  for  the  entire  system  should  be  assembled  to  lead  to  a  6x6  matrix  as  follows:    

𝐾!"#$%" =

7.5𝑒5 0 −7.5𝑒50 0 0

−7.5𝑒5000

0000

11.4𝑒52.88𝑒5−3.9𝑒5−2.88𝑒5

     

0 0 00 0 0

2.88𝑒52.1𝑒5−2.88𝑒5−2.1𝑒5

−3.9𝑒5−2.88𝑒53.9𝑒52.88𝑒5

−2.88𝑒5−2.1𝑒52.88𝑒52.1𝑒5

   

 The  displacement  vector  will  look  like:  

𝑢!𝑣!𝑢!𝑣!𝑢!𝑣!

=

00𝑢!𝑣!00

 

 The  force  vector  will  look  like:    

𝐹!!𝐹!!𝐹!!𝐹!!𝐹!!𝐹!!

=

000

−10000

 

 The  nodes  A  and  B  are  clamped  so  the  corresponding  displacements  are  zero,  reducing  the  equilibrium  equation  to:    

Page 3: Solution to Practice Problem Week 3

11.4𝑒5 2.88𝑒52.88𝑒5 2.1𝑒5

𝑢!𝑣! = 0

−100    So,  that  gets  us  to:    

𝑢! = 1.8𝑒!!  𝑎𝑛𝑑  𝑣! = −7.3𝑒!!    You  can  verify  the  reaction  forces  by  yourself  to  check  for  accuracy.