4

Click here to load reader

Solution to Practice Exam 1

  • Upload
    gerrzen

  • View
    217

  • Download
    2

Embed Size (px)

Citation preview

  • Xline 26.4Xline 0.1213 ln12

    0.052

    40

    2 60 2 10 7 1609 0.1213Zb 132.25Zb1152

    100

    XT2 0.5XT2 0.1010020

    T2

    XT1 0.48XT1 0.1210025

    T1

    Xq 3.2Xq 0.810025

    Xd 4.8Xd 1.210025

    Gen

    Reactance data given in per unit or percent on rating basis: Generator: 15 kV, 25 MVA, Xd = 1.2 pu, Xq = 0.8 pu Transformer T1: 15 kV: 115 kV, 25 MVA, X = 12% Line: 115 kV, Deq = 12 ft, Ds = 0.0520 ft, length = 40 miles Transformer T2: 115 kV: 12.5 kV, 20 MVA, X = 10%

    1. Set up the system circuit diagram in per unit on the system base of 100 MVA and rated voltages. Hint: all reactances must be converted to per unit on the system base.

    ELCT 751 Practice Exam 1

    The exam is based on the small power system shown in the one-line diagram below. This is a balanced three-phase 60-Hz system. The generator maintains its terminal voltage at 1.00 per unit and its phase angle is taken to be zero. Instrumentation at the generating plant indicates that the generator output is P = 20.0 MW and Q = 5.15 MVAr. Resistances and shunt admittances may be neglected. Use a system base of 100 MVA for system per-unit calculations. Solve the problem in per unit, then convert all answers to SI units such as kV and MW.

    Load

    T2 T1

    Generator Transmission Line

  • arg Ig 14.44 degIbG

    100 1063 15 103

    A IbG 3.849 kA Ig IbG 794.9 A

    IbH100 1063 115 103

    A IbH 502 A Ig IbH 103.7 A

    I Ig same current for T1, Line, T2, and load since all in series

    3. Calculate the voltage and current at the high-voltage side of the step-up transformer T1.

    VT1 Vg j XT1 I j XT1 I 0.025 0.096j

    VT1 0.975 0.096j VT1 0.98 arg VT1 5.62 deg115

    3kV VT1 65.07 kV L N arg VT1 5.62 deg

    115 kV VT1 112.7 kV L L arg VT1 30 deg 24.38 deg

    XlineXlineZb

    Xline 0.200

    2. Calculate the generator power factor and current.

    Vg 1.0 j 0.0 Pg20100

    Pg 0.2 Qg5.15100

    Qg 0.052

    Sg Pg2 Qg

    2 Sg 0.207 pfgPgSg

    pfg 0.968 lag

    acos pfg 14.44 deg Ig SgVg e j Ig 0.207 arg Ig 14.44 deg

    or IgPg j Qg

    Vg Ig 0.207

  • 115 kV VL 111.4 kV L L arg VL 30 deg 15.9deg6. Calculate the generator excitation voltage Ea = Va + jXd Iad + jXq Iaq. (Remember to use the phasor diagram construction method in the notes to locate q and d axes)

    Vg 1 arg Vg 0 Ig 0.207 arg Ig 14.44 deglocate the q axis: Ex Vg j Xq Ig j Xq Ig 0.165 0.64jEx 1.165 0.64j arg Ex 28.79deg

    gives the angle by which q leads Vg

    43.23deg angle by which the q axis leads Ig

    Iq Ig cos ( ) Iq 0.15 convert to phasor Iq Iq ej

    4. Calculate the line inductive reactance, and the voltage and current at the high-voltage side of the step-down transformer T2.

    Xline 0.2 VT2 VT1 j Xline I j Xline I 0.01 0.04jVT2 0.965 0.136j VT2 0.975 arg VT2 8.02 deg

    115

    3kV VT2 64.7 kV L N arg VT2 8.02 deg

    115 kV VT2 112.1 kV L L arg VT2 30 deg 21.98deg5. Calculate the voltage and current at the low-voltage side of transformerT2. Calculate the power delivered to the load (both P and Q).

    VL VT2 j XT2 I j XT2 I 0.026 0.1jVL 0.939 0.236j VL 0.968 arg VL 14.1 deg

    115

    3kV VL 64.3 kV L N arg VL 14.1 deg

  • arg Ea 28.79degEa 1.555Ea 1.363 0.749jj Xd Id j Xq Iq 0.363 0.749j

    j Xq Iq 0.232 0.422jj Xd Id 0.595 0.327jarg Id 61.21 degId 0.141arg Iq 28.79degIq 0.15

    check

    arg Ea 28.79degEa 1.555Ea Vg j Xd Id j Xq IqId Id e

    j 2

    convert to phasorId 0.141Id Ig sin ( )