3
 ΣΗΜΜΥ Μαθηματική Ανάλυση (Συναρτήσεις Πολλών Μεταβλητών - Διανυσματική Ανάλυση) Λύσεις του 8ου φυλλαδίου ασκήσεων Ασκ ηση 1.  Να υπολογίσετε τον όγκο και το κέντρο μάζας του στερεού που φράσσεται, κάτω από τον κώνο  ϕ  =  π/6  και άνω από τη σφαίρα με κέντρο το σημείο  (0 , 0, α)  και ακτίνα  α . Λύση.  Η εξίσωση της σφαίρας με κέντρο το σημείο  (0, 0, α) και ακτίνα  α είναι ρ = 2α cos ϕ  και επομένως ο όγκος του στερεού είναι V  = ∫  2π 0 ∫  π/6 0 ∫  2α cos ϕ 0 ρ 2 cos ϕ d ρ d ϕ d θ  =  7 12 πα 3 κυβ. μον. Θεωρούμε την πυκνότητα μάζας  δ  στα θερή. Λόγ ω συμμετρία ς το κέντρο μάζας θα βρίσκεται πάνω στον άξονα  z, οπότε  x  =  y = 0. Για την τρίτη συντετ αγμέν η έχουμε z  =  1 m ∫  2π 0 ∫  π/6 0 ∫  2α cos ϕ 0 ρ cos ϕ δ ρ 2 cos ϕ d ρ d ϕ d θ =  37 28 α . Συνεπώς το κέντρο μάζας του στερεού είναι το  (0 , 0,  37 28 α). Ασκηση 2.  ΄Εστω  D  ο μοναδιαίος δίσκος κέντρου  (0, 0). Προσδι ορί στε το υς πραγματικούς αριθμούς  α, για το υς οποίο υς συγκλί νει το γενικευμένο ολοκλήρωμ α ∫ D 1 (x 2 + y 2 ) α dA . Λύση.  Χρησιμοποιούμε πολικές συνταταγμένες ∫ D 1 (x 2 + y 2 ) α dA  = lim ε0 ∫  2π 0 ∫  1 ε r 2(1α) drd θ = 2π  lim ε0 (1 ε 2(1α) ) . Επομένως το γενικευμένο ολοκλήρωμα συγκλίνει για  α < 1. Ασκηση 3.  Να βρείτε το κέντρο μάζας ενός καλωδίου πυκνότητας  δ (x,y,z) = kz  και ελικοειδούς σχήματος που περιγράφεται από τις παραμετρικές εξισώσεις x = 3 cos t , y = 3 sin t, z = 4t ,  0  ≤ t  ≤ π . Λύση.  Η μάζα του καλωδίου είναι m = ∫ r δ (x,y,z) ds = ∫  π 0 δ (r(t))||r (t)|| dt  = 10kπ 2 . 1

Soluti

Embed Size (px)

DESCRIPTION

====

Citation preview

  • SHMMUMajhmatik Anlush

    (Sunartseic Polln Metablhtn - Dianusmatik Anlush)Lseic tou 8ou fulladou asksewn

    Askhsh 1. Na upologsete ton gko kai to kntro mzac tou stereo poufrssetai, ktw ap ton kno = =6 kai nw ap th sfara me kntro toshmeo (0; 0; ) kai aktna .

    Lsh. H exswsh thc sfarac me kntro to shmeo (0; 0; ) kai aktna enai = 2 cos kai epomnwc o gkoc tou stereo enai

    V =

    Z 20

    Z =60

    Z 2 cos0

    2 cosd d d =7

    123 kub. mon.

    Jewrome thn puknthta mzac stajer. Lgw summetrac to kntro mzacja brsketai pnw ston xona z, opte x = y = 0. Gia thn trth suntetagmnhqoume

    z =1

    m

    Z 20

    Z =60

    Z 2 cos0

    cos 2 cosd d d =37

    28 :

    Sunepc to kntro mzac tou stereo enai to (0; 0; 3728).

    Askhsh 2. 'Estw D o monadiaoc dskoc kntrou (0; 0). Prosdiorste toucpragmatikoc arijmoc , gia touc opoouc sugklnei to genikeumno oloklrwmaZ Z

    D

    1

    (x2 + y2)dA :

    Lsh. Qrhsimopoiome polikc suntatagmnecZ ZD

    1

    (x2 + y2)dA = lim

    "!0

    Z 20

    Z 1"

    r2(1)dr d

    = 2 lim"!0

    (1 "2(1)) :

    Epomnwc to genikeumno oloklrwma sugklnei gia < 1.

    Askhsh 3. Na brete to kntro mzac enc kalwdou puknthtac (x; y; z) =kz kai elikoeidoc sqmatoc pou perigrfetai ap tic parametrikc exisseic

    x = 3 cos t ; y = 3 sin t ; z = 4t ; 0 t :

    Lsh. H mza tou kalwdou enai

    m =

    Zr

    (x; y; z) ds =

    Z 0

    (r(t))jjr0(t)jj dt = 10k2 :

    1

  • Oi suntetagmnec tou kntrou mzac enai

    x =1

    m

    Zr

    x (x; y; z) ds =1

    10k2

    Z 0

    (3 cos t)(4kt)5 dt = 122

    y =1

    m

    Zr

    y (x; y; z) ds =1

    10k2

    Z 0

    (3 sin t)(4kt)5 dt =6

    z =1

    m

    Zr

    z (x; y; z) ds =1

    10k2

    Z 0

    (4t)(4kt)5 dt =8

    3 :

    Askhsh 4. Na upologsete to epikamplio oloklrwmaZr

    x2dx+ xydy

    pou h kamplh r apoteletai ap to txo thc parabolc y = x2 ap to shmeo(0; 0) wc to shmeo (1; 1) kai to eujgrammo tmma ap to (1; 1) wc to (0; 0).

    Lsh. Orzoume

    r1(t) = (t; t2) t 2 [0; 1] kai r2(t) = (t; t) t 2 [0; 1]

    kai qoume tiZr

    x2dx+ xydy =

    Zr1

    x2dx+ xydy Zr2

    x2dx+ xydy

    =1

    15:

    Askhsh 5. 'Estw h sunrthsh

    f(x; y) = arctany

    x;

    h opoa, gia x > 0, enai sh me th gwna twn polikn suntetagmnwn toushmeou (x; y).

    (i) Dexte ti h f enai sunrthsh dunamiko gia to dianusmatik pedo

    F (x; y) = (y

    x2 + y2;

    x

    x2 + y2) :

    (ii) Upojtoume ti A(x1; y1) = (r1; 1), B(x2; y2) = (r2; 2) enai do shmeatou prtou tetarthmorou (x > 0) kai r ma C1 kamplh me arq to A kaiprac to B. Dexte ti Z

    r

    F ds = 2 1 :

    2

  • (iii) An r1 kai r2 enai parametrikopoiseic tou nw kai tou ktw hmikukloutou monadiaou kklou antstoiqa, me arq to (1; 0) kai prac to (1; 0) nadexete ti Z

    r1

    F ds = ; enZr2

    F ds = :

    'Erqetai to parapnw se antjesh me to jemelidec jerhma tou apeirosti-ko logismo gia dianusmatik peda klsewn?

    Lsh.

    (i) Paragwgzontac qoume ti

    rf(x; y) = ( yx2 + y2

    ;x

    x2 + y2) :

    (ii) Smfwna me to jemelidec jerhma tou apeirostiko logismo gia dianu-smatik peda klsewn qoume tiZ

    r

    F ds =Zr

    rf(x; y) ds = f(tan 2) f(tan 1) = 2 1 :

    (iii) PrgmatiZr1

    F ds =Z 0

    dt = kaiZr2

    F ds = Z 2

    dt = :

    To parapnw den rqetai se antjesh me to jemelidec jerhma tou apei-rostiko logismo gia dianusmatik peda klsewn afo h sunrthsh f denorzetai gia x = 0.

    3