View
283
Download
1
Embed Size (px)
C H A P T E R 13 Multiple IntegrationSection 13.1 Iterated Integrals and Area in the Plane . . . . . . . . . . . . . 133
Section 13.2 Double Integrals and Volume . . . . . . . . . . . . . . . . . . . 137 Section 13.3 Change of Variables: Polar Coordinates . . . . . . . . . . . . . 143 Section 13.4 Center of Mass and Moments of Inertia . . . . . . . . . . . . . 146 Section 13.5 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Section 13.6 Triple Integrals and Applications . . . . . . . . . . . . . . . . . 157 Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates . . . . 162 Section 13.8 Change of Variables: Jacobians . . . . . . . . . . . . . . . . . . 166 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C H A P T E R 13 Multiple IntegrationSection 13.1 Iterated Integrals and Area in the PlaneSolutions to Odd-Numbered Exercisesx
1.0
2x
y dy
2xy
1 2 y 2
x 0
3 2 x 2
2y
3.1
y dx x
2y
y ln x1
y ln 2y
0
y ln 2y
4
x2
5.0
x 2y dy
1 2 2 x y 2
4 0
x2
4x 2 2
x4
y
7.ey
y ln x dx x
1 y ln2 x 2
y ey
1 y ln2y 2x3 x3
ln2ey
y ln y 2
2
y2
x3
x3
9.0
ye u1
y x
dy dy, dv
xye e
y x 0
x0
e xe
y x
dy
x4 e
x2
x 2e
y x 0
x2 1
e
x2
x 2e
x2
y, du2
y x
dy, v 1 2 y 2
y x
1
2
1
1
11.0 0
x
y dy dx0
xy
dx0 0
2x
2 dx
x2
2x0
3
1
x
1
x
1
13.0 0
1
x2 dy dx0
y 1
x20
dx0
x 1
x2 dx
1 2 1 2 3
1
x2
3 2 0
1 3
2
4
2
15.1 0
x2
2y 2
1 dx dy1 2 1
1 3 x 3 64 3
4
2xy 2 8y 2
x0
dy 4 32
4 dy
191
6y 2 dy
4 19y 3
2y
3
2 1
20 3
1
1 0
y2
1
17.0
x
y dx dy0 1 0
1 2 x 2 1 1 2
xy0
1
y2
dy 1 y 2 1 3 y 6 1 2 1 2 31
y2
y 1
y 2 dy
y2
3 2 0
2 3
2
4 0
y2
19.0
2 4 y
2
dx dy 2
0
2x 4 y2sin
4 0
y2
2
2
dy0
2 dy
2y0
4
2
sin
2
21.0 0
r dr d0
r2 22
2
d0 0
1 sin2 2 1 42
d 1 cos 2 42 2
1 4
cos 20
d
2
2
sin 20
32
1 8
133
134
Chapter 131 x
Multiple Integration1 x
23.1 0
y dy dx1
y2 2
dx0
1 2
1
1 dx x2
1 2x
01
1 2
1 2
25.1 1
1 dx dy xy
1
1 ln x y
dy1 1
1 y
1 0 y
dy
Divergesy
8
3
8
3
8
8
27. A0 3 0 8
dy dx0 3
y0 8
dx0 3
3 dx
3x0 3
24
8 6
A0 0
dx dy0
x0
dy0
8 dy
8y0
24
4
2 x2 4 6 8
2
4 0
x2
2
4
x2
y
29. A0 2
dy dx0
y0
dx
4 3
y = 4 x2
40
x2 x3 34 y 2 0
dx 16 3 dx dy
2 1 x 1 2 3
4x4
1
A0 4 0 4 0
x0
y
4
4
dy0
4
y dy0
4
y
1 2
1 dy
2 4 34 2 0 x
y
3 2
4 0
2 8 34
16 32 x2
2
1
4
x2
31. A2 x 1 2 4
dy dxx2
y = 4 x2
y
33.03
dy dx0 4
y0
dx
(1, 3)
y2 1 x 2
dx
42
4 x 8 x x 3
x dx x2 24 0
y=x+21
0
42 1
x
2
x
2 dx
4x2 1 x 1 2
8 3
4
2 0
y
2
22
x 1 2 x 2
x 2 dx 1 3 x 3 dx dy1 2 4
dx dy0
8 3
2x3 y
9 24 0 4 y
Integration steps are similar to those above.y 4
2
A0 3 4 y y 2
23 4
dx dyy
32
y = (2
x )2
x0 3 4 y
dy
23
x0 4
dy
1 x1 2 3 4
y0
2 2y
4 2 4 3
y dy3
23
4 4 4 3
y dy4
1 2 y 2
y
3 2 0
y
3 2 3
9 2
Section 13.13 2x 3 5 5 0 5 x x
Iterated Integrals and Area in the Planea 0 0 a b a a2 x2 a b a a2 x2
135
35. A0 3 0
dy dx3 2x 3 5
dy dx y3 5 0
A 37. 4
dy dx0 2
y0
dx d
y0 3 0 0
dx 53
dx x
b a
a20
x 2 dx
ab0
cos2
2x dx 33
a sin , dx ab 22
a cos d cos 2 d ab 2 1 sin 2 22 0
x dx 1 2 x 25
10
1 2 x 32 5
5x0 y
53
ab 4 Therefore, A A 4b 0 0 a b
A0 2 3y 2 5
dx dyy
ab.b2 y2
x0 2 3y 2
dy 3y dy 2 5y 5 2 y 42
dx dy
ab 4
50 2
y
Therefore, A above.y
ab. Integration steps are similar to those
52y
5y dy 2
50b
y= b a
a2 x2
a
x
4 32
y= 2x 3
y=5x
1 x1 2 3 4 5
1
4
y
2
4
x2
39.0 0
f x, y dx dy, 0 x y, 0 y 44 0y
41.2 0 2
f x, y dy dx, 0 y 4 4y 3
4
x2,
2 x 2
4
y2
f x, y dy dxx 0 y2
dx dy
3 2 1 x 1 2 3 4 2 1 1 1 x 1 2
10
ln y
1
1
43.1 0
f x, y dx dy, 0 x ln y, 1 y 10ln 10 0y
45.1 x2
f x, y dy dx, x 2 y 1, 1 x 11 y
10
f x, y dy dxex
f x, y dx dy0y4
y
83
6 4 2 x 1 2 32 1 x 1 2 2
1361
Chapter 132 2 1
Multiple Integration1 1 1 y2 1 1 0 x2
47.0y
dy dx0 0 0
dx dy
2
49.0 y2y
dx dy1
dy dx
2
3
1
21
x
1x
1
1
2
3
2
x
4
4 0
x
2
4 y
y
2
1
1
2y
51.0y
dy dx0 2
dy dx0
dx dy
4
53.0y
dy dxx 2 0 0
dx dy
1
3
22
1x1 2 3 4
1
1
x
1
2
1
3
y
1
x
55.0 y2
dx dy0 x3
dy dx
5 122
x= 3 yy
x = y2
1
(1, 1)x
1
2
57. The first integral arises using vertical representative rectangles. The second two integrals arise using horizontal representative rectangles.5 0 x 50 x2 5
x 2y 2 dy dx0
1 2 x 50 3
x2
3 2
1 5 x dx 3
15625 245 0 y 5 2 0 50 y2 5
x 2y 2 dx dy0 5
x 2y 2 dx dy0
1 5 y dy 3
5 5
2
1 50 3
y2
3 2
y2 dy
15625 18
15625 18
15625 18
15625 24y
y=
50 x 2
(0, 5 2 )5
(5, 5) y=xx 5
Section 13.22 2 2 y 2
Double Integrals and Volume
137
59.0 x
x 1
y3 dy dx0 0 2
x 1 1 2
y3 dx dy0
1 1 2 1 3 2 1 3x
y3
x2 23 2
y
dy0 2
10
y3 y 2 dy
y3
0
1 27 9
1 1 9
26 9
1
1
1
x
1
61.0 y
sin x 2 dx dy0 1 0
sin x 2 dy dx0
y sin x 20 1 0
dx 1 cos 1 24
x sin x 2 dx0
1 cos x 2 2
1 1 2y 0
1 1 2
cos 1
0.2298
2
2x
63.0 x2
x3
3y 2 dy dx
1664 105
15.848
65.0
x
2 1 y
1
dx dy
ln 5
2
2.590
67. (a) x x8
y3 y
x1
3
y
4 2y x2x1 3
32y y
x2 32
4
x = y32
(8, 2)
(b)0 x2 32
x 2y
xy 2 dy dx2
x 2 4 6 8
x = 4 2y
(c) Both integrals equal 67520 693
97.43
2
4 0
x2
2
1 0
cos
69.0
exy dy dx
20.5648
71.0
6r 2 cos dr d
15 2
73. An iterated integral is a double integral of a function of two variables. First integrate with respect to one variable while holding the other variable constant. Then integrate with respect to the second variable. 75. The region is a rectangle. 77. True
Section 13.2For Exercise 13, 1 1 , , 2 2 3 1 , , 2 2 xi
Double Integrals and Volumeyi 1 and the midpoints of the squares are 7 1 , , 2 2 1 3 , , 2 2 3 3 , , 2 2 5 3 , , 2 2 7 3 , . 2 24 32
y
5 1 , , 2 2
1 x1 2 3 4
1. f x, y8
x
y xi yi x 1 24
f xi, y
Recommended
View more >