Solucionario Cap 11

Embed Size (px)

Citation preview

  • 8/11/2019 Solucionario Cap 11

    1/30

  • 8/11/2019 Solucionario Cap 11

    2/30

    h

    b450g4b25gb750gt=1.54 h, 19.54 h

    b450

    g4

    b25

    gb750 2693

    gt719. h ,1081. h

    R|750 + 450t - 25tb0t719. and 1081.t1954.g(tank is filling or draining)

    ||T0.

    .

    11.3 a. mwabtbt0,mw750g&bt5,mw1000gmwbkg hg75050tbgBalance on methanol: Accumulation = InputOutput

    Mkg CH3OH in tank

    mfmw1200 kg hb75050tgkg h-170dMdt

    EdM

    dt45050tbkg h g

    t0,M750 kg

    b.

    M

    dM

    t

    b45050tgdt750

    E0

    M750450t25t2

    EM750450t25t2

    Check the solution in two ways :

    (1)t0,M750 kgsatisfies the initial condition;

    (2)dM

    dt45050t reproduces the mass balance.

    c.dM

    dt

    0t450 509 hM750450(9)25(9)22775 kg (maximum)

    M0750450t25t2

    t450

    2

    2b25g

    d.3.40 m3103liter 0.792 kg

    1 m3 1 liter2693 kg (capacity of tank)

    M2693750450t25t2

    t450

    2

    2b25gExpressions for M(t) are:

    2

    M(t) =S2693 (719t10.81) (tank is overflowing)(19.54t2054) (tank is empty, draining

    as fast as methanol is fed to it)

    11-2

  • 8/11/2019 Solucionario Cap 11

    3/30

    11.3 (contd)

    3000

    2500

    2000

    1500

    1000

    500

    0

    0 5 10 15 20

    t(h)

    11.4 a. Air initially in tank:N010.0 ft3 492R 1

    lb - mole532R 359 ft3bSTPg

    0.0258 lb - mole

    Air in tank after 15 s:

    PfV NfRT Pf 0.0258 lb - mole 114.7 psia

    P0V N0RT P0 14.7 psia

    .

    15 s

    b. Balance on air in tank: Accumulation = input

    dNdt

    0.0117blb - moles sg;t0 ,N0.0258 lb - mole

    c. Integrate balance:

    N t

    dNndtN0.02580.0117tlb - mole air g0.0258 0

    Check the solution in two ways :

    (1)t= 0,N= 0.0258 lb - molesatisfies the initial condition

    (2)dN

    dt0.0117 lb - moleair / sreproduces the mass balance

    d.

    O2

    in

    tan

    k

    0.2

    1

    b143

    g030 lb - mole O2t120 sN0.0258b0.0117gb120g143 lb - moles air

  • 8/11/2019 Solucionario Cap 11

    4/30

    M(kg)

    NfN0 0.2013 lb - mole

    b020130.0258glb - mole air0.0117 lb - mole air sRate of addition:n

    b

    . .

    .

  • 8/11/2019 Solucionario Cap 11

    5/30

    11.5 a. Since the temperature and pressure of the gas are constant, a volume balance on the gas

    is equivalent to a mole balance (conversion factors cancel).

    Accumulation = inputoutputdV

    dt

    540 m

    h

    31h

    60 min wm3min

    t0,V3.00103m3t0 corresponds to 8:00 AMV

    3.00103

    t t

    dV9.00wdtVm33.001039.00twdt tin minutes0 0

    b.

    2 4 0 2 4 2 4

    0

    2

    48

    8

    m

    3

    V

    3001

    03

    9.00

    b240g2488

    2672

    m3

    Letwitabulated value ofwatt10bi1g i1, 2,, 2510

    . . .3

    c.

    d.

    Measure the height of the float roof (proportional to volume).

    The feed rate decreased, or the withdrawal rate increased between data points,

    or the storage tank has a leak, or Simpsons rule introduced an error.

    REAL VW(25), T, V, V0, H

    INTEGER I

    DATA V0, H/3.0E3, 10./

    READ (5, *) (VW(I), I = 1, 25)

    V= V0

    T=0.

    WRITE (6, 1)

    WRITE (6, 2) T, VDO 10 I = 2, 25

    T = H * (I1)

    V = V + 9.00 * H0.5 * H * (VW(I1) + VW(I))

    WRITE (6, 2) T, V

    10

    1

    2

    CONTINUE

    FORMAT ('TIME (MIN) VOLUME (CUBIC METERS)')

    FORMAT (F8.2, 7X, F6.0)

    END

    $DATA

    11.4 11.9 12.1 11.8 11.5 11.3

    Results :

    TIME (MIN)0.00

    10.0020.00

  • 8/11/2019 Solucionario Cap 11

    6/30

    L10wdt w1w254w i2w iM P i2, 4, i3, 5,3b g b g114984 12462 113.4

    .

    230.00

    VOLUME (CUBIC M ETERS)

    3000.

    2974.

    2944.

    2683.

    240.00 2674.

    Vtrapezoid2674 m3;VSimpson2672 m3;26742672

    2672100%0 .07%

    Simpsons rule is more accurate .

    11-4

  • 8/11/2019 Solucionario Cap 11

    7/30

    V

    out0.200Vout20.0 L minVs100 L

    out60

    L

    .

    .

    .

    V

    F I tH K1 20.00.200V

    40.0

    g

    26.5 minb glnb1 2 0 0

    .

    11.6 a. outbL mingkVbgV300

    b. Balance on water: Accumulation = inputoutput (L/min).

    (Balance volume directly since density is constant)dV

    dt20.00200V

    t0 ,V300

    c.dV

    dt02000200VsVs100 L

    The plot of V vs. t begins at (t=0, V=300). When t=0, the slope (dV/dt) is

    2000.200(300) 40.0.As t increases, V decreases.dV/dt20.00.200Vbecomes less negative, approaches zero ast . The curve is therefore concave up.

    t

    d.

    V t

    dt30020.00.200V 0

    ln0.200

    0.50.005Vexpb0.200tgV100.0200.0 expb0.200tV101b100g101 Lb1% from steady stateg

    101100200 exp0.200tt 0.200

    11-5

    g

  • 8/11/2019 Solucionario Cap 11

    8/30

    l n D2

    D1 l n

    b7552385

    gt2t1 61

    b 3000e0.230tkg week

    .

    30000.230t

    b g45, 440 mol

    b g28,920 mol min

    x

    n28,920

    15 mol SO 2.

    . . .

    11.7 a.

    b.

    A plot ofD(log scale) vs.t(rectangular scale) yields a straight line through the points ( t1week,D2385 kg week) and (t6weeks,D755 kg week).

    lnDbtlnaDaebt

    b 0230

    lnalnD1bt1lnb2385gb0.230gb1g8.007ae8.0073000E

    D3000e0.230t

    Inventory balance: Accumulation =output

    g-170dI

    dtt0,I18,000 kg

    c.

    I t

    dI 3000e0.230tdtI18,00018, 000 0

    t I4957 kg

    0.230e

    t

    0I495713,043e0.230t

    11.8 a. Total moles in room:N1100 m3 273 K 103mol

    295 K 22.4 m3STP

    Molar throughput rate:n700 m3

    min

    273 K 103mol

    295 K 22.4 m3STP

    SO2balance(t0is the instant after theSO2is released into the room):

    Nbmolgbmol SO2molgmol SO2in roomAccumulation =output.

    d

    dtbNxg nx dx

    N45,440dt 0.6364x

    t0,x.

    45,440 mol330105mol SO2mol

    b. The plot of x vs. t begins at (t=0, x=3.3010-5). When t=0, the slope (dx/dt) is

    06364330105 210105.As t increases, x decreases.dx dt 0.6364xbecomes less negative, approaches zero ast . The curveis therefore concave up.

    11-6

  • 8/11/2019 Solucionario Cap 11

    9/30

    x

    ..

    . .

    .

    . .

    .

    11.8 (contd)

    0

    t

    c. Separate variables and integrate the balance equation:x

    3.30105

    dx

    x

    t

    06364dtln0

    x

    330105

    06364tx330105e0.6364t

    Check the solution in two ways :

    (1) t = 0, x = 3.3010-5mol SO2/ molsatisfies the initial condition;

    (2)dx

    dt 0.6364330105e0.6364t 0.6364xreproduces the mass balance.

    d. CS O245,440 moles

    1100 m3

    xmol SO2

    mol

    1 m3

    103L4131102x13632106e0.6364tmol SO2/ L

    i) t2 minCSO2 382 107mol SO2

    liter

    ii) x10 6tlne10 63.30 105

    0.6364j55. min

    e. The room air composition may not be uniform, so the actual concentration of the SO 2in parts of the room may still be higher than the safe level. Also, safe is on the average;

    someone would be particularly sensitive to SO2.

    11-7

  • 8/11/2019 Solucionario Cap 11

    10/30

    mol PpMolar flow rate of entering and leaving gas:n( )

    FG IJRate at which CO leaves:n( H K

    F I pxd(Nx) Pp dx P

    H K

    dx p

    p r

    e jln 10035106283 hrstr

    b g xmbkg mingE

    dx m

    11.9 a. Balance on CO : Accumulation=-output

    N(mol)x( mol CO / mol) = total moles of CO in the laboratory

    h RT

    kmol kmol CO Pp)x = x

    h kmol RT

    CO balance: Accumulation = -output

    x dt RT dt NRT

    EPVNRT x

    dt V

    kmol COt0,x0.01

    kmol

    b.

    x

    0.01

    dx

    x

    t

    V0dttr

    V

    plnb100xg

    c.

    d.

    11.10 a.

    V350 m3350

    .700

    The room air composition may not be uniform, so the actual concentration of CO

    in parts of the room may still be higher than the safe level. Also, safe is on the

    average; someone could be particularly sensitive to CO.

    Precautionary steps :Purge the laboratory longer than the calculated purge time. Use a CO detector

    to measure the real concentration of CO in the laboratory and make sure it is

    lower than the safe level everywhere in the laboratory.

    Total mass balance: Accumulation = inputoutput

    dM

    dtmmbkg ming0Mis a constant200 kg

    b. Sodium nitrate balance: Accumulation = - output

    x= mass fraction ofNaNO3

    d xM

    dt

    x xdt M 200

    t0,x90 2000.45

    11-8

  • 8/11/2019 Solucionario Cap 11

    11/30

    x

    x

    FGH IJ

    dx m m t m

    .

    11.10 (contd)

    c.0.45

    0

    m50 kg / min

    m100 kg / min

    m200 kg / min

    t(min)

    dx

    dt

    m

    200x0 , x decreases when t increases

    dx

    dt becomes less negative until x reaches 0;

    Each curve is concave up and approaches x = 0 as t ;

    mincreasesdx

    dtbecomes more negativex decreases faster.

    d.

    x

    0.45

    dx

    x

    t

    0

    m

    Mdtln

    x

    0.45

    m

    200tx0.45 exp

    mt

    200 KCheck the solution :

    (1) t = 0, x = 0.45satisfies the initial condition;

    (2) 0.45 exp( ) xsatisfies the mass balance.

    dt 200 200 200

    0.45

    0.4

    0.35

    0.3

    0.25

    0.2

    0.15

    0.1

    0.05

    0

    m50 kg / min

    m100 kg / min

    m200 kg / min

    0 5 10 15 20 25

    t(min)

    e. m100 kg mint 2 lndxf0.45i90%xf0.045t4.6 min

    99%xf0.0045t9.2 min

    99.9%xf0.00045t138 min

    11-9

  • 8/11/2019 Solucionario Cap 11

    12/30

    11.11 a. Mass of tracer in tank:Vem3jekg m3 jTracer balance : Accumulation =output. If perfectly mixed,CoutCtankC

    d VC

    dt

    V is constant dt V

    t0,C

    C

    m0

    V

    b.

    C

    m0V

    dC

    C

    t

    0Vdtln

    F Cm0V

    I

    t

    VC

    m0

    Vexp

    V

    c.

    11.12 a.

    PlotC(log scale) vst(rect. scale) on semilog paper: Data lie on straight line (verifying assumption

    of perfect mixing) throughet1,C0223103j&et2,C0.050103j.

    V 21

    min

    In tent at any time, P=14.7 psia, V=40.0 ft3, T=68F=528R

    NPV

    RTm(liquid)

    14.7 psia

    ft3psia10.73

    lb - moleoR

    40.0 ft3

    528oR01038 lb - mole

    b. Molar throughout rate:

    60 ft3492R 16.0 psia 1 lb - mole

    2

    Balance on O2: Accumulation = inputoutput

    d Nx

    dt dt

    c.

    x

    0.210.35x

    t

    0. b

    0

    .

    3

    5

    0

    21gb0.35xg

  • 8/11/2019 Solucionario Cap 11

    13/30

    C

    b g Cbkg mingdC

    z z FG IJtH KGH JK

    l n b0.0500. 223g 1.495 min1

    EVe30 mj e 1.495 minj201 m 3 1 3

    .

    .

    ninn

    outn

    Moles of O 2in tank=N(lb - mole) F lb - mole OIHlb - moleK

    .

    b g 0.35nxn0.1038dx0.1695b0.35xgdxdt1.63b0.35xgt0,x0.21

    z x z163dt ln . .e1.63tx0.35014e1.63t

    LM FG IJOPx0.27t ln 0.343 min (or 20.6 s)N H KQ

    .

    .

    163t

    035x.

    014

    1 0.350.27

    1.63 0.350.21

    11-10

  • 8/11/2019 Solucionario Cap 11

    14/30

    C

    FG IJ b gH KLs kC

    z z F CI ktt lnbCCgC kdtln 0

    t1 22.6 hrk

    C0.01C0 b g17.2 hr

    .

    b g kC Vdt

    z zdCA kdtlnCA0CA

    FGCIJ ktCHCK

    b g b g. .

    l n b0. 018500262120.0213

    .

    b g kC VbVconstant; cancelsgt

    z z dCA kdt CA 0CA

    LM OP

    11.13 a. Mass of is otope at any timeVblitersgbmg isotope literBalance on isotope: Accumulation =consumption

    g

    d

    dtbVCg kC mg VL Cancel V

    dC

    dt

    t0,CC0

    Separate variables and integrate

    C t

    C0C 0 HC0K k

    C0.5C0t1 2 lnb0.5g

    kt 12

    ln 2

    k

    b.ln 2

    2.6 hr

    t=-ln(C/C0)/k

    0267 hr1

    ln 0.01

    t 0.267

    11.14Aproducts

    a. Mole balance onA: Accumulation =consumption

    d CAVA

    bVconstant; cancelsgt0,CACA0

    CA t

    0

    A

    A0A CA0expbktg

    b. PlotCA(log scale) vs.t(rect. scale) on semilog paper. The data fall on a straight line (verifies

    assumption of first-order) throught213,CA00262&t120.0,CA0.0185.

    lnCA ktlnCA0

    k.

    g 353.10 3 min1k35103min1

    11.152A2BC

    a. Mole balance onA: Accumulation =consumption

    d CAV 2A

    t0,CACA0

    CA t

    0

    1

    CA

    1

    CA0 ktCA N

    1

    CA0

    ktQ

    1

    11-11

  • 8/11/2019 Solucionario Cap 11

    15/30

    ; butCA0A0

    .

    . . .

    .

    1432 satm1060209

    1 01351 0683

    b1015 Kgb008206 Latm molKg0582 L molsk143.2 satm

    FG IJH K GH JK

    s K

    .

    FGH IJ

    b0.08206 Latm molKgb980 Kg104510. .

    L OCA0.10CA0t LM OP

    11.15 (contd)

    b. CA0.5CA0 1

    0.5CA0

    1

    CA0 kt1 2t1 2

    1

    kCA0

    n

    V

    P0

    RTt1 2

    RT

    kP0

    nA0.5nA0

    nBb0.5nA0molAreact.gb2 molB2 molAreact.g05nA0nCb0.5nA0molAreact.gb1 molC2 molAreact.g0.25nA0total moles125nA0P1 2125

    nA0RT

    V125P0

    c. Plott1 2vs.1P0on rectangular paper. Data fall on straight line (verifying 2 ndorder

    decomposition) throughdt1 21060, 1P01 0135i&dt1 2209, 1P01 0.683i

    Slope:RT

    k . .

    .

    .

    .

    d. t1 2RT

    k0P0exp

    E

    RTln

    Ft1 2P0RT

    Iln

    1

    k0

    E1

    R T

    Plott1 2P0RT(log scale) vs.1T(rect. scale) on semilog paper.

    t1 2bg,P01 atm,R0.08206 Latm / (molK), TbgData fall on straight line throughdt1 2P0RT74.0, 1T1 900i&dt

    1 2P0 RT0.6383, 1T1 1050i

    E

    R

    lnb0.6383 74 .0g1 10501 900

    29,940 KR=8.314 J/ (mol K)

    E2 .49105J mol

    ln

    1

    k0

    lnb06383g 29 ,9401050

    28.96k03.791012

    L (mols)

    e. T980 Kkk0expE

    RT K0.204 L (mols)

    CA0070b120 atmg

    .2 mol L

    90% conversion

    1 1 1

    kNCA CA0Q4222 s70.4 min

    1 1

    0.204N1.04510 3 1

    1.045102 Q

    11-12

  • 8/11/2019 Solucionario Cap 11

    16/30

    z dCA z dt b g b g2CACA0 tt2CA0CA

    b g

    FG IJ FG IJH K H K

    k1 k

    .

    .

    . . .

    b g0.12035 mol gas

    bCg0.60b012035 molg3.00 L0.02407 mol L COU|dCi0.40b012035 molg3.00 L0.01605 mol L ClV|W initial concentrations

    .

    Cl2i.

    btg0.02407Cbtg U|btg0.01605Cb tg V|W Since 1 mol COCl formed requires 1 mol of each reactantC

    d i 875CCOCCl 2

    2.92d0.02407C pid0. 01605C p

    d194124.3Ci

    .

    .

    z d194124.3Ci

    11.16AB

    a. Mole balance onA: Accumulation =consumption(Vconstant)

    dCA

    dt

    k1CA

    1k2CA

    t0,CACA0CA1k2CA

    CA0 k1CA

    t

    0

    1

    k1

    l nCA

    CA0

    k k

    k1 k1

    1

    k1

    l nCA

    CA0

    b. PlottbCACA0gvs.lnbCA/CA0 g b C A 0 CAgon rectangular paper:y

    t 1 lnCACA0 k2

    bCA0CAg ;CA0CA1slope intercept

    y1 x1 y2 x2

    Data fall on straight line through116.28,02111&130.01,0.2496

    1

    k1

    13001116.28

    0.2496b0.2111g 356.62k12 .80103L (mols)

    k2

    k1130.01356.62b02496g4100k20115 L mol

    11.17COCl2COCl2

    a.

    3.00 L 273 K 1 mol

    303.8 K 22.4 L STP

    COi

    2

    CCO p

    2

    Cl2 p

    b. Mole balance on Phosgene: Accumulation = generation

    d VCp

    dt

    .

    d1586CCl234.3Cp i2

    V=3.00 LdCp

    dt

    . p

    t0,Cp0

    2

    i

    c. Cl2limiting; 75% conversionCp075b0.01605g0.01204 mol L

    t1

    2.92

    0.01204

    0

    2

    . p

    d0.02407Cpid0.01605CpidC p

    11-13

  • 8/11/2019 Solucionario Cap 11

    17/30

    .

    FjGmolsIJdCdtkSVeCHsKt0,C0

    *

    z z e j

    dCA kS kS dt lnC*ACA

    CACA CA 0

    kSexpb g*

    11.17 (contd)

    d.

    20

    30

    40

    10

    1

    REAL F(51), SUM1, SUM2, SIMP

    INTEGER I, J, NPD(3), N, NM1, NM2

    DATA NPD/5, 21, 51/

    FN(C) = (1.44124.3 * C) ** 2/(0.02407C)/(0.01605C)

    DO 10 I = 1, 3

    N = NPD(I)NM1 = N1

    NM2 = N2

    DO 20 J = 1, N

    C = 0.01204 * FLOAT(J1)/FLOAT(NM1)

    F(J) = FN(C)

    CONTINUE

    SUM1 = 0.

    DO 30 J = 2, NM1, 2

    SUM = SUM1 + F(S)

    CONTINUE

    SUM2 = 0.

    DO 40 J = 3, NM2, 2

    SUM2 = SUM2 + F(J)CONTINUE

    SIMP = 0.01204/FLOAT(NM1)/3.0 * (F(1) + F(N) + 4.0 * SUM1 + 2.0 * SUM2)

    T = SIMP/2.92

    WRITE (6, 1) N, T

    CONTINUE

    FORMAT (I4, 'POINTS', 2X, F7.1, 'MINUTES')

    END

    RESULTS

    5 POINTS91.0 MINUTES

    21 POINTS90.4 MINUTES

    51 POINTS90.4 MINUTES

    t904 minutes

    11.18 a. Moles of CO2in liquid phase at any timeVecm3jCAemols cm3Balance on CO2in liquid phase:Accumulation = input

    j

    d

    dtbVCAg kSeCACA

    V

    A

    A

    *A CA j

    Separate variables and integrate. SincepAyAPis constant,C*ApAHis also a constant.

    CA t CA

    t0 0V V

    lnC*ACA

    C*A

    Vt1

    CA

    C*AekSt VCACAe1ekSt V j

    1CAC*A

    11-14

  • 8/11/2019 Solucionario Cap 11

    18/30

    lnL 1 OP

    a f a f d9230 atm cm moli 0.65 10 m ol c mC*AyAP H0.30 20 atm.

    F0.6210I9800 s2.7 hre5000 cmj 3b002. cm sge785. cmj H 0.6510JK

    v

    E

    z z vdtVvtdVz zdNA

    CA0vkNA

    F I1 CA0vkNA

    H KCA0v

    11.18 (contd)

    b. tV

    kS NMCA

    C*A QPV5 L5000 cm3,k0.020 cm s ,S785 cm2,CA0.62103mol / cm3

    3 3 3

    t

    3

    2lnG1 3

    (We assume, in the absence of more information, that the gas-liquid interfacial surface area equals

    the cross sectional area of the tank. If the liquid is well agitated, Smay in fact be much greater than

    this value, leading to a significantly lowertthan that to be calculated)

    11.19AB

    a. Total Mass Balance: AccumulationinputdM d(V)dt dt

    dV

    dtv

    t0,V0

    A Balance : Accumulationinputconsumption

    dNA

    dtCA0v(kCA)VCA=NA/V

    dNA

    dtCAovkNA

    t0 ,NA0

    b. Steady State:dNA

    dt0NA

    CA0v

    k

    c.

    V t

    0 0

    N A t

    0 0

    ln k

    dt

    tCA0vkNA

    CA0v ekt

    NA CA0v

    k1expbktg t NA CA0v

    k

    CANA

    V

    CA0[1exp(kt)]kt

    11-15

  • 8/11/2019 Solucionario Cap 11

    19/30

    (1) In our calculation, V =vtt , V .

    limCAlim

    QW

    . .

    z zo

    a f

    z z025 C

    s.

    11.19 (contd)

    When the feed rate of A equals the rate at which A reacts, NAreaches a steady value.

    NAwould never reach the steady value in a real reactor. The reasons are:

    But in a real reactor, the volume is limited by the reactor volume;(2) The steady value can only be reached at t . In a real reactor, the reaction time is finite.

    d.t t

    CA0[1exp(kt)]

    ktlim

    t

    CA0

    kt0

    From part c,t , NAa finite number, V CA NAV

    0

    11.20 a. MCvdT

    dt

    M(3.00 L)(100 kg / L) = 300 kg

    CvCp(0.0754 kJ / moloC)(1 mol / 0.018 kg) = 4.184 kJ / kgoC

    W0dT

    dt0.0797Q(kJ / s)

    t= 0,T= 18oC

    b.

    100oC 240 s

    dT18 C 0

    0.0797QdtQ10018

    2400.07974.287

    kJ

    s4.29 kW

    c. Stove output is much greater.

    Only a small fraction of energy goes to heat the water.

    Some energy heats the kettle.

    Some energy is lost to the surroundings (air).

    11.21 a. Energy balance:MCvdT

    dtQW

    M20.0 kg

    CvCp( 0.0754 kJ / moloC)(1 mol / 0.0180 kg) = 4.184 kJ / (kg oC)

    Q0.97 (2.50)2.425 kJ s

    W0

    dT

    dt0.0290bC sg,t0 ,T25C

    The other 3% of the energy is used to heat the vessel or is lost to the surroundings.

    b.

    T

    t

    o

    dT 00290dtT25C0.0290tbg

    c. T100Ctb10025g0.02902585 s43.1 minNo, since the vessel is closed, the pressure will be greater than 1 atm (the pressure at the normal

    boiling point).

    11-16

  • 8/11/2019 Solucionario Cap 11

    20/30

    Tb(oC)

    B

    eje 7.7gcm j 462gM60 cm

    U0.050 J (mincmC)

    dTb

    T25

    FGT25IJ 002635tH9525Kln .

    .

    11.22 a.Energy balance on the bar

    MCvdTb

    dtQW UAbTbTw g

    Table B.1

    3 3

    Cv0.46 kJ (kgC),Tw25C2

    A2a2fa3fa2fa10fa3fa10fcm2112 cm2

    dTb

    dt 0.02635bTb25gbC min g

    t0,Tb95C

    b.dTb

    dt0 0.02635dTbf25iTbf25C

    95

    85

    75

    65

    55

    45

    35

    25

    15

    5

    0

    t

    c.

    Tb t

    0.02635dt95b 0

    b

    Tbbtg2570 expb0.02635tgCheck the solution in three ways :

    (1) t = 0, Tb257095oCsatisfies the initial condition;

    (2)dTb

    dt 700.02635e0.02635t 002635(Tb25)reproduces the mass balance;

    (3) t , Tb25oCconfirms the steady state condition.

    Tb30Ct100 min

    11-17

  • 8/11/2019 Solucionario Cap 11

    21/30

    T(oC)

    .

    .

    FG IJ. . .

    . . .

    .

    z z

    0.39470.096x( 0.015795721104x)T

    L0.39470.096xe0.01579572110xj55OPlnM4

    1

    MM0.39470.096xe0.01579572110xj25PP400.015795.721104

    N Q4

    . .

    ..

    11.23

    12.0 kg/min

    25oC

    12.0 kg/min

    T (oC)

    Q (kJ/min) = UA (Tsteam-T)

    a. Energy Balance :MCvdT

    dtmCpb25TgUAbTsteamT g

    M760 kg

    m12.0 kg min

    dT/dt1500.0224T(oC min),t0 ,T25oC

    CvCp2.30 kJ (minC)

    UA11.5 kJ (minC)

    Tsteamasat'd; 7.5barsf167.8C

    b. Steady State:

    dT

    dt 01500.0224TsTs67C

    67

    25

    0

    t

    c.

    T

    f

    25

    dT

    15000224T

    t

    dtt 0

    1

    00224ln H

    1500.0224T

    0.94 KT150094 exp(0.0224t)

    0.0224

    t40 min.T498C

    d. Uchanged. Letx(UA)new. The differential equation becomes:

    dT

    dt

    55

    25

    0.39470.096x( 0.015795.721x)T

    dT

    .

    x.

    x14.27 kJ / (minoC)

    40

    0

    dt

    .

    U

    Uinitial

    (UA)

    (UA)initial

    1427115

    115100%241%

    11-18

  • 8/11/2019 Solucionario Cap 11

    22/30

    QW

    b gU|VT200.0649tbsg0.0649C s|W T40Ct308 s51. min

    b gTime to reachTbneglect evaporation :t 926 sb g

    .

    .

    .

    .

    b gQW

    b g b

    11.24 a.

    b.

    c.

    dTEnergy balance:MCv

    dt

    W0,Cv1.77 J gC

    M350 g,Q40.2W40.2 J s

    dT

    dtt0,T20C

    The benzene temperature will continue to rise until it reachesTb801C; thereafter the heatinput will serve to vaporize benzene isothermally.

    801200.0649

    Time remaining: 40 minutes60 s min926 s1474 s

    Evaporation:Hvb30.765 kJ molgb1 mol 78.11 ggb1000 J kJg393 J gEvaporation rateb40.2 J sgb393 J gg0102 g sBenzene remaining350 gb0102 g sgb1474 sg200 g

    1. Used a dirty flask. Chemicals remaining in the flask could react with benzene. Use a clean flask.

    2. Put an open flask on the burner. Benzene vaporizes toxicity, fire hazard.Use a covered container or work under a hood.

    3. Left the burner unattended.

    4. Looked down into the flask with the boiling chemicals. Damage eyes. Wear goggles.

    5. Rubbed his eyes with his hand. Wash with water.

    6. Picked up flask with bare hands. Use lab gloves.

    7. Put hot flask on partners homework. Fire hazard.

    11.25 a.Moles of air in room:n

    60 m3 273 K 1 kg - mole

    283 K 22.4 m3STP 2.58 kg - moles

    Energy balance on room air:nCvdT

    dt

    QmsHvH2O, 3bars, sat'd30.0TT0

    W0

    g

    nCvdT

    dtmsHv30.0bTT0 g

    N2.58 kg - moles

    Cv20.8 kJ (kg- moleC)

    Hv2163 kJ kgbfrom Table B.6T00C

    g

    dT

    dt40.3ms0.559TbC hr g

    t0,T10C

    (Note: a real process of this type would involve air escaping from the room and a constant pressure

    being maintained. We simplify the analysis by assumingnis constant.)

    11-19

  • 8/11/2019 Solucionario Cap 11

    23/30

    .

    t

    L gO 4. 8 h r 1 13. 4 0559 b23b gPQMN. .

    250 kg 4.00 kJb6020gC.

    .

    t

    dT0001QdTT20oCQdt

    bg

    30

    3

    b g

    Past 600s, Q 100 b g t600 st6

    z z zT200.001Qdt200001MMQdt tP6P

    MM PPN Q

    GH66002JKtbsg0001Ft I.

    . .

    M P

    11.25 (contd)

    b.

    c.

    At steady-state ,dT dt040.3ms0.559T0ms

    T24Cms0.333 kg hr

    Separate variables and integrate the balance equation:

    0559T

    40.3

    Tf

    10

    dT40.3ms0.559T

    t

    0dt

    ms0.333

    Tf23C

    23 dT1013.40.559T

    Et ln

    0559 1340.559 10

    11.26 a.

    Q UMCvT

    Integral energy balancebt0 tot20 ming

    kgC40010

    4 kJ

    Required power input:Q 4.00104kJ 1 min

    20 min 60 s

    1 kW

    1 kJ s333 kW

    b. Differential energy balance:MCvdT

    dtQ

    M250 kg

    dT

    dt0.001Qbg

    Cv4.00 kJ kgC t0,T20C

    Integrate:

    T t

    t .

    20oC 0 0

    Evaluate the integral by Simpson's Rule (Appendix A.3)600 s

    Qdt 334 333539445058667585950

    2 34374147546270809010034830 kJ

    Tb600 sg20oC +e0.001oC / kJjb34830 kJg54.8C

    c.

    T548 12000T248

    t600t

    00600

    . dt

    6

    10 kW

    60 s

    2 2

    LO

    34830

    g

    T85Ct850 s14 min, 10 sexplosion at 10:1410 s

    11-20

  • 8/11/2019 Solucionario Cap 11

    24/30

    V

    C

    4.00 L / s.

    dMKClmi,KClmo,KClAccumulation=Input-Output

    dC dV

    . .

    dV4dtV4004t

    11.27 a.Total Mass Balance:

    Accumulation=InputOutput

    dMtot

    dt

    Emimo

    d(V)

    dt8004.00

    =constantdV

    dt

    t0 , V0400 L

    KCl Balance:

    V C 8 4 C

    dt dt

    dt dt

    d(CV)

    dV dt4

    1008.00400C

    dC 88C

    dt V

    t0 , C00 g / L

    b. (i)The plot of V vs. t begins at (t=0, V=400). The slope (=dV/dt) is 4 (a positive constant).

    V increases linearly with increasing t until V reaches 2000. Then the tank begins to overflow

    and V stays constant at 2000.

    2000

    400

    0

    t

    (ii) The plot of C vs. t begins at (t=0, C=0). When t=0, the slope (=dC/dt) is (8-0)/400=0.02.

    As t increases, C increases and V increases (or stays constant)dC/dt=(8-8C)/V becomes

    less positive, approaches zero as t . The curve is therefore concave down.

    1

    0

    t

    c.dV

    dt4

    V t

    400 0

    11-21

  • 8/11/2019 Solucionario Cap 11

    25/30

    CS1,CS2,CS3

    .

    ln(1C)02 ln(500.5t)0

    ln(1 - C)-12 ln

    ln(1

    0.01t)2

    E CS1v

    ECS1vCS2v

    ECS2vCS3v

    11.27 (contd)

    dC

    dt

    88C

    V V4004tdC

    dt

    1C

    5005tCdC

    01C

    t dt

    050 + 0.5t

    C t

    500 .5t

    50

    1

    1- C(10.01t)2C1

    1

    (10.01t)2

    When the tank overflows,V4004t2000t400 s

    C = 1-

    b1+ 0.01400g1

    20.96 g / L

    11.28 a.Salt Balance on the 1sttank:

    Accumulation=-Output

    d(CS1V1) dCS1

    dt dt CS1

    v

    V1 0.08CS1

    CS1( 0 )1500 5003 g / L

    Salt Balance on the 2nd tank:

    Accumulation=Input-Output

    d(CS2V2) dCS2

    dt dt(CS1CS2)

    v

    V20.08(CS1CS2)

    CS2( 0 )0 g / L

    Salt Balance on the 3rd tank:

    Accumulation=Input-Output

    d(CS3V3) dCS3

    dt dt(CS2CS3)

    v

    V30.04(CS2CS3)

    CS3( 0 )0 g / L

    b.

    3

    CS1

    CS2

    CS3

    0

    t

    11-22

  • 8/11/2019 Solucionario Cap 11

    26/30

    CS1,CS2,CS3(g/L)

    E.

    E

    .

    11.28 (contd)

    The plot of CS1vs. t begins at (t=0, CS1=3). When t=0, the slope (=dCS1/dt) is0.083 0.24.

    As t increases, CS1decreasesdCS1/dt=-0.08CS1becomes less negative, approaches zero ast . The curve is therefore concave up.

    The plot of CS2vs. t begins at (t=0, CS2=0). When t=0, the slope (=dCS2/dt) is 0.08(30)0.24 .

    As t increases, CS2increases, CS1decreases (CS2< CS1)d CS2/dt =0.08(CS1-CS2) becomes lesspositive until dCS2/dt changes to negative (CS2> CS1). Then CS2decreases with increasing t as well

    as CS1. Finally dCS2/dt approaches zero as t. Therefore, CS2increases until it reaches amaximum value, then it decreases.

    The plot of CS3vs. t begins at (t=0, CS3=0). When t=0, the slope (=dCS3/dt) is 0.04(00)0 .

    As t increases, CS2increases (CS3< CS2)d CS3/dt =0.04(CS2-CS3) becomes positiveCS2increases with increasing t until dCS3/dt changes to negative (CS3> CS1). Finally dCS3/dt

    approaches zero as t. Therefore, CS3increases until it reaches a maximum value then itdecreases.

    c.

    3

    2.5

    2

    CS1

    1.5

    1

    0.5

    0

    CS2

    CS3

    0 20 40 60 80 100 120 140 160

    t (s)

    11.29 a.(i) Rate of generation of B in the 1streaction:rB12r10.2CA

    (ii) Rate of consumption of B in the 2ndreaction :rB2r20.2CB2

    b.Mole Balance on A:

    Accumulation=-Consumption

    d(CAV)

    dt 01CAV

    dCA

    dt 01.CA

    t0,CA0100 mol / L

    Mole Balance on B:

    Accumulation= Generation-Consumption

    d(CBV)

    dt0.2CAV0.2CB2V

    dCB

    dt0.2CA0.2CB2

    t0,CB00 mol / L

    11-23

  • 8/11/2019 Solucionario Cap 11

    27/30

    CA,CB,CC

    CA,C

    B

    ,CC

    (mol/L)

    . .

    11.29 (contd)

    c.

    2

    CC

    1

    CB

    CA

    0

    t

    The plot of CAvs. t begins at (t=0, CA=1). When t=0, the slope (=dCA/dt) is011 01.As t increases, CAdecreasesdCA/dt=-0.1CAbecomes less negative, approaches zero as

    t. CA0 as t. The curve is therefore concave up.

    The plot of CBvs. t begins at (t=0, CB=0). When t=0, the slope (=dCB/dt) is 0.2(10)0.2 .

    As t increases, CBincreases, CAdecreases (C2B< CA)d CB/dt =0.2(CA-C2B) becomes less positive

    until dCB/dt changes to negative (C2B> CA). Then CBdecreases with increasing t as well as CA.

    Finally dCB/dt approaches zero as t. Therefore, CBincreases first until it reaches a maximum

    value, then it decreases. CB0 as t.

    The plot of CCvs. t begins at (t=0, CC=0). When t=0, the slope (=dCC/dt) is 0.2(0)0 . As t

    increases, CBincreasesdCc/dt =0.2C2Bbecomes positive also increases with increasing t

    CCincreases faster until CBdecreases with increasing tdCc/dt =0.2C2Bbecomes less positive,

    approaches zero as tso CCincreases more slowly. Finally CC2 as t. The curve is thereforeS-shaped.

    d.

    2.2

    2

    1.8

    1.6

    1.4

    1.2

    1

    0.8

    0.6

    0.4

    0.2

    0

    CB

    CA

    CC

    0 10 20 30 40 50

    t (s)

    11-24

  • 8/11/2019 Solucionario Cap 11

    28/30

    11.30 a.When x =1, y =1.

    yaxx1,y1

    xb

    a

    1ba1b

    b.Raoults Law: pC5H12yPxp*C5H12(46oC)yxp*C5H12(46oC )

    P

    Antoine Equation: p*C5H12(46oC ) 10(6.85221

    1064 .63

    46232. 00)

    1053 mm Hg

    y xp*C5H12(46oC )

    P 0.71053

    7600.970

    0.70a.

    TFrom part (a), a = 1+ b(2)|Tb0.078

    c.Mole Balance on Residual Liquid :

    Accumulation=-Output

    dNL

    dt nV

    t0,NL100 mol

    Balance on Pentane:

    Accumu lation=-Output

    d(NLx)

    dt

    dt

    dN

    Ldxax

    V

    x

    dt dt xb

    dNL/dt nV

    t0, x = 0.70

  • 8/11/2019 Solucionario Cap 11

    29/30

    1

    Ryaxx=0.70, y=0.970 Ra1078 (1)0970 .S| xb S0.70b

    E

    E

    nVyx nVNL

    EF IH K

    dx n ax

    Lxb

    EQ

    nVHvapQ nV

    dNLt0,NL100 mol

    nV L100nVt100

    Q27.0nV

    NL Qt

    .

    d.Energy Balance : Consumption=Input

    H vap27.0 kJ/mol

    b270 kJ / molgQt

    From part (c),dt 27.0

    100 -27.0

    Substitute this expression into the equation for dx/dt from part (c):

    11-25

  • 8/11/2019 Solucionario Cap 11

    30/30

    x,y

    FGHn ax

    JK .

    GH JK

    11.30 (contd)

    dx

    dtV

    NLxb

    xI Q270Qt

    100 -27.0

    Faxxb

    xI

    x(0) = 0.70

    e.

    1

    0.9

    0.8

    0.7

    0.6

    0.5x (Q=1.5 kJ/s)

    y (Q=1.5 kJ/s)

    0.4

    0.3

    0.2

    0.1

    0

    x (Q=3 kJ/s)y (Q=3 kJ/s)

    0 200 400 600 800 1000 1200 1400 1600 1800

    t(s)

    f.The mole fractions of pentane in the vapor product and residual liquid continuously decrease over a

    run. The initial and final mole fraction of pentane in the vapor are 0.970 and 0, respectively. The

    higher the heating rate, the fasterxandydecrease.