SolidWorks Motion Tutorial 2013

Embed Size (px)

Citation preview

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    1/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page1

    Inthistutorial,wewilllearnthebasicsofperformingmotionanalysisusingSolidWorksMotion.

    AlthoughthetutorialcanbecompletedbyanyonewithabasicknowledgeofSolidWorkspartsand

    assemblies,wehaveprovidedenoughdetailsothatstudentswithanunderstandingofthephysicsof

    mechanicswillbeabletorelatetheresultstothoseobtainedbyhandcalculations.

    Wewillbelookingatthreedifferentanalyses:

    1.

    Rotationofawheel,inwhichwewilllearnhowtosetupamotionanalysisandseetheeffectsof

    changingthemassmomentofinertiaonangularacceleration.

    2.

    Fourbarlinkage,inwhichwewillseehowplottingaquantitysuchasaccelerationovera

    mechanismsfullrangeofmotionallowsustoidentifytheextremevaluesofthequantity.

    3. Rolleronaramp,inwhichtheeffectsoffrictionwillbeevaluated.

    1. RotationofaWheel

    Beginbycreatingthethreepartmodelsdetailedbelow,orbydownloadingthepartsfromthebooks

    website. Theeightholepatternoneachwheelisaddedtohelpvisualizationoftherotationofthepart.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    2/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page2

    Ifyoudownloadedthepartfiles,thematerialsforthe

    partsaredefined. Ifyoucreatedthemyourself,thenfor

    eachpart,definethematerialbyrightclickingMaterial

    intheFeatureManagerandselectingEditMaterial. The

    MaterialEditorwillappear,asshownhere. SelectAlloy

    SteelfromthelistofsteelsintheSolidWorksmaterials

    library. ClickApplyandthenClose.

    Tobegin,wewillanalyzeasimplemodelofawheel

    subjectedtoatorque. FromNewtonsSecondLaw,we

    knowthatthesumoftheforcesactingonabodyequals

    themassofthebodytimestheaccelerationofthebody,or

    1

    Theaboveequationappliestobodiesundergoinglinearacceleration. Forrotatingbodies,Newtons

    SecondLawcanbewrittenas:

    2Where isthesumofthemomentsaboutanaxispassingthroughthebodyscenterofmass,isthemassmomentofinertiaofthebodyaboutthataxis,andistheangularaccelerationofthebody. Themomentofinertiaaboutanaxisisdefinedas:

    3whereistheradialdistancefromtheaxis. Forsimpleshapes,themomentofinertiaisrelativelyeasytocalculate,asformulasforofbasicshapesaretabulatedinmanyreferencebooks. However,formorecomplexcomponents,calculationofcanbedifficult. SolidWorksallowsmassproperties,includingmomentsofinertia,tobedeterminedeasily.

    OpenthepartWheel1. Fromthemainmenu,selectTools:MassProperties.

    Themasspropertiesofthewheelarereportedinthepopupbox. Forthispart,themassis15.29

    pounds,andthemomentofinertiaaboutthezaxis(labeledasLzzinSolidWorks)is105.36lbin2.

    Notethatifyoucenteredthepartabouttheorigin,thentheproperties,labeledTakenatthecenterof

    massandalignedwiththeoutputcoordinatesystemwillbeidenticaltothoselabeledPrincipal

    moments...takenatthecenterofmass. Notethattheunitsofmassusedareactuallypoundsmass,

    thatis,apartthatweighsonepoundhasamassofonepoundmass.Whenwemakeourcalculations

    later,wewillhavetoconvertourvaluessothatweuseunitsofmassthatareconsistentwiththeother

    unitsthatweareusing.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    3/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page3

    ClosetheMassPropertieswindow. OpenthepartWheel2. Fromthemainmenu,selectTools:Mass

    Properties.

    Notethatalthoughthemassof15.45isalmostthesameasthatofWheel1,Wheel2smomentof

    inertiais146.54lbin2,whichisalmost40%greaterthanthatofWheel1. Thereasonforthedifference

    isthatmorematerialinWheel2isplacedneartheouterrim. Inthedefinitionofthemomentofinertia

    shownasEqn.3,thecontributionofeachparticleofmassonthevalueofdependsonitsdistancefromtheaxissquared. Therefore,addingmassneartheouterrimofthewheelincreasesitsmomentof

    inertiagreatly.

    Openanewassembly. InsertthecomponentBase.

    Sincethefirstcomponentinsertedintoanassemblyisfixed,itislogicaltoinsertthecomponent

    representingthestationarycomponent(theframeorgroundcomponent)first.

    InsertthepartWheel1intotheassembly. SelecttheMateTool.Addaconcentricmatebetween

    thecenterholeofthewheelandtheholeinthebase. Besuretoselectthecylindricalfacesforthe

    mateandnotedges.Addacoincidentmatebetweenthebackfaceofthewheelandthefrontfaceof

    thebase.

    Youshouldnowbeabletoclickanddragthewheel,withrotationabouttheaxisofthematedholesthe

    onlymotionallowedbythemates.Theadditionofthesetwomateshasaddedarevolutejointtothe

    assembly. Arevolutejointissimilartoahingeinthatitallowsonlyonedegreeoffreedom.

    ClickontheMotionStudy1tabnearthelowerleft

    corner,whichopenstheMotionManageracrossthe

    lowerportionofthescreen.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    4/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page4

    TheMotionManagercanbeusedtocreatesimulationsofvariouscomplexities:

    Animation

    allowsthesimulationofthemotionwhenvirtualmotorsareappliedtodriveoneor

    moreofthecomponentsatspecifiedvelocities,

    BasicMotionallowstheadditionofgravityandsprings,aswellascontactbetweencomponents,

    tothemodel,and

    MotionAnalysis(SolidWorksMotion)allowsforthecalculationofvelocities,accelerations,and

    forcesforcomponentsduringthemotion. Italsoallowsforforcestobeappliedtothemodel.

    ThefirsttwooptionsarealwaysavailableinSolidWorks. SolidWorksMotionisanaddinprogram,and

    mustbeactivatedbeforeitcanbeused.

    Fromthemainmenu,chooseTools:AddIns. Inthelistof

    availableaddins,clickthecheckboxbesideSolidWorksMotion

    toactivateit. ClickOK.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    5/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page5

    SelectMotionAnalysisfromthesimulation

    optionspulldownmenu.

    SelecttheForceTool.

    Wewillapplyatorque(moment)tothewheel.Wewill

    setthetorquetohaveaconstantvalueof5inlb,and

    willapplyitforadurationoftwoseconds.

    IntheForcePropertyManager,selectTorqueandthenclickonthefrontfaceofthewheel.

    Notethatthearrowshowsthatthetorquewillbeappliedinthecounterclockwisedirectionrelativeto

    theZaxis(wesaythatthistorquesdirectionis+Z). Thearrowsdirectlybelowthefaceselectionbox

    canbeusedtoreversethedirectionofthetorque,ifdesired.

    ScrolldownintheForcePropertyManagerandsetthevalueto5inlb.

    ScrollbacktothetopofthePropertyManagerandclickthecheck

    marktoapplythetorque.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    6/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page6

    IntheMotionManager,clickanddragthediamondshapedicon(termedakey)fromthedefaultfive

    secondstothedesiredtwoseconds(00:00:02). SelecttheMotionStudyPropertiesTool,andchange

    thecalculationratefromthedefaultof25to100framespersecond. Clickthecheckmark.

    Usingalargernumberofframespersecondwillresultinsmootherplots,butwillrequiremore

    calculationtime.

    ClicktheCalculatorIcontoperformthesimulation.

    Theanimationofthesimulationcanbeplayedbackwithoutrepeating

    thecalculationsbyclickingthePlayfromStartkey. Thespeedofthe

    playbackcanbecontrolledfromthepulldownmenubesidethePlay

    controls.

    Asnotedearlier,SolidWorksMotionprovidesquantitativeanalysis

    resultsinadditiontoqualitativeanimationsofmotionmodels.Wewillcreateplotsoftheangular

    accelerationandangularvelocityofthewheel.

    SelecttheResultsandPlotsTool. InthePropertyManager,usethepulldownmenustoselect

    Displacement/Velocity/Acceleration:AngularAcceleration:ZComponent. Clickonthefrontfaceof

    thewheel,andclickthecheckmark.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    7/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page7

    Aplotwillbecreatedoftheangularacceleration

    versustime. Theplotcanbedraggedaroundthe

    screenandresized. Itcanalsobeeditedbyright

    clickingtheplotentitytobemodified,similartothe

    editingofaMicrosoftExcelplot.

    Weseethattheaccelerationisaconstantvalue,

    about1050degreespersecondsquared. Sincethe

    appliedtorqueisconstant,itmakessensethatthe

    angularaccelerationisalsoconstant. Wecancheck

    thevaluewithhandcalculations. Notethatwhilewe

    canperformverycomplexanalyseswithSolidWorksMotion,checkingamodelbyapplyingsimpleloads

    ormotionsandcheckingresultsbyhandisgoodpracticeandcanpreventmanyerrors.

    Weearlierfoundthemassmomentofinertiatobe105.36lbin2. Sincethepoundisactuallyaunitof

    force,notmass,weneedtoconvertweighttomassbydividingbythegravitationalacceleration( . Sinceweareusinginchesasourunitsoflength,wewilluseavalueof386.1in/s2: 105.36 lb in386.1 ins

    0.2729 lb in s 4Sincethetorqueisequaltothemassmomentofinertiatimestheangularacceleration,wecanfindthe

    angularaccelerationas:

    5 in lb0.2729 lb in s 18.323 rads 5

    Noticethatthenondimensionalquantityradiansappearsinouranswer. Sincewewantouranswerin

    termsofdegrees,wemustmakeonemoreconversion:

    18.323 rads 180 deg rad 1050 degs 6

    ThisvalueagreeswithourSolidWorksMotionresult.

    SelecttheResultsandPlotsTool. InthePropertyManager,usethepulldownmenustoselect

    Displacement/Velocity/Acceleration:AngularVelocity:ZComponent. Clickonthefrontfaceofthe

    wheel,andclickthecheckmark. Resizeandmovetheplotsothatbothplotscanbeseen,andformat

    theplotasdesired.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    8/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page8

    Asexpected,sincetheaccelerationisconstant,thevelocityincreaseslinearly. Thevelocityattheendof

    twosecondsisseentobeabout2100degreespersecond. Thisresultcanbeverifiedwithasimplehand

    calculation:

    1050 degs 2 s 2100 degs 7Often,theangularvelocityisexpressedinrevolutionsperminute(rpm),commonlydenotedbythe

    symbol:

    2100deg

    s 1 rev360 deg

    60 s1 min 350 rpm 8

    Wewillnowexperimentwithvariationsofthesimulation.

    Movetheplotsoutoftheway,butdonotclosethem. Clickanddragthekeyatthetopofthe

    simulationtreefrom2secondstofour,sothatthesimulationwillnowlastforfourseconds.Placethe

    cursoronthelinecorrespondingtotheappliedtorque(Torque1)atthe2secondmark. (Ifdesired,you

    canclickthe+andsignsattherightendofthetimelinetoscalethetimeline.) Rightclickandselect

    Off.

    Anewkeywillbeplacedatthatlocation. Thetorquewillnowbeappliedfortwoseconds,butthe

    simulationwillcontinueforthefourseconds.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    9/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page9

    PresstheCalculatoricontoperformthesimulation.

    Theplotswillbeautomaticallyupdated. Notethattheangularaccelerationnowdropstozeroattwo

    seconds,whiletheangularvelocitywillbeconstantaftertwoseconds. Sincethereisnofrictioninthe

    model,thewheelwillcontinuetospinataconstantvelocitywithoutanytorqueapplied.

    Intheprevioussimulations,thetorquewasappliedasaconstantvalue. Thatmeansthatthechangeof

    theaccelerationrelativetotime(commonlyreferredtoasjerk)isinfiniteattime=0andattime=2

    seconds. Amorerealisticapproximationistoassumethatthetorquebuildsupoversomeperiodof

    time,andalsorampsdowngradually. Forexample,wewillassumethatittakestwosecondstoreach

    thefullvalueoftorqueandtwosecondstorampdown.

    Rightclickthekeyaddedtothetorqueattime=2secondsanddeleteit. Movethekeydefiningthe

    durationofthesimulationtosixseconds.

    Movethetimebarbacktozero. RightclickonTorque1andselectEditFeature.

    ScrolldowninthePropertyManager,andselect

    SegmentsasthetypeofForceFunction.Enterthethree

    rowsas

    shown

    here,

    with

    Cubic

    as

    the

    Segment

    Type.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    10/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page10

    Twographsaredisplayed:thetorqueasafunctionoftimeandthe

    derivativeofthetorque. Youcanexperimentwithdifferentsegment

    typestoseehowtheyaffectthetorque,butthecubiccurvewillwork

    fineforthisexample.

    ClickOK

    and

    then

    the

    check

    mark

    to

    apply

    the

    torque.

    Calculate

    the

    simulation.

    Notethattheangularaccelerationcurveissmooth,andpeaksat1050deg/s2. Attheendofthesix

    seconds,thewheelwillbeturningatabout4,200deg/s(700rpm).

    NowletsseetheeffectofreplacingtheWheel1componentwithWheel2,whichhasahighermass

    momentofinertia. Ofcourse,wecouldstartwithanewassembly,butitiseasiertoreplacethe

    componentintheexistingassembly. Thiswillallowustoretainmostoftheassemblymatesand

    simulationentities.

    Clickthemodeltabatthebottomofthescreen. ClickonWheel1intheFeatureManagertoselectit.

    Fromthemainmenu,selectFile:Replace. BrowsetofindWheel2. InthePropertyManager,clickthe

    checkmarktoacceptthereplacementoffacesintheexistingmateswiththoseofthenewpart. Click

    thecheckmarktomakethereplacement.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    11/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page11

    Dependingonhowyoumodeledtheparts,itispossiblethaterrorswillbeencounteredwhenthe

    programattemptstoreapplythemates. Ifthishappens,closetheerrormessages,deletebothmates,

    andapplynewmatesmanually.

    SwitchtotheMotionStudy. Rightclickeachtorque,selectEditFeature,andclickonthefrontfaceof

    thewheeltodefinethedirection. Inthesimulationtree,rightclickoneachplot,andclickonthefront

    faceofthewheeltodefinethecomponentforwhichvelocity/accelerationistobeplotted. Calculate

    thesimulation.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    12/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page12

    Notethatthemaximumangularaccelerationisabout755deg/s2,whichissignificantlylessthatofthe

    simulationwiththeearlierwheel. Thisvaluecanbeverifiedfromtheratio:

    9

    105.36146.54 1050 degs 755 degs 10

    2. FourBarLinkage

    Inthisexercise,wewillmodela4barlinkagesimilartothatofChapter11ofthetext. Inthetext,we

    were

    able

    to

    qualitatively

    simulate

    the

    motion

    of

    the

    simulation

    when

    driven

    by

    a

    constant

    speed

    motor. Inthisexercise,wewilladdaforceandalsoexploremoreofthequantitativeanalysistools

    availablewithSolidWorksMotion.

    Downloadorconstructthecomponentsofthelinkageshownonthenextpage,andassemblethemas

    detailedinChapter11ofthetext.ThematerialshouldbeAlloySteelforalloftheparts.TheFramelink

    shouldbeplacedintheassemblyfirst,sothatitisthefixedlink.

    YoushouldbeabletoclickanddragtheCranklinkaroundafull360degreerotation.

    NotethattheConnectorlinkhasthreeholes. Themotionofthethirdholecanfollowmanypaths,

    dependingonthegeometryofthelinksandthepositionofthehole.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    13/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page13

    Beforebeginningthesimulation,wewillsetthelinkstoapreciseorientation. Thiswillallowusto

    compareourresultstohandcalculationsmoreeasily.

    Addaperpendicularmatebetweenthetwofacesshownhere.

    ExpandtheMatesgroupofthe

    FeatureManager,andrightclickonthe

    perpendicularmatejustadded. Select

    Suppress.

    Theperpendicularmatealignsthecranklinkatapreciselocation.However,

    wewantthecranktobeabletorotate,sowehavesuppressedthemate.Wecouldhavedeletedthe

    mate,butifweneedtorealignthecranklater,wecansimplyunsuppressthemateratherthan

    recreatingit.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    14/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page14

    SwitchtotheFrontView.Zoomoutsothattheviewlookssimilartotheoneshownhere.

    TheMotionManagerusesthelastview/zoomofthemodelasthestartingviewforthesimulation.

    MakesurethattheSolidWorksMotionaddinisactive. ClicktheMotionManagertab.

    SetthetypeofanalysistoMotionAnalysis. SelecttheMotoricon. Inthe

    PropertyManager,setthevelocityto60rpm. Clickonthefrontfaceofthe

    Cranktoapplythemotor,andclickthecheckmark.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    15/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page15

    Clickanddragthesimulationkeyfromthedefault

    fivesecondstoonesecond(0:00:01).

    Sincewesetthemotorsvelocityto60rpm,aone

    secondsimulationwillincludeonefullrevolutionof

    theCrank.

    ClicktheMotionStudyPropertiesTool. UndertheSolidWorksMotiontab,set

    thenumberofframesto100(framespersecond),andclickthecheckmark.

    Thissettingwillproduceasmoothsimulation.

    ChooseSolidWorksMotionfromthepull

    downmenu,andpresstheCalculatoriconto

    runthesimulation.

    ClicktheResultsandPlotsTools. InthePropertyManager,setthetypeoftheresulttoDisplacement/

    Velocity/Acceleration:TracePath. ClickontheedgeoftheopenholeoftheConnector.

    Playbackthesimulationtoseetheopenholespathoverthefull

    revolutionoftheCrank.

    Ifdesired,youcanaddpathsfor

    theothertwojointsthatundergo

    motion.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    16/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page16

    Thefourbarlinkagecanbedesignedtoproduceavarietyofmotionpaths,asillustratedbelow.

    Wewillnowaddaforcetotheopenhole.

    SelecttheForceTool. InthePropertyManager,thehighlightedboxpromptsyouforthelocationofthe

    force. Clickontheedgeoftheopenhole,andtheforcewillbeappliedatthecenterofthehole.

    Thedirectionboxisnowhighlighted. Rotateandzoominsothatyoucanselectthetopfaceofthe

    Framepart. Theforcewillbeappliednormaltothisforce.Asyoucansee,theforceactsupwards.

    Clickthearrowstoreversethedirectionof

    theforce.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    17/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page17

    ScrolldowninthePropertyManagerandsetthemagnitudeofthe

    forceto20pounds. Clickthecheckmarktoapplytheforce.

    Runthesimulation.

    We

    will

    now

    plot

    the

    torque

    of

    the

    motor

    that

    is

    required

    to

    produce

    the60rpmmotionwiththe20lbloadapplied.

    SelectResultsandPlots. Inthe

    PropertyManager,specifyForces:Applied

    Torque:ZComponent. Clickonthe

    RotaryMotorintheMotionManagertoselect

    it,andclickthecheckmarkinthe

    PropertyManager.

    Format

    the

    resulting

    plot

    as

    desired.

    Notethattheappliedtorquepeaksatabout51inlb. Att=0,thetorqueappearstobeabout 30 inlb

    (thenegativesignsindicatesthedirectionisabouttheZaxis,orclockwisewhenviewedfromtheFront

    View).

    In

    order

    to

    get

    a

    more

    exact

    value,

    we

    can

    export

    the

    numerical

    values

    to

    a

    CSV

    (comma

    separatedvalues)filethatcanbereadinWordorExcel.

    RightclickinthegraphandchooseExportCSV. Savethefiletoa

    convenientlocation,andopenitinExcel.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    18/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page18

    Attime=0,weseethatthemotortorqueis 29.2

    inlb.

    Handcalculationsforastaticanalysisofthe

    mechanismareattached,whichshowavalueof

    29.4inlb.

    Itisimportantwhencomparingthesevaluesto

    recognizetheassumptionsthatarepresentinthe

    handcalculations:

    1. Theweightsofthememberswerenot

    includedintheforces,and

    2. Theaccelerationsofthememberswereneglected.

    The

    first

    assumption

    is

    common

    in

    machine

    design,

    as

    the

    weights

    of

    the

    members

    are

    usually

    small

    in

    comparisontotheappliedloads. Incivilengineering,thisisusuallynotthecase,astheweightsof

    structuressuchasbuildingandbridgesareoftengreaterthantheappliedforces.

    Thesecondassumptionwillbevalidonlyiftheaccelerationsarerelativelylow. Inourcase,theangular

    velocityofthecrank(60rpm,oronerevolutionpersecond)producesaccelerationsinthemembersthat

    aresmallenoughtobeignored. Letsaddgravitytothesimulationtoseeitseffect.

    ClickontheGravityicon. InthePropertyManager,selectYasthedirection. Therewillbeanarrow

    pointingdowninthelowerrightcornerofthegraphicsarea,showingthatthedirectioniscorrect.

    Click

    the

    check

    mark.

    Run

    the

    simulation.

    Thetorqueplotisalmostunchanged,withthepeak

    torqueincreasingbyonlyoneinlb. Therefore,omittinggravityhadverylittleeffectonthecalculations.

    Nowwewillincreasethevelocityofthemotortoseetheeffectonthetorque.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    19/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page19

    Dragthekeyattheendofthetopbarinthe

    MotionManagerfrom1secondto0.1second. Usethe

    ZoomInToolinthelowerrightcornerofthe

    MotionManagertospreadoutthetime

    line,ifdesired.

    Dragthesliderbarshowingthetimewithinthesimulation

    backtozero.

    Thisisanimportantstepbeforeeditingexistingmodel

    items,aschangescanbeappliedatdifferenttimesteps.

    Because

    we

    want

    the

    motors

    speed

    to

    be

    changed

    from

    thebeginningofthesimulation,itisimportanttosetthe

    simulationtimeatzero.

    RightclickontheRotaryMotorintheMotionManager. Inthe

    PropertyManager,setthespeedto600rpm. Clickthecheckmark.

    Sinceafullrevolutionwilloccurinonly0.1seconds,weneedtoincrease

    theframerateofthesimulationtoachieveasmoothplot.

    SelecttheMotionStudyProperties. InthePropertyManager,settheSolidWorksMotionframerateto

    1000frames/second. Clickthecheckmark.

    Runthesimulation. (ClickNoifyoureceiveamessageaskingifyouwant

    toincreasethesimulationtime.)

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    20/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page20

    Thepeaktorquehasincreasedfrom51to180inlb,

    demonstratingthatasthespeedisincreased,the

    accelerationsofthemembersarethecriticalfactors

    affectingthetorque.

    Youcanverifythisconclusionfurtherbysuppressing

    bothgravityandtheapplied20lbloadandrepeating

    thesimulation. Thepeaktorqueisdecreasedonly

    from180to151inlb,evenwithnoexternalloads

    applied.

    Toperformhandcalculationswiththeaccelerationsincluded,itisnecessarytofirstperformakinematic

    analysistodeterminethetranslationalandangularaccelerationsofthemembers.Youcanthendraw

    freebodydiagramsofthethreemovingmembersandapplythreeequationsofmotiontoeach:

    F ma F ma M ITheresultisnineequationsthatmustbesolvedsimultaneouslytofindthenineunknownquantities(the

    appliedtorqueandthetwocomponentsofforceateachofthefourpinjoints).

    Theresultsapplytoonlyasinglepointintime. Thisisamajoradvantageofusingasimulationprogram

    suchasSolidWorksMotion:sinceitisnotevidentatwhatpointinthemotionthattheforcesare

    maximized,ouranalysisevaluatestheforcesoverthecompleterangeofthemechanismsmotionand

    allowsustoidentifythecriticalconfiguration.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    21/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page21

    3. RolleronaRamp

    Inthisexercise,wewilladdcontactbetweentwobodies,andexperimentwithfrictionbetweenthe

    bodies.Wewillbeginbycreatingtwonewpartsarampandaroller(skipthesestepsifyouhave

    downloadedtheparts).

    Openanewpart. IntheFrontPlane,sketchanddimensionthetriangleshownhere.

    Extrudethetriangleusingthemidplaneoption,withathicknessof1.2inches.

    IntheTopPlane,usingtheCorner

    RectangleTool,drawarectangle.

    Addamidpointrelationbetweenthe

    leftedgeoftherectangleandthe

    origin.Addthetwodimensions

    shown,andextrudetherectangle

    down0.5inches.

    Modifythematerial/appearanceasdesired(shownhereas

    Pine). SavethispartwiththenameRamp.

    Openanewpart. Sketchanddimensiona

    oneinchdiametercircleintheFrontPlane.

    Extrudethecirclewiththemidplaneoption,

    toatotalthicknessofoneinch. Setthe

    materialofthepartasPVCRigid.Modify

    thecolorofthepartasdesired(overriding

    thedefaultcolorofthematerialselected).

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    22/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page22

    Openanewsketchonthefrontfaceofthecylinder.

    Addanddimensionthecirclesandlinesasshownhere

    (thepartisshowninwireframemodeforclarity). The

    twodiagonallinesaresymmetricaboutthevertical

    centerline.

    ExtrudeacutwiththeThroughAlloption,withthesketchcontoursshownselected. Ifdesired,change

    thecolorofthecutfeature.

    Createacircularpatternoftheextrudedcutfeatures,withfive

    equallyspacedcuts. SavethepartwiththenameRoller.

    Openanewassembly. Inserttherampfirst,andplaceitattheoriginoftheassembly. Insertthe

    Roller.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    23/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page23

    Addtwomatesbetweentherampandtheroller.MatetheRightPlanesofbothparts,andadda

    tangentmatebetweenthecylindricalsurfaceoftherollerandthesurfaceoftheramp.

    Thebestwaytosetthecorrectheightoftherollerontherampisto

    addamatedefiningthepositionoftheaxisoftheroller.

    FromtheHeadsUpViewToolbar,selectView:TemporaryAxes.

    Thiscommandturnsonthedisplayofaxesthatareassociatedwith

    cylindricalfeatures.

    Addadistancematebetweentherollersaxisandtheflat

    surfaceatthebottomoftheramp. Setthedistanceas6.5

    inches.

    Sincetheradiusoftherolleris0.5

    inches,theaxiswillbe0.5inches

    abovetheflatsurfacewhenthe

    surfaceoftherollercontactsthat

    surface. Therefore,thevertical

    distancetraveledbytherollerwill

    be6.0inches. Also,notethatthe

    distancetravelleddowntheramp

    willbe12inches(6inchesdivided

    bythesineoftherampangle,30

    degrees).

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    24/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page24

    Turnoffthetemporaryaxisdisplay. SwitchtotheMotionStudy. SelectSolidWorksSimulationasthe

    typeofanalysis.Addgravityinthe ydirection.

    SelecttheContactTool. InthePropertyManager,youwillbepromptedto

    selectthebodiesforwhichcontactcanoccur. Clickoneachofthetwo

    parts.

    Clear

    the

    check

    boxes

    labeled

    Material

    and

    Friction.

    Leave

    the

    otherpropertiesastheirdefaults.

    Wewilladdfrictionlater,butourinitialsimulationwillbeeasiertoverifywithoutfriction. IntheElastic

    Propertiessection,notethatthedefaultissetasImpact,withseveralotherproperties(stiffness,

    exponent,etc.)specified. Ateachtimestep,theprogramwillcheckforinterferencebetweenthe

    selectedbodies. Ifthereisinterference,thenthespecifiedparametersdefineanonlinearspringthat

    actstopushthebodiesapart. Contactsaddconsiderablecomplexitytoasimulation. Ifthetimesteps

    aretoolarge,thenthecontactmaynotberecognizedandthebodieswillbeallowedtopassthrough

    eachother,oranumericalerrormayresult.

    SelecttheMotionStudiesPropertyTool. Settheframerateto500andchecktheboxlabeledUse

    PreciseContact. Clickthecheckmark.

    Forsomesimulations,itmaybenecessarytolowerthesolutiontoleranceinordertogetthesimulation

    torun. Forthisexample,thedefaulttoleranceshouldbefine.

    Thematesthatweaddedbetweenthepartstopreciselylocatetherollerontherampwillprevent

    motionoftheroller. Ratherthandeletethesemates,wecansuppressthemintheMotionManager.

    RightclickoneachofthematesintheMotionManagerandselectSuppress. Runthesimulation.

    Youwillseethattherollerreachesthebottomoftherampquickly.

    Changethedurationofthesimulationto0.5seconds,andrunthesimulationagain.Createaplotof

    themagnitudeofthelinearvelocityoftherollervs.time.

    Therollerreachesthebottomoftherampinabout0.35seconds,andthevelocityatthebottomofthe

    rampisabout68in/s.Thesevaluesagreewiththosecalculatedintheattachmentattheendofthis

    document.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    25/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page25

    Nowletsaddfriction.

    Movethetimelineofthesimulationbacktozero.RightclickonthecontactintheMotionManager

    tree,andselectEditFeature. ChecktheFrictionbox,andsetthecoefficientoffrictionto0.25.

    Calculatethesimulation.

    Theresultingvelocityplotshowsthevelocityatthebottomoftheramptobeabout54in/s. Thisvalue

    agreeswiththatofthecalculationsshownintheattachment.

    Toconfirmthattherollerisnotslipping,wecantrace

    thepositionofasinglepointontheroller.

    SelecttheResultsandPlotsTool. Definetheplotas

    Displacement/Velocity/Acceleration:TracePath.

    Clickonapointneartheouterrimoftheroller(not

    onaface,butonasinglepoint). Clickthecheck

    mark.

    Thetracepathshowssharpcuspswherethepointsvelocityapproacheszero(itwillnot

    becomeexactlyzerounlessthepointisonthe

    outersurfaceoftheroller). Forcomparison,

    repeattheanalysiswithalowerfriction

    coefficient.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    26/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page26

    Changethefrictioncoefficientto0.15andrecalculatethesimulation.

    Thistime,thetracepathsshowssmoothcurves

    whenthepointisneartherampssurface,

    indicating

    that

    sliding

    and

    rolling

    are

    taking

    placesimultaneously.

    Intheattachment,itisshownthatthe

    coefficientoffrictionrequiretopreventslipping

    isabout0.21.

    Itisinterestingtonotethatthefrictioncoefficienttopreventslippingandthetimerequiredtoreachthe

    bottomoftheramparebothfunctionsoftheratioofthemomentofinertiatothemassoftheroller. (A

    parametercalledtheradiusofgyrationisdefinedasthesquarerootofthemassmomentofinertia

    dividedbythemass,andisafunctiononlyofthepartsgeometry.) Youcanconfirmthisbychangingthe

    materialoftherollerandseeingthattheresultsofthesimulationareunchanged. However,ifyou

    changethegeometryoftheroller(theeasiestwayisbysuppressingthecutoutregions),thenthe

    resultswillchange.

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    27/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page27

    ATTACHMENT:VERIFICATIONCALCULATIONS

    STATICANALYSISOFFOURBARLINKAGESUBJECTEDTO20LBAPPLIEDFORCE

    FreebodydiagramofConnector:

    NotethatmemberCDisa2forcemember,andsotheforceattheendisalignedalongthemembers

    axis.

    Applyequilibriumequations:

    M5.714 in sin75.09 1.832 in cos75.09 11.427 in20 lb 05.522 in 0.4714 in 228.5 in lb

    5.993 in 228.5 in lb

    228.5 in lb5.993 in 38.13 lb

    F 38.13 lbcos75.09 0 9.812 lb

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    28/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page28

    F 38.13 lbsin75.09 20 lb 0 16.85 lb

    FreebodydiagramofCrank:

    NotethatBxandByareshowninoppositedirectionsasinConnectorFBD.

    SummomentsaboutA:

    M 3 in 0 3 in9.812 lb 29.4 in lb

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    29/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page29

    ROLLERCALCULATIONS

    NoFriction:

    Freebodydiagram:

    F W sin mF N W cos 0

    Whereistherampangle(30degrees)Sincetheweightisequalthemass

    mtimesthegravitationalacceleration

    g,theaccelerationinthe

    x

    directionxwillbe: x g sin Theaccelerationisintegratedwithrespecttotimetofindthevelocityinthexdirection:

    x g sin d g sin vxoWherevxoistheinitialvelocityinthexdirection. Thevelocityisintegratedtofindthedistancetravelledinthexdirection:

    g sin v d g2 sin v xWherex0istheinitialposition. Ifwemeasurexfromthestartingposition,thenx0iszero. Iftheblockisinitiallyatrest,thenvxoisalsozero. Inoursimulation,theblockwillslideadistanceof12inchesbeforecontactingthebottomoftheramp(seethefigureonpage23).

    Knowingthedistancetravelledinthexdirection,andenteringthenumericalvaluesofgas386.1in/s2andofsinof0.5(sinof30o),wecanfindthetimeittakestheblocktoslidetothebottom:

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    30/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page30

    12 in 386.1in s2 0.5or 0.353 sSubstituting

    this

    value

    into

    Equation

    4,

    we

    find

    the

    velocity

    at

    the

    bottom

    of

    the

    ramp:

    x 386.1 ins2 0.50.353 s 68.1 ins Thisvelocitycanalsobefoundbyequatingthepotentialenergywhentherollerisatthetopoftheramp

    (heightabovethedatumequals6inches)tothekineticenergywhentherollerisatthebottomofthe

    ramp:

    12 2

    2 2386.1 ins6 in 68.1 ins FrictionIncluded:

    FreeBodyDiagram:

    Whiletherollerwithoutfrictionslidesandcanbetreatedasaparticle,therollerwithfriction

    experiencesrigidbodyrotation. Theequationsofequilibriumare:

    F W sin mF N W cos 0

    M r I

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    31/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page31

    Ifthereisnoslipping,thentherelativevelocityoftheroller

    relativetotherampiszeroatthepointwherethetwo

    bodiesareincontact(pointO). Sincetherampis

    stationary,thisleadstotheobservationthatthevelocityof

    pointOisalsozero.

    SincepointOisthecenterofrotationoftheroller,the

    tangentialaccelerationofthecenteroftherollerxcanbewrittenas: x rSubstitutingthisexpressionintothefirstequilibriumequationandsolvingforthefrictionforce,

    W sin mrSubstitutingthisexpressionintothethirdequilibriumequationandsolvingfortheangularacceleration

    , W sin mr r IoWsinrI mr

    WsinrI mr Themassandthemomentofintertia

    IcanbeobtainedfromSolidWorks. Fortheroller,thevaluesare:

    m 0.017163 lbI 0.002515 lb in

    Sincepoundsareunitsofweight,notmass,theyquantitiesabovemustbedividedbygtoobtainthe

    quantitiesinconsistentunits:

    m 0. 017163 lb

    386.1 in/s 4.4453 X 10 lb s

    in

    I0.002515 lb in386.1 in/s 6.5139 X 10 lb in s

    Thevalueoftheangularaccelerationcannowbefound:

    WsinrI mr 0. 017163 lb sin 300.5 in

    6.5139e 6 lb in s 4.4453 5 lb s

    in 0.5 in 243.4

    rads

  • 8/10/2019 SolidWorks Motion Tutorial 2013

    32/32

    IntroductiontoSolidModelingUsingSolidWorks2013 SolidWorksMotionTutorial Page32

    Therefore,thelinearaccelerationinthexdirectionis:x r 0.5 in 243.4 rads2 121.7 ins2

    Integrating

    to

    obtain

    the

    velocity

    and

    position

    at

    any

    time:

    x x d x vxo 121.7 ins2 v d 12 v x60.85 ins

    Fortherollertotravel12inchesinthedirection,thetimerequiredis

    12 in60.85 in s 0.444 sAndthevelocityatthebottomoftherampis:

    x 121.7 ins2 0.444 s 54.0 ins Wecanalsocalculatethefrictionforce:

    W sin mr 0. 017163 lbsin 30 4.4453 e 5 lb sin 0.5 243.4 rads 0.00318 lbFromthesecondequilibriumequation,thenormalforceis:

    N Wcos 0.017163 lbcos30 0.1486 lbSincethemaximumfrictionforceisthecoefficientoffrictiontimesthenormalforce,thecoefficientoffrictionmustbeatleast:

    0.00318 lb0.1486 lb 0.21Thisistheminimumcoefficientoffrictionrequiredfortherollertorollwithoutslipping.