13
Solid State Morphing Aircraft Team Progress Report 02/13/2014 Members: James Bird Roger Bounthisane Amber Cook Elaine Gumapas Thoai Nguyen Jeremiah Silvis

Solid State Morphing Aircraft Team Progress Report 02/13/2014 Members: James Bird Roger Bounthisane Amber Cook Elaine Gumapas Thoai Nguyen Jeremiah Silvis

Embed Size (px)

Citation preview

Solid State Morphing Aircraft Team

Progress Report 02/13/2014

Members:James BirdRoger BounthisaneAmber CookElaine GumapasThoai NguyenJeremiah Silvis

Aerodynamics

Wandering Albatross

Common Buzzard

Grey Heron

Cormorant

Geometric Shapes

Rounded Rectangle (Buzzard)

Most simple fabrication shape and theoretical analysis

Elliptic (Grey heron)

Least amount of induced drag

Pointed Tip (Wandering Albatross)

Generates the most lift

Dihedral (Cormorant)

Flies at higher speeds

Length(m)

Sheets (#)

Total Thickness (m)

Harmonic Freq.

0.75 1 0.00085 3.500.75 2 0.00170 7.000.75 3 0.00300 12.360.85 1 0.00085 2.730.85 2 0.00170 5.450.85 3 0.00300 9.620.90 1 0.00085 2.430.90 2 0.00170 4.860.90 3 0.00300 8.581.00 1 0.00085 1.971.00 2 0.00170 3.941.00 3 0.00300 6.951.10 1 0.00085 1.631.10 2 0.00170 3.261.10 3 0.00300 5.75

EDensity (kg/m^3)

Thickness(m)

CF5.12E+

09 1010.87 0.000085

Wing Span(m)

Chord Length (m)

Leading Edge

Trailing Edge

Thickness (m)

Volume (m^3)

Mass (kg) lb

1.5 0.5 Straight Elliptic 8.50E-05 5.01E-04 0.506 1.113

1.5 0.5 straightrounded

rect 8.50E-05 6.21E-04 0.628 1.381

1.5 0.3 Straighttriangle

edge 8.50E-05 2.61E-04 0.264 0.5811.5 0.75 Straight pointed tip 8.50E-05 5.76E-04 0.582 1.280

Wing Characteristics

Wing Natural Freq.

𝑊 𝑛=√ 𝑘𝑚𝑒

𝑘=3𝐸𝐼𝑙3

𝑚𝑒= 33140

𝑚𝑤𝑖𝑛𝑔+𝑚𝑡𝑖𝑝𝑚𝑎𝑠𝑠

𝑚𝑤𝑖𝑛𝑔=𝜌 𝑙𝑡𝑑

𝐼𝑟𝑒𝑐𝑡=𝑏h3

12

𝑊𝑛2=

3𝐸𝑑𝑡3

12 𝑙3

33140

𝜌 𝑙𝑡𝑑

𝑊𝑛=√ 35𝐸 𝑑2

33𝜌 𝑙4

Structural

Projected Weight

ItemWeight (oz.)

Mass (g)

DC-DC Converter 0.98 27.78

11.1 V Battery5.96

169.00

Half-size breadboard 1.27 36.00Microcontroller 0.23 6.50

fuzelage 3.60102.0

6

Wing 12.00506.0

0

Total 24.04847.3

4=1.86 lb.

Finite Element Model

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.50

5

10

15

20

25

30

35

40

45

f(x) = 41.4489865273179 x^-2.91954850887085R² = 0.999422649096742

Number of Layers Vs. Deflection

Number of Layers

Deflect

ion

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.50

10

20

30

40

50

60

f(x) = 10.5 x + 0.192666666666668R² = 0.999390844463689

Number of Layers Vs. Natural Frequency

Number of layers

Naatu

ral Fr

equency

Electronics/Coding Creating a signal generator that has variable period and amplitude.

An RC low pass filter will be added to signal to make a smooth the analog signal for the DC-DC boost converter to follow.

Further research for a simpler method of signal generation with analog control is being researched.

Arduino Code sketch_jan31.ino/* created by: James Bird last modified: 1/31/14 */

int diff, feedback, time;int dir=1;int count=1;int pos=1;int diffPot=0;int timePot=3;int feedbackPin=5;

void setup(){ pinMode(9,OUTPUT); Serial.begin(9600);}

void loop(){ diff=.1*analogRead(diffPot); //0.1*(1023)=MAX of 102 bit step time=.1*analogRead(timePot); //0.1*1023=MAX of 102 ms time delay feedback=analogRead(feedbackPin); pos=pos+dir*diff; //newPos=oldPos+(direction)step

if(pos<0) { dir=1; pos=0; } if(pos>255) { dir=-1; pos=255; } analogWrite(9,pos); delay(time);}

Output

Maximum Frequency : 12 HzVoltage ranges from 0 to 2.60 VDC

STEP

DELAY

PWM

A0

A3RC FILTER

A5

Oscilloscope

Specimens bonded w/ M8507P1 (MFC)

A) 1 layer carbon fiber substrate (85x7mm)

B) 3 layered carbon fiber substrate (85x7mm)

C) 5 layered carbon fiber substrate (85x7mm)

D) Re-using Sample B or Sample C to make a bimorph (85x7mm)

Unimorph (1 MFC)

Bimorph (2 MFCs)

Substrate

Substrate

Piezo

Piezo

Smart Materials

# of Layer

sLength (mm)

Width (mm)

Thickness (mm)

Volume (mm^3)

Mass (g)

Density (kg/m^3)

Modulus Pa (N/m^2)

1 101.4 57.75 0.3 1756.755 1.7 967.6933 5.12E+09

3 101.2 62.17 0.85 5347.863 5.5 1028.448 5.12E+09

5 101.5 61.96 1.45 9118.963 9.2 1008.887 5.12E+09

Table 1: Properties of Fabricated Carbon Fiber Samples

Sample A

Sample B

Sample C

Figure 1: Carbon Fiber Samples

Figure 2: MFC & Substrate Layup

Test runs are in progress of bonding the MFC to the carbon fiber substrate to prevent any imperfections or slippage while being vacuum bagged

Current Fabrication

Tape Hinges

Macro-Fiber Composite

Carbon Fiber SubstrateGlue Epoxy

Figure 3: MFC & Carbon Fiber

Figure 4: Component Layup

Apparatus similar to composite testing for

a fixed end cantilever beam

Samples will be tested through series of voltage loads from 0 to 1500v

Data collected and analyzed to observe the relationship between strain (having proportional relationship to voltage) and blocking force of the MFC

Figure 5: Apparatus Setup

Testing

Figure 6: Blocking Force Experiment