33
Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development a t PNNL System Development a t PNNL Larry Chick Energy Materials Group Pacific Northwest National Laboratory Pacific Northwest National Laboratory March 29, 2011

Solid Oxide Fuel Cell and Power System … · Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t tPNNLS t D l t t PNNLSystem Development att PNNLPNNL Larry Chick

  • Upload
    dokiet

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Solid Oxide Fuel Cell and PowerSolid Oxide Fuel Cell and Power S t D l t t PNNLS t D l t t PNNLSystem Development at PNNLSystem Development at PNNL

Larry Chick Energy Materials Group Pacific Northwest National LaboratoryPacific Northwest National Laboratory March 29 2011

ContentContent

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

2

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

3

t t

SOFC Technology Development at PNNL PNNL is the leading US DOE laboratory for SOFC research and development

Active in SOFC development since 1987 O $100 f SO C f 1999Over $100M of SOFC-related funding since 1999 Mostly DOE Office of Fossil Energy Solid State Energy Conversion Alliance (SECA)

PNNL developed anode-supported thin electrolyte technology

Transferred technology to Delphi Corp starting in 2000

Delphi is now supplying SOFC stacks for projects developingPNNLpower systems at PNNL

44

Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics

High temperature (~700 ndash 800degC)

Can use H2 CO and CH4 as fuel so can run directly on reformed liquid hydrocarbons

Fuel must have very low sulfur levels (lt1 ppm to avoid performance loss))p

5

Anode Supported Thin--Electrolyte CellAnode--Supported Thin Electrolyte CellStructureStructure

Cathode ldquoLSCF 6428rdquoThin (30-40 micron) porous electrically (La06Sr04)1-d(Co02Fe08)O3

conductive ceramicconductive ceramic ElectrolyteElectrolyte Very thin (lt10 micron) YSZ Conducts oxygen ions not electrons

Anode Thick (~500 micron) porous Ni metal-YSZ ldquocermetrdquo Structural support for cell

CeO2 ldquobarrierrdquo layer dense YSZ electrolyte

electron micrograph of SOFC in cross section

porousporous cathodecathode

porousporous anodeanode

6

PNNL-Delphi Technology Thin electrolyte allows good performance at low enoughThin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate

Cassettes are glass sealed together to form stack

105 cm105 cm22

activeactive areaarea 6 56 5

gas flowgas flow

areaarea ~65 cm~65 cm

600600 ndashndash 1300 W1300 W

Single Cell in Co-flow Cassette 1300 W1300 W 30-Cell Stack in Frame

7

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

ContentContent

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

2

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

3

t t

SOFC Technology Development at PNNL PNNL is the leading US DOE laboratory for SOFC research and development

Active in SOFC development since 1987 O $100 f SO C f 1999Over $100M of SOFC-related funding since 1999 Mostly DOE Office of Fossil Energy Solid State Energy Conversion Alliance (SECA)

PNNL developed anode-supported thin electrolyte technology

Transferred technology to Delphi Corp starting in 2000

Delphi is now supplying SOFC stacks for projects developingPNNLpower systems at PNNL

44

Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics

High temperature (~700 ndash 800degC)

Can use H2 CO and CH4 as fuel so can run directly on reformed liquid hydrocarbons

Fuel must have very low sulfur levels (lt1 ppm to avoid performance loss))p

5

Anode Supported Thin--Electrolyte CellAnode--Supported Thin Electrolyte CellStructureStructure

Cathode ldquoLSCF 6428rdquoThin (30-40 micron) porous electrically (La06Sr04)1-d(Co02Fe08)O3

conductive ceramicconductive ceramic ElectrolyteElectrolyte Very thin (lt10 micron) YSZ Conducts oxygen ions not electrons

Anode Thick (~500 micron) porous Ni metal-YSZ ldquocermetrdquo Structural support for cell

CeO2 ldquobarrierrdquo layer dense YSZ electrolyte

electron micrograph of SOFC in cross section

porousporous cathodecathode

porousporous anodeanode

6

PNNL-Delphi Technology Thin electrolyte allows good performance at low enoughThin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate

Cassettes are glass sealed together to form stack

105 cm105 cm22

activeactive areaarea 6 56 5

gas flowgas flow

areaarea ~65 cm~65 cm

600600 ndashndash 1300 W1300 W

Single Cell in Co-flow Cassette 1300 W1300 W 30-Cell Stack in Frame

7

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

3

t t

SOFC Technology Development at PNNL PNNL is the leading US DOE laboratory for SOFC research and development

Active in SOFC development since 1987 O $100 f SO C f 1999Over $100M of SOFC-related funding since 1999 Mostly DOE Office of Fossil Energy Solid State Energy Conversion Alliance (SECA)

PNNL developed anode-supported thin electrolyte technology

Transferred technology to Delphi Corp starting in 2000

Delphi is now supplying SOFC stacks for projects developingPNNLpower systems at PNNL

44

Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics

High temperature (~700 ndash 800degC)

Can use H2 CO and CH4 as fuel so can run directly on reformed liquid hydrocarbons

Fuel must have very low sulfur levels (lt1 ppm to avoid performance loss))p

5

Anode Supported Thin--Electrolyte CellAnode--Supported Thin Electrolyte CellStructureStructure

Cathode ldquoLSCF 6428rdquoThin (30-40 micron) porous electrically (La06Sr04)1-d(Co02Fe08)O3

conductive ceramicconductive ceramic ElectrolyteElectrolyte Very thin (lt10 micron) YSZ Conducts oxygen ions not electrons

Anode Thick (~500 micron) porous Ni metal-YSZ ldquocermetrdquo Structural support for cell

CeO2 ldquobarrierrdquo layer dense YSZ electrolyte

electron micrograph of SOFC in cross section

porousporous cathodecathode

porousporous anodeanode

6

PNNL-Delphi Technology Thin electrolyte allows good performance at low enoughThin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate

Cassettes are glass sealed together to form stack

105 cm105 cm22

activeactive areaarea 6 56 5

gas flowgas flow

areaarea ~65 cm~65 cm

600600 ndashndash 1300 W1300 W

Single Cell in Co-flow Cassette 1300 W1300 W 30-Cell Stack in Frame

7

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

t t

SOFC Technology Development at PNNL PNNL is the leading US DOE laboratory for SOFC research and development

Active in SOFC development since 1987 O $100 f SO C f 1999Over $100M of SOFC-related funding since 1999 Mostly DOE Office of Fossil Energy Solid State Energy Conversion Alliance (SECA)

PNNL developed anode-supported thin electrolyte technology

Transferred technology to Delphi Corp starting in 2000

Delphi is now supplying SOFC stacks for projects developingPNNLpower systems at PNNL

44

Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics

High temperature (~700 ndash 800degC)

Can use H2 CO and CH4 as fuel so can run directly on reformed liquid hydrocarbons

Fuel must have very low sulfur levels (lt1 ppm to avoid performance loss))p

5

Anode Supported Thin--Electrolyte CellAnode--Supported Thin Electrolyte CellStructureStructure

Cathode ldquoLSCF 6428rdquoThin (30-40 micron) porous electrically (La06Sr04)1-d(Co02Fe08)O3

conductive ceramicconductive ceramic ElectrolyteElectrolyte Very thin (lt10 micron) YSZ Conducts oxygen ions not electrons

Anode Thick (~500 micron) porous Ni metal-YSZ ldquocermetrdquo Structural support for cell

CeO2 ldquobarrierrdquo layer dense YSZ electrolyte

electron micrograph of SOFC in cross section

porousporous cathodecathode

porousporous anodeanode

6

PNNL-Delphi Technology Thin electrolyte allows good performance at low enoughThin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate

Cassettes are glass sealed together to form stack

105 cm105 cm22

activeactive areaarea 6 56 5

gas flowgas flow

areaarea ~65 cm~65 cm

600600 ndashndash 1300 W1300 W

Single Cell in Co-flow Cassette 1300 W1300 W 30-Cell Stack in Frame

7

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Solid Oxide Fuel Cell CharacteristicsSolid Oxide Fuel Cell Characteristics

High temperature (~700 ndash 800degC)

Can use H2 CO and CH4 as fuel so can run directly on reformed liquid hydrocarbons

Fuel must have very low sulfur levels (lt1 ppm to avoid performance loss))p

5

Anode Supported Thin--Electrolyte CellAnode--Supported Thin Electrolyte CellStructureStructure

Cathode ldquoLSCF 6428rdquoThin (30-40 micron) porous electrically (La06Sr04)1-d(Co02Fe08)O3

conductive ceramicconductive ceramic ElectrolyteElectrolyte Very thin (lt10 micron) YSZ Conducts oxygen ions not electrons

Anode Thick (~500 micron) porous Ni metal-YSZ ldquocermetrdquo Structural support for cell

CeO2 ldquobarrierrdquo layer dense YSZ electrolyte

electron micrograph of SOFC in cross section

porousporous cathodecathode

porousporous anodeanode

6

PNNL-Delphi Technology Thin electrolyte allows good performance at low enoughThin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate

Cassettes are glass sealed together to form stack

105 cm105 cm22

activeactive areaarea 6 56 5

gas flowgas flow

areaarea ~65 cm~65 cm

600600 ndashndash 1300 W1300 W

Single Cell in Co-flow Cassette 1300 W1300 W 30-Cell Stack in Frame

7

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Anode Supported Thin--Electrolyte CellAnode--Supported Thin Electrolyte CellStructureStructure

Cathode ldquoLSCF 6428rdquoThin (30-40 micron) porous electrically (La06Sr04)1-d(Co02Fe08)O3

conductive ceramicconductive ceramic ElectrolyteElectrolyte Very thin (lt10 micron) YSZ Conducts oxygen ions not electrons

Anode Thick (~500 micron) porous Ni metal-YSZ ldquocermetrdquo Structural support for cell

CeO2 ldquobarrierrdquo layer dense YSZ electrolyte

electron micrograph of SOFC in cross section

porousporous cathodecathode

porousporous anodeanode

6

PNNL-Delphi Technology Thin electrolyte allows good performance at low enoughThin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate

Cassettes are glass sealed together to form stack

105 cm105 cm22

activeactive areaarea 6 56 5

gas flowgas flow

areaarea ~65 cm~65 cm

600600 ndashndash 1300 W1300 W

Single Cell in Co-flow Cassette 1300 W1300 W 30-Cell Stack in Frame

7

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

PNNL-Delphi Technology Thin electrolyte allows good performance at low enoughThin electrolyte allows good performance at low enough temperatures so that stainless steels can be used as cell frame and separator plate

Cassettes are glass sealed together to form stack

105 cm105 cm22

activeactive areaarea 6 56 5

gas flowgas flow

areaarea ~65 cm~65 cm

600600 ndashndash 1300 W1300 W

Single Cell in Co-flow Cassette 1300 W1300 W 30-Cell Stack in Frame

7

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

--

D

PNNL-Delphi SECA Team 228 cm8 cm22

3434 cc mm22 GenGen 22 101066 cmcm 22 AcActivtivee ArAr eeaa GenGen 44 404033 cmcm 22 AcActivtivee ArAr eeaaGeGenn 33

CeCellll ButtButtoonn

101055 cc mm22 ActActiivvee AreAre aa CeCellll Feb 20Feb 200000 -p-preresensentt Intermediate-Intermediate-ScaScallee

NNoovv 2020 0101 --ppreresseenntt

JanJan 22000202JanJan 202000 202022 003320200033

n 2 SystDelp July 20July 200033 --Delphh n 2 SystememiDelphiiDelphi GGGG eeeen 2n 2 SySystemstem

DelDelDelDelpppphihihihipppp GeGenGe 3n 33n 3 AAAAPPPPGen UUUU

JJuunnee 2020 0808 --

DDec 20ec 200022

JJuunnee 2020 0808

DeDellpphhiDPS3000-

i DPS3000-D

8

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Delphirsquos First Commercial Market APU for Longg-Haul Trucks

bull Supports ldquohotel loadrdquo so ICU can be shut down at night

bull APU is started up on Monday morning shut down Friday night 9

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Delphi Stack Performance S

tack

Vol

tagge

(V)

9700 hours Total degradation is 112 per 500 hours Degradation mechanism during initial 1000 hours and after 5000 hours is

MG735C805 - 30plus3 Dates 7312009 to 9232010 Fuel 485H2-485N2-3H20 Flows 325(A) 148(C) understood and design solutions are being implemented

Stack Voltage and Power Density for Constant Current Test

3030

25

20

15

10

55

0

000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Time (Hours)

10

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Delphi Stack Performance Stack endured 200 thermal cycles with minimal degradation

Flow condition changed

Stack Moved to another stand Loadbank replaced

for calibration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Thermal Cycle Number

11

1

09

08

07

06

05

0 404

03

02

01

00

Voolta

ge (V

olts

)

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

12

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Hydro Desulfurization TechnologyechnologyHydro--Desulfurization Tfrac34 Funded byy Arm yy TARDEC

frac34 Brass board transportable system

frac34 Ran 10 kW PEM fuel cell

frac34 Demonstrated on JP-8 with 2750 ppm sulfur bull Very similar to Jet A but higher sulfur bull Could use JP-5 bull Bunker fuel would be problematicBunker fuel would be problematic

13

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

desu u at o

ConceptualFlow Diaggram to IntegrateHydro-desulfuration with SOFC Power System

Recycle Pump

~150C

HX

Recuperator

Heat Rejection

Purge

SOFC POWER MODULE

Water Recovery

Exhaust

SOFC Stack

Anode

Adiabatic Reformer Desulfurized Fuel

Electric Power

~1psi

Recovery

To HDS Reformer

HX

Cathode

Recuperator

Exhaust Air

p

Air

Reformate +H2S Burner

HDS DESULFURIZATION MODULE

Microchannel Steam Reformer

Reformate Based Hydrodesulfurization

To SOFC Power Module

Reformate

270 psig

~10

Desulfurized JP-8 Tank

JP-8

3000ppm max ~90 Desulfurized JP-8

003 ppmw max

14

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

e o ee o e

LiquidLiquid HCHC800degC

SteamSteam ReformerReformer

HeatHeat

SOFCSOFC StackStack

Efficiency Boost from Steam Reforming

bull Steam reforming is endothermic

H t f SOFC t k ibull Heat from SOFC stack is converted into ~25 increased chemical energy of reformate

Steam Reformation of n-Dodecane C12H26 + 12H2O + heatAElig 12CO + 25H2

bull SystemSystem yieldsyields gt60gt60 netnet eefffficiencyiciency

7552 9421 and Steamand Steam kJmole kJmole (125)

ldquoEnrichedrdquo SOFCldquoEnrichedrdquo SOFC FuelFuel GasGas SystemSystem yieldsyields gt60gt60 netnet efefficiencyficiency

bull Steam and heat for reforming obtained from SOFC stack exhaust

15

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Partial Oxidation (POx)Partial Oxidation (POx) ReformingReforming

bull Some systems use POx reforming

bullbull POx is exothermicPOx is exothermic

bull POx reformate has less chemical energy than original fuel

bull Example dodecane C 12H26 + 6O2 = 12CO + 13H2 + heat

7552 6618 kJmole kJmole (87)

16

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

SOFC Power System with Steam Reformingg and Anode Recyycle

~650degC 15

~800degC

Adiabatic Steam

Reformer

85

17

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

SOFCSOFCStacksStacks

TRL 4 Demonstration System with Steamwith SteamTRL--4 Demonstration SystemReformingReforming andand AAnodenode RecycleRecycleReformingReforming andand AnodeAnode RecycleRecycle

cathodecathode recuperatorsrecuperators

steamsteam reformerreformer recuperatorsrecuperators reformerreformer

18

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Development of SOFCDevelopment of SOFC TTechnologyechnology

Fuel Reforming and System DesignFuel Reforming and System Design

Power andPower and EfficiencyEfficiency

19

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Higher Power DensityHigher Power DensityComes with Lower EfficiencyComes with Lower Efficiency

12 70

Electrical Stack Only

08

10c

m2)

60

Effic

ienc

y

Electric Power

Conversion Efficiency

0 4

06

wer

Den

sity

(W

50

al C

onve

rsio

n

02

04

Pow

40

Elec

trica

00 04 05 06 07 08

Volts per Cell

30

20

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Factors Affecting Power Density (StackFactors Affecting Power Density (StackSiSi ))SiSizeze))

Voltagge

Temperature

Pressure

Concentration of H CO and CH in anode gas (reformate)Concentration of H2 CO and CH4 in anode gas (reformate)

Cell materials

21

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Electrochemical ActivitElectrochemical Activityyyy is About to Im pproverovepp

16

1 0

12

14 Wcm

2 )

750degC 485 H2 3 H2O balance N2

06

08

10

wer

Den

sity

(W

New Electrode Materials

0 0

02

04Pow

Current Electrode Materials

00

07 08 09 10 11 Cell Voltage (V)

22

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

787 is a More Electric Airplane (MEA)

Efficiency changes in 787 due to Composite airframe Efficient no bleed engines Efficient no-bleed engines

Transition in power sources in theMEA

Increase in electric power to ~1 MWIncrease in electric power to ~1 MW

Efficient No-Bleed Engines 23

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Anode Recycle Steam Reformer System withAnode Recycle Steam Reformer System with CompressorExpanderCompressorExpander

70 net efficiency at70 net efficiency at 8 atm and 08 Vcell

24

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Back Up SlidesBack--Up Slides

25

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Solid Electrolyte

When Y(3+) is substituted into ZrO2 frac34 The material is called yttria-stabilized zirconia (YSZ) because the substitution ldquolocksrdquo the material into the cubic structure the substitution locks the material into the cubic structure frac34 For every two yttrium ions one oxygen vacancy is created frac34 The oxygen vacancies facilitate ionic conductivity thermally actitivatted oxygen iions can ldquohoprdquo f rdquo from vacancy tto vacancy d ldquoh

cm

)

8 mole Y2O3 in ZrO2

nduc

tivity

(S

8 mole Y2O3 in ZrO2

O 2

Vac

oxygen

Ioni

c C

on

Temperature (degC)

O-2 Vac

oxygen vacancy

26

Zr+4Y+3

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

frac34

=

Solid Electrolyte

frac34Every modern car contains a solid oxide cell in the form of a zirconia oxygen sensor frac34The output voltage is governed by the Nernst equation

RT PO2 (air )Voltage = lnlnVoltage 4F PO2 (exhaust )

frac34Current is near zero

27

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

SOFC Schematic

hydrogenhydrogenH2 andor COhydrogenhydrogeny g

oxygenions

y g

oxygenions

2y g

oxygenions

y g

waterions

waterions

H2O andor CO2waterions

water

electron flowelectron flowelectron flowelectron flow

l i l l

dl i l l

dl i l l

dl i l l

d

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

oxygen

electrical load

H2 andor COygygygyg

oxygen ions

2

ions H2O andor CO2

cathodecathodecathodecathode eeeelllleeeecccc anodetrolyte anodetrolytetrolytetrolyte anodeanode catalyzescatalyzes catalyzescatalyzes

frac12frac12 OOfrac12frac12 22OO + 2+ 222 ee++ --2e2e IcircIcirc OO== + H+ HOO 22IcircIcirc HH22O + 2O + 2ee-shyIcircIcirc OOOO == ++ HH22IcircIcirc HH22OO ++ 2e2e and Oand O== + C+ COOIcircIcirc COCO22 + 2e+ 2e-shy

28

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Upper Limit for Steel Framed Planar SOFCUpper Limit for Steel Framed Planar SOFCTechnology ~850Technology ~850degdegCC

18 Fuel

1 2

14

16

820degC

H2 076 CO 014

H2O 005 CO2 001 CH4 003

(Mole Fraction)

08

10

12

r Den

sity

(Wc

m2 )

04

06Pow

er

735degC

650degC

00

02

04 05 06 07 08 09 10 11

Cell Voltage (V)

650degC

Cell Voltage (V)

29

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Effect of Pressure on SOFC PowerEffect of Pressure on SOFC Power DD iittDDensensitityy

14

10

12 W

cm

2)

06

08

wer

Den

sity

(W

Model Results 750degC

0 0

02

04Pow 750degC

Steam RecycleReformate

00 0 1 2 3 4 5 6 7 8 9 10

System Pressure (Atm)

30

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Reformate Gives Lower PowerReformate Gives Lower Power than Moist Hydrogenthan Moist Hydrogen

12 B th t 800degC hi h f l fl tBoth at 800degC high fuel flow rate

80 Recycle ReformateReformate 21 H2

31 H2O 16 CO 32 CO2

10 Common Test Fuel 49 H208 3 H2O

Balance N2

06

0 404

02

0 000

07 08 09 10 11 Cell Voltage (V)

Poweer

Den

sity

(Wcm

2 )

31

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Delphi Generation 4Delphi Generation 4 SOFC TechnologySOFC Technology

Delphi Gen 4 Cassette 403 cm2 Active Area

Manifold load plate and 620 g current collectors = 335 kg

32

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency

Predicted Effects of Pressure and Cell VoltagePredicted Effects of Pressure and Cell Voltage onon SystemSystem EfficiencyEfficiency andand SStacktack MassMassonon SystemSystem EfficiencyEfficiency andand StackStack MassMass

For SOFC System with Steam Reformer Anode Recycle and CompressorExpander

EfficiencyMass SOFC Cell Voltage

Pressure 085 080 075 070 08 atm 757455 713358 682168 641608 3 atm 754291 701933 661404 611120 8 atm 752959 701333 651034 61859

Efficiency = Net Electrical Energy Supplied to Bus LHV of KeroseneEfficiency = Net Electrical Energy Supplied to Bus LHV of Kerosene

Mass is for cassettes needed to generate 821 kW gross power

33

  • Solid Oxide Fuel Cell and Power System Development at PNNL
  • Content
  • Development of SOFC Technology
  • SOFC Technology Development at PNNL
  • Solid Oxide Fuel Cell Characteristics
  • Anode-Supported Thin- Electrolyte Cell Structure
  • PNNL-Delphi Technology
  • PNNL-Delphi SECA Team
  • Delphirsquos First Commercial Market APU for Long-Haul Trucks
  • Delphi Stack Performance
  • Delphi Stack Performance
  • Fuel Reforming and System Design
  • Hydro Desulfurization Technology
  • Conceptual Flow Diagram to Integrate Hydrodesulfuration with SOFC Power System
  • Efficiency Boost from Steam Reforming
  • Partial Oxidation Reforming
  • SOFC Power System with Steam Reforming and Anode Recycle
  • TRL4 Demonstration System with Steam Reforming and Anode Recycle
  • Power and Efficiency
  • Higher Power Density Comes with Lower Efficiency
  • Factors Affecting Power Density
  • 787 is a More Electric Airplane
  • Anode Recycle Steam Reformer System
  • Back-Up Slides
  • When Y3+ is substituted into ZrO2
  • Every Modern Car
  • Upper Limit for Steel Framed Planar SOFC Technology
  • Effect of Pressure on SOFC Power Density
  • Reformate Gives Lower Power than Moist Hydrogen
  • Delphi Generation 4 SOFC Technology
  • Predicted Effects of Pressure and Cell Voltage on System Efficiency