101
Sl Th lP f I di Solar Thermal Power for India Dr Shireesh B Kedare Dr. Shireesh B. Kedare Adjunct Associate Professor Department of Energy Science and Engineering, IIT-Bombay Director Clique Developments Pvt. Ltd., Mumbai

Solar Thermal Power Generation

Embed Size (px)

DESCRIPTION

xxxxxxxxxx

Citation preview

Page 1: Solar Thermal Power Generation

S l Th l P f I diSolar Thermal Power for IndiaDr Shireesh B KedareDr. Shireesh B. Kedare

Adjunct Associate ProfessorDepartment of Energy Science and Engineering, IIT-Bombay

DirectorClique Developments Pvt. Ltd., Mumbai

Page 2: Solar Thermal Power Generation

S l B ltSolar Belt

Solar Belt

Solar Belt

Page 3: Solar Thermal Power Generation

Solar Thermal Power : Abundance !

Page 4: Solar Thermal Power Generation

Concentrating Solar Power G tiGeneration

Page 5: Solar Thermal Power Generation

CSP Plants will become one of the leading energy technologies within the next yearsenergy technologies within the next years

630,000 5% ofworld wide energy

21,540

world-wide energydemand

Cumulated installed power in MWel / Forecast

5,990

365**354* 1,550

5,990

2002 2005 2010 2015 2020 2040

Source: ”Solar thermal power in 2020“, Greenpeace/ESTIA

* Mojave Desert/USA (9 power plants) ** Plants under implementation (165 MW)

Page 6: Solar Thermal Power Generation

CSP Plants will become one of the leading energy technologies within the next yearsenergy technologies within the next years

Page 7: Solar Thermal Power Generation

Concentrating OpticsConcentrating Optics

Focus ParabolicReflector

Page 8: Solar Thermal Power Generation

ConcentratorsConcentrators

Parabolic rotational solids Concentrate the irradiance up to 2 000 times

Extruded parabolic profiles Concentrate the irradiance up to 2,000 times up to 200 times

8

Page 9: Solar Thermal Power Generation

Fresnel ConcentratorsFresnel Concentrators

9

Page 10: Solar Thermal Power Generation

Concentrator ApplicationsConcentrator Applications

Dish Stirling Systems5 – 25 kW5 – 25 kWeOff-grid / long-term pilot plants

Solar Tower Systems5 – 100 MW5 – 100 MWeOn-grid / long-term pilot plants

Parabolic Trough5 – 200 MWeOn-grid / commercial operation

Linear Fresnel

10

5 – 200 MWeOn-grid / pilot plants

Page 11: Solar Thermal Power Generation

Parabolic TroughsParabolic Troughs

Typical application: solar radiation is reflected Typical application: solar radiation is reflected to a linear focus (receiver pipe) which is cooled by synthetic oilTemperature range 200 390°CTemperature range 200 – 390°CCapacity range: 10 – 200 MWe

The heat is used in conventional power processes

Status: 354 MW in commercial Status: 354 MWe in commercial operation since 1989

: 65 MW since 2006

11

Page 12: Solar Thermal Power Generation

Parabolic TroughCSP l t i th US

C d

CSP plants in the US

Constructed:Ten Parabolic Trough Plants Sizes between 1 MWe and 80 MWe e e

Installed between 1986 and todayStatus: Under operation

electricity costs approx 120 USD/MWhelectricity costs approx. 120 USD/MWhe

Investment cost between 2800 (80 MW SEGS IX) and 4500 USD/kW (13 MW SEGS I)Operation cost approx. 20 USD/MWhOperation cost approx. 20 USD/MWh

Under construction/development/recent:One PBT Plant 64 MW in Nevada

12

One PBT Plant 64 MWe in Nevada, groundbreaking January ‘06, commissioned ‘07

Page 13: Solar Thermal Power Generation

Parabolic TroughCSP l t i th US C lif iCSP plants in the US : California

Kramer JunctionSEGS III: 30 MWS GS 30

Harper LakeSEGS VIII: 80 MWS GS 80SEGS IV: 30 MW

SEGS V: 30 MWSEGS VI: 30 MWSEGS VII: 30 MW

SEGS IX: 80 MW Total: 160 MWe

SEGS VII: 30 MWTotal: 150 MWe

13

Page 14: Solar Thermal Power Generation

Parabolic Trough CSP plants Kramer Junction in the US

Page 15: Solar Thermal Power Generation

Parabolic Trough CSP plants Harper Lake in the US

Page 16: Solar Thermal Power Generation

Parabolic TroughCSP l t i th US C lif iCSP plants in the US : California

Net Solar field Dispatchability detailsNet Output (MWe)

Solar field outlet temp (C)

Dispatchability details

I 13 8 307 3 h thermal I 13.8 307 3 h thermal storage

II 30 316 Gas fired boiler

III / IV / V 30 349 Gas fired boiler

VI / VII 30 390 Gas fired boiler

16

VIII / IX 80 390 Gas fired HTF heater

Page 17: Solar Thermal Power Generation

Parabolic Trough CSP plants in the US: The Nevada Solar-One Plant

Page 18: Solar Thermal Power Generation

Parabolic Trough CSP plants in the US: The Nevada Solar-One Plant

Parabolic Trough system commissioned 2007Capacity : 64 MWCollector fluid: Dowtherm @ 390°CGenerates steam to run Rankine cycleCapital Investment : $266 million

: $4 16 million/MW : Rs 17 Cr/MW: $4.16 million/MW : Rs.17 Cr/MWEnergy Cost : 21 – 30 c/kWh : Rs. 8 to 12/kWhAnnual Generation : 2100 hr/yrAnnual Generation : 2100 hr/yrArea required : 400 acres : 2.5 Ha/MW

Source: official plant website –www.nevadasolarone.net

Page 19: Solar Thermal Power Generation

Parabolic Trough CSP plants in the US:

Parabolic Trough system commissioned 2006

g pArizona

Capacity : 1 MWCollector fluid: Thermic fluid @ 300°COrganic Rankine cycle

: n-Pentane, vapour at 22.4 bar, 204°CCycle efficiency : 20 7%Cycle efficiency : 20.7%Annual Generation: 2000 hr/yr

Page 20: Solar Thermal Power Generation

PT based CSP at Murqab, near DubaiS l ARC 34 PBTSolarARC 34 PBT

MurqabSolarARC 4 x 34 MWT t l 136 MWTotal: 136 MWe

20

Page 21: Solar Thermal Power Generation

PT based CSP at Murqab, near DubaiS l ARC 34 PBTSolarARC 34 PBT

21

Page 22: Solar Thermal Power Generation

Murqab site SolarARC 34 PBTPl t D t d j t ditiPlant Data and project conditions

Electric capacity 34.0 MWel per moduleThermal Storage 270 MWhth per moduleF il B k l 15% f l t tFossil Backup plus 15% of solar outputElectrical output ~ 108 GWhel p.a. per module

(97 GWhel thereof solar only, i.e. 2850 hr/yr )(97 GWhel thereof solar only, i.e. 2850 hr/yr )Land use 120 ha i.e. 3.53 ha/MWCollector Area:311,000 sq.m i.e.9150 sq.m/MWLifetime over 25 years

22

Page 23: Solar Thermal Power Generation

Murqab site SolarARC 34 PBTPl t D t d j t diti

Direct normal irradiation of 2230

Plant Data and project conditions

Loan frame 80% of invest at 5% interest rate (15 years run time) Electricity selling price of 840 – 930 AED/MWhat electricity generating costs of 500 AED/MWhOperating and Maintenance costs of 77 – 90 AED/MWhLand use free of charge

136 MWe total capacityapprox. 435 GWhe electricity produced per yearIRR20 of 15.3 % - 18.5 % (based on 20% equity capital)Payback Period of approx. 8-9 years

23

Page 24: Solar Thermal Power Generation

Parabolic Troughs ComponentsParabolic Troughs - Components

LS-1 Collector

24

Page 25: Solar Thermal Power Generation

Parabolic Troughs ComponentsParabolic Troughs - Components

LS-2 Collector

Curved glass

2 x 2 modules

Width 5 m

CR ~ 100

25

Page 26: Solar Thermal Power Generation

Parabolic Troughs ComponentsParabolic Troughs - Components

Absorber Tube

Pipe diameter 50 mm

Evacuated glass coverEvacuated glass cover

Selective coating

Temp Limit 400 C

Bellows for expansionBellows for expansion

26

Page 27: Solar Thermal Power Generation

Parabolic Troughs ComponentsParabolic Troughs - Components

Mechanical torque transfer

Hydraulic Tracking system and controls

drive

Solar brain –hardware & software controlsoftware control

Page 28: Solar Thermal Power Generation

Parabolic Troughs ComponentsParabolic Troughs - Components

Piping

C f dConnections on far side

28

Page 29: Solar Thermal Power Generation

Parabolic Troughs ComponentsParabolic Troughs - Components

Steam Generator

Fossil fuel hybrid

29

Page 30: Solar Thermal Power Generation

Parabolic Troughs ComponentsParabolic Troughs - Components

Steam Turbine

Steam Rankine cycley

Organic Rankine cycle

30

Page 31: Solar Thermal Power Generation

Parabolic Trough characteristics - NREL

Page 32: Solar Thermal Power Generation
Page 33: Solar Thermal Power Generation
Page 34: Solar Thermal Power Generation

Parabolic Trough – Power System : Schematic

Page 35: Solar Thermal Power Generation

Parabolic Trough – Power System

35

Page 36: Solar Thermal Power Generation

Parabolic Trough – Power System

36

Page 37: Solar Thermal Power Generation

Parabolic Trough – Power System

37

Page 38: Solar Thermal Power Generation

Parabolic Trough – Power System

Page 39: Solar Thermal Power Generation

Solar Tower SystemsSolar Tower Systems

T i l li i l di i i fl d b Typical application: solar radiation is reflected by heliostats to the top of a tower (80 m)Temperature range: 350 to 1500 °CTemperature range: 350 to 1500 CCapacity range: 5 – 100 MWe

The heat is used in conventional power processesSalt storage systemSt t 10 MW l t il t Status: 10 MWe long-term pilots in operation

39

Page 40: Solar Thermal Power Generation

Solar Tower SystemsSolar Tower Systems

Page 41: Solar Thermal Power Generation

Solar Tower SystemsSolar Tower Systems

Page 42: Solar Thermal Power Generation

Heleostats-Central TowerCSP l t i E

Constructed:

CSP plants in EuropeConstructed:

Only pilot plants (approx. 15 MWe)

Under construction/development:Spain: approx. 500 MWein totalin total

Greece: approx. 50 MWe

42

pp e

Page 43: Solar Thermal Power Generation

PS10 t G d S iPS10 at Granada, Spain

Heleostat – Central ReceiverCapacity : 10 MWArea required : ?Capital Investment

: $56.5 million: $5.65 million/MW $5 65 o /: Rs.23.2 Cr/MW

Page 44: Solar Thermal Power Generation

Linear FresnelLinear Fresnel

44

Page 45: Solar Thermal Power Generation

Linear FresnelLinear Fresnel

Typical application: solar radiation is reflected by facets to a linear focus which is cooled by water/steamTemperature range 300 – 550 °CTemperature range 300 – 550 CCapacity range: 5 – 200 MWe

The heat is used in The heat is used in conventional power processesStatus: pilots in operation

Applications

45

Page 46: Solar Thermal Power Generation

Dish SystemsDish Systems

T i l li i l di i i fl d b Typical application: solar radiation is reflected by a reflective dish (diameter up to 25 m) to a point focusTemperature range: 650 to 800 °CTemperature range: 650 to 800 CCapacity range: 0.01 – 0.025 MWe

Absorbed heat is used to generate steam to runengine or turbine

Status: A few pilots (50 kWe) i th t

46

in the past

Page 47: Solar Thermal Power Generation

Dish with 50kWDish with 50kWee Steam EngineSteam Engine

300 m2 Sandia Dish, US, 1984

Page 48: Solar Thermal Power Generation

Dish with 50kWDish with 50kWee Steam EngineSteam Engine

300 m2 Sandia Dish with Cavity Receiver

Page 49: Solar Thermal Power Generation

Dish with 50kWDish with 50kWee Steam EngineSteam Engine

400 m2 ANU Dish with Cavity 400 m ANU Dish with Cavity Receiver, Australia

Page 50: Solar Thermal Power Generation

Dish Stirling SystemsDish Stirling Systems

T i l li ti l di ti i fl t d b Typical application: solar radiation is reflected by a reflective dish (diameter up to 25 m) to a point focusTemperature range: 650 to 800 °CCapacity range: 10 – 25 kWe

Absorbed heat is used in a Stirling enginea Stirling engineRs.45 Cr/MWe (Imptd)Rs.25 Cr/MWe (Ind)/ ( )Rs.8-12 /kWhStatus: several long-term pilots (10 25 kW ) in operation

50

(10 – 25 kWe) in operation

Page 51: Solar Thermal Power Generation

Dish with Stirling EngineDish with Stirling Engine

100 m2 Dish with Stirling Engine at Test Field

Page 52: Solar Thermal Power Generation

Dish with Stirling EngineDish with Stirling Engine

56 m2 Dish with Stirling Engine at VIT, INDIA

Page 53: Solar Thermal Power Generation

Dish with Stirling EngineDish with Stirling Engine

100 m2 Dishes with Stirling Engine by SES for 500 & 800 MW plant at Mojave Desert, US

Page 54: Solar Thermal Power Generation

Solar Concentrators: EfficiencySolar Concentrators: EfficiencySolar Concentrators: EfficiencySolar Concentrators: Efficiency

54

Page 55: Solar Thermal Power Generation

ComparisonComparison

Peak Energy efficiency 29 % 23 % 21 % 20 %

Operating temperature 800 °C 550 – 1500 °C 390 °C 300 - 550 °C

Typical Size 0.025 MWe 5 - 25 MWe 30 – 80 MWe 10 – 100 MWe

Maturity Pilot Long-term pilot Commercial operationPilot

* Estimated values only** Long-term price studies for solar only plants*** values for plants under commercial operation

55

values for plants under commercial operation

Page 56: Solar Thermal Power Generation

List of CSP plants (announced)

Page 57: Solar Thermal Power Generation

I iti ti i I diInitiatives in IndiaConcentrators for process heatp

Scheffler cooker / concentratorArun paraboloid concentrator Solar Bowl

Thermal Power approachesScheffler Dish with MS storageArun with (solid) storageImported Parabolic Trough / CLFRImported Stirling Engine / Dish

Cogeneration

Page 58: Solar Thermal Power Generation

I iti ti i I diInitiatives in IndiaConcentrators for process heatp

Scheffler cooker / concentratorArun paraboloid concentrator Solar Bowl

Thermal Power approachesScheffler Dish with MS storageArun with (solid) storageImported Parabolic Trough / CLFRImported Stirling Engine / Dish

Cogeneration

Page 59: Solar Thermal Power Generation

Paraboloid Dish Paraboloid Dish with Fixed Focus on groundwith Fixed Focus on groundwith Fixed Focus on groundwith Fixed Focus on ground

7 m2 Scheffler dish for cooking, INDIA

Page 60: Solar Thermal Power Generation

Paraboloid Dish Paraboloid Dish with Fixed Focus on groundwith Fixed Focus on groundwith Fixed Focus on groundwith Fixed Focus on ground

7 m2 Scheffler dish for cooking, Mt.Abu, India

Page 61: Solar Thermal Power Generation

Scheffler Paraboloid Dish with Scheffler Paraboloid Dish with Fixed Focus on groundFixed Focus on groundFixed Focus on groundFixed Focus on ground

16 2 S h ffl di h f ki INDIA16 m2 Scheffler dish for cooking, INDIA• Temp: 100 to 150°C p• Power capacity : 4 to 5 kW• Operating hours : 6 to 7 hours/day• Operating hours : 6 to 7 hours/day• Daily output : 30 kWhth / day• Capital cost : Rs.1,35,000 • Cost Parameter : Rs 30 000 /kWthCost Parameter : Rs. 30,000 /kWth

: Rs. 4,500/(kWhth/day)

Page 62: Solar Thermal Power Generation

Fresnel Paraboloid Dish : Fresnel Paraboloid Dish : ARUNARUN™™ from Cliquefrom CliqueARUNARUN™ ™ from Clique from Clique & IIT& IIT--BombayBombay

160 m2 dish for Pasteurization ofMilk at Mahanand Dairy, Latur, India y, ,saving about 75 lit Furnace Oil on every sunny dayevery sunny day since Feb, 2006

Page 63: Solar Thermal Power Generation

Arun at Mahanand Dairy, y,Latur, India

63

Page 64: Solar Thermal Power Generation

•Paraboloid Fresnel mirror arrangementg

Small mirror facets, protection provided

•Flat dish of space trussLi ht l tl t t d i th fi ld

•Point focus fixed to the dish

Light, less costly, tested in the field

1000

10000

m3

bLoad temperature constraint

•Point focus fixed to the dishMaximized intercept factor

•Coiled tube cavity absorber10

100

1000

stor

age

volu

me,

m o

operating regionvolume limits for given area Area limits for given

volumey

Minimized thermal losses

•Automatic two-axes tracking F i th S i i l ti

1

10

50 70 90 110 130 150 170 190 210 230

s

a

volume

Maximum temp.constraint (100°C)

Minimum Volume

Facing the Sun, maximum insolation

•Storage & Hx for 24 h heat supply

0.1Collector area,m2

Minimum Area

64

g pp y•Optimized integration and efficiency improvement

Page 65: Solar Thermal Power Generation

ARUN160TM Concentrator

Steam for process heat applications

Steam Drum

Pump

65

Page 66: Solar Thermal Power Generation

ARUN160TM Concentrator Field

Steam for process heat applications

Steam Drum

Pump

66

Page 67: Solar Thermal Power Generation

ARUN Solar ARUN Solar Concentrator: ImprovedConcentrator: ImprovedFo the FIRST TIME in Indi ol on ent to i For the FIRST TIME in India a solar concentrator is

available for Industrial Process Heat Applications.

Largest aperture area : 169 m2Largest aperture area : 169 mHighest modular thermal output : About 700,000 kcal/day; about 70 to 90 kWth for 8 to 9 hours a dayHighest stagnation temperature : 1050° to 1200°CHighest stagnation temperature : 1050° to 1200°CHighest process temperature : 300 to 500°CPressurized water / Oil as thermal / storage medium Integrable with various industrial processesBack-up heating for monsoonOn-line data-logging can be providedOn line data logging can be providedSaves about 75 to 85 lit/d or MORE (110 lit/d!) oilTesting procedure is developed that can characterize the dish

67

the dishη = 0.765 – {0.4 + 2.4x10-5 (Tm - Tamb) + 0.9x10-3 (sin θz) } (Tm - Tamb) /Ibn

η of PT = 0.78 – {0.35 + 4.3x10-5 (Tm - Tamb) + 0 } (Tm - Tamb) /Ibn

Page 68: Solar Thermal Power Generation

PotentialFully indigenous technologyFully indigenous technologyAt the fountainhead of

Providing about 30% of industrial process heat in India by solar energy saving of about 10% of our oil importsCapable of supplying most economic solar heat Capable of supplying most economic solar heat for solar thermal power route through steam Rankine cycle / organic Rankine cycle / Combined gas cycleCombined gas cycleStirling-Dish system leading to Solar FarmsExperience gained leading to development of heleostats and central tower systemheleostats and central tower systemAs tracker for solar PV panelsFor concentrating solar PV in future

68

gGreat CDM potential and important role in reducing global warming

Page 69: Solar Thermal Power Generation

Improved Fresnel Paraboloid Dish : ARUNImproved Fresnel Paraboloid Dish : ARUN™™

169 m2 dish for Industrial Process Heat / Power• Temp: 150 to 350°C• Temp: 150 to 350°C • Power capacity : 80 to 85 kWth• Operating hours : 9 to 10 hours/day• Daily output : About 800 kWhth / dayDaily output : About 800 kWhth / day

or 700,000 kcal / dayC i l R 28 50 000• Capital cost : Rs.28,50,000

• Cost Parameter : Rs. 34,550 /kWth, th: Rs. 3,562/(kWhth/day)

Page 70: Solar Thermal Power Generation

Fixed Spheroidal Dish Fixed Spheroidal Dish with Moving Focuswith Moving Focuswith Moving Focuswith Moving Focus

176 m2

Solar BowlSolar Bowl at CSR, Auroville, INDIA

Page 71: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems Specific Cost (Capital cost / Area) (Rs./ m2)

37,50040,000

2

33,750

,

25,00030,000

35,000

Rs./

m2

15,00012 000

25,000

21,429

14,793 16,00015,000

20,000

25,000

7,50010,000

7,000

12,0009,500

5,000

10,000

5,000

0

Solar a

ir hea

terar

water h

eater

Tube C

ollec

tors

eat P

ipe Sys

temSan

dia, U

SAANU, A

ustra

liaPara

bolic

Trough

Solar B

owl

cook

er (16

m2)

Arun70

Arun16

0ow

-iron m

irrors

71

So

Solar

Evacu

ated T

Evacu

ated t

ube-H

ea A Par

Scheff

ler co

Arun16

0 with

low

Page 72: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems Cost / Efficiency ratio (Rs./m2)

90 000

4821453571

77159

60,000

70,000

80,000

90,000

Rs/

m2

22140 2361614000

4090948214

22069

3538244835

25509 2472630,000

40,000

50,000

14000

-

10,000

20,000

er r s SA ia h wl ) 70 60

Solar air

heater

Solar w

ater he

ateruate

d Tube C

ollectors

be -Heat Pipe SystemSandia, U

SAANU, A

ustralia

Parabolic TroughSolar B

owl

heffle

r coo

ker (16 m

2)

Arun70

Arun160

with low-iro

n mirro

rs

72

Evacua

Evacuated tu

be

Sche

Arun160 w

Page 73: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems Power Cost (Capital cost / Power) at different operating temperatures

(Rs./ kWth)

85,08494,538

80,00090,000

100,000

s./ k

Wth

18 450 19 680

48,128

25,963

45,387 41,62652,747

30,010 29,08930 00040,00050,00060,00070,000 R

s

18,450 19,68011,667

010,00020,00030,000

er r SA ia h wl 70 60

Solar air h

eaterSolar w

ater heater

ated Tube Collectorbe -Heat P

ipe SysteSandia, U

SAANU, A

ustralia

Parabo lic TroughSolar B

owleffle

r cooker (1

6 m2)

Arun70

Arun160with lo

w-iron m

irrors

73

Evacuat

Evacuated tu

be

Schef

Arun160 wit

Page 74: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems Typical Cost of Thermal Energy from different solar thermal units

at different operating temperatures (Rs./kWhth)

4.895

6

3.57 3.744.15

2 84

4

5

Wht

h

1.37 1.46 1.47

2.562.84

1.32 1.282

3

Rs.

/ kW

0.86

0

1

74

Solar airheater

Solarw aterheater

EvacuatedTube

Collectors

Evacuatedtube-Heat

PipeSystem

Sandia,USA

ANU,Australia

ParabolicTrough

SolarBow l

Schefflercooker(16 m2)

Arun70 Arun160 Arun160w ith low -

ironmirrors

Page 75: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems

0 8

Scheffler cooker (16 m2)Evacuated tube-Heat Pipe SystemArun160

0 6

0.7

0.8 Parabolic TroughArun160 with low-iron mirrors

0 4

0.5

0.6

Effic

ienc

y

0 2

0.3

0.4

Syst

em E

0 0

0.1

0.2

(Topr-Ta), °C

75

0.050 100 150 200 250 300

Page 76: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems

60,000

65,000

70,000m

al P

ower

45,00050,000

55,000

60,000

d on

The

rmth

30,000

35,000

40,000

,

cost

bas

edR

s / k

W

20,000

25,000

,

50 100 150 200 250 300fic s

yste

m

(Topr-Ta), °C

Spe

ci Scheffler cooker (16 m2)

Evacuated tube-Heat Pipe SystemArun160

76

Parabolic TroughArun160 with low-iron mirrors

Page 77: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems 5

e C

ost o

f/ k

Wh

th

3

4

ve L

ife C

ycle

Ener

gy, R

s./

2

Com

para

tivD

eliv

ered

E

150 100 150 200 250 300

(Topr-Ta), °CScheffler cooker (16 m2)Evacuated tube-Heat Pipe SystemArun160Parabolic TroughElectricityLight Diesel Oil (LDO)LPG

77

LPGFurnace Oil (FO)Natural Gas (PNG)Arun160 with low-iron mirrors

Page 78: Solar Thermal Power Generation

I iti ti i I diInitiatives in IndiaConcentrators for process heatp

Scheffler cooker / concentratorArun paraboloid concentrator Solar Bowl

Thermal Power approachesScheffler Dish with MS storageArun with (solid) storageImported Parabolic Trough / CLFRImported Stirling Engine / Dish

Cogeneration

Page 79: Solar Thermal Power Generation

1 MW SOLAR THERMAL POWER PROJECTPROJECT

1.9 3046

60 350Solar Boiler5.4 MW

SOLARFIELD

SH

H.ST. P = 1 MW1.9 3046

60 400

1.4 2521

0.1013 46.2

WS

0.5 MW

75.3 %

EV

1.9 2785

60 276WS

HTF

4.4 MW

3 1 MW

C ST

WS 1.9 1134

65 260

1.9 192

0.1013 46

HTF

3.1 MW

PHC.ST.

1.8 MW

Ppump = 12.1 KW

LEGENDS

Power Output: 1 MWSolar Boiler Heat i/p = 5.4 MWEfficiency: 18.4 %

P 601.9 198

65 46

Mass [Kg/S] h [KJ/Kg]

P [bar] T [0 C]

P=60T=350MW=1No RH, No RG

Page 80: Solar Thermal Power Generation

1 MW SOLAR THERMAL POWER PROJECTPROJECT

1.6 3180

60 400Solar Boiler4.8 MW

SOLARFIELD

SH

H.ST. P = 1 MW1.6 3180

60 400

1.6 2554

0.1013 46.2

WS

0.63 MW

75.3 %

EV

1.6 2785

60 276WS

HTF

3.8 MW

2 64 MW

C ST

WS 1.6 1134

65 260

1.6 192

0.1013 46

HTF

2.64 MW

PHC.ST.

1.49 MW

Ppump = 10.2 KW

Power Output: 1 MWSolar Boiler Heat i/p = 4.8 MWEfficiency: 21%

LEGENDS

1.6 198

65 46

P=60T=400MW=1No RH, No

Mass [Kg/S] h [KJ/Kg]

P [bar] T [0 C]

Page 81: Solar Thermal Power Generation

1 MW SOLAR THERMAL POWER PROJECTPROJECT

1.4 3303

60 450Solar Boiler4.32 MW

SOLARFIELD

SH

H.ST. P = 1 MW1.4 3303

60 400

1.4 2585

0.1013 46.2

WS

0.72 MW

75.3 %

EV

1.4 2785

60 276WS

HTF

3.33 MW

2 3 MW

C ST

WS 1.4 1134

65 260

1.4 192

0.1013 46

HTF

2.3 MW

PHC.ST.

1.3 MW

Ppump = 8.9 KW

Power Output: 1 MWSolar Boiler Heat i/p = 4.32 MWEfficiency: 23.1%

P 60LEGENDS

1.4 198

65 46

P=60T=450MW=1No RH, No RG

Mass [Kg/S] h [KJ/Kg]

P [bar] T [0 C]

Page 82: Solar Thermal Power Generation

1 MW SOLAR THERMAL POWER PROJECTPROJECT

1.73 3118

30 350Solar Boiler5.1 MW

SOLARFIELD

SH

H.ST. P = 1 MW1.73 3233

30 400

1.73 2539

0.1013 46.2

WS

0.5 MW

75.3 %

EV

1.73 2832

30 276WS

HTF

4.1 MW

3 2 MW

C ST

WS 1.73 990

35 260

1.73 192

0.1013 46

HTF

3.2 MW

PHC.ST.

1.4 MW

Ppump = 6 KW

Power Output: 1 MWSolar Boiler Heat i/p = 5.1 MWEfficiency: 19.8 %

P 30LEGENDS

1.73 196

35 46

P=30T=350MW=1No RH, No RG

Mass [Kg/S] h [KJ/Kg]

P [bar] T [0 C]

Page 83: Solar Thermal Power Generation

1 MW SOLAR THERMAL POWER PROJECTPROJECT

1.5 3233

30 400Solar Boiler4.6 MW

SOLARFIELD

SH

H.ST. P = 1 MW1.5 3233

30 400

1.5 2568

0.1013 46.2

WS

0.6 MW

75.3 %

EV

1.5 2832

30 276WS

HTF

3.6 MW

2 8 MW

C ST

WS 1.5 990

35 260

1.5 192

0.1013 46

HTF

2.8 MW

PHC.ST.

1.2 MW

Ppump = 5.15 KW

Power Output: 1 MWSolar Boiler Heat i/p = 4.6 MWEfficiency: 21.9 %

P 30LEGENDS

1.5 196

35 46

P=30T=400MW=1No RH, No RG

Mass [Kg/S] h [KJ/Kg]

P [bar] T [0 C]

Page 84: Solar Thermal Power Generation

Cycle Efficiency = 0.047xTemperature + 2.0333R2 = 0.9962

23 0

23.51 92.0

22 0

22.5

23.0

1.71.81.9

Mass Flow = -0.005xTemperature + 3.6333R2 = 0.9868

21.0

21.5

22.0

1 41.51.6

20.0

20.5

21.0

1.21.31.4

300 320 340 360 380 400 420 440 460

Series1 Series2 Linear (Series1) Linear (Series2)Series1 Series2 Linear (Series1) Linear (Series2)

Page 85: Solar Thermal Power Generation

25

21 923.123

25

cy [%

]

19.8

21.921

18.419

21

Effi

cien

15

17

Cyc

le

300 320 340 360 380 400 420 440 460

Temperature [C]

Pressure=30 Bar Pressure=60 Bar

350 400 45030 19.8 21.960 18.4 21 23.1

Page 86: Solar Thermal Power Generation

21 923.123

25

y [%

]

19.8

21.921

18 419

21

Effic

ienc

y

18.4

15

17

Cycl

e E

1550 70 90 110 130 150 170 190

Degree of Superheat [C]

Pressure=30 Bar Pressure=60 Bar

75 125 17575 125 17530 19.8 21.960 18.4 21 23.1

Page 87: Solar Thermal Power Generation

Comparison of Solar Systems Comparison of Solar Systems

0 8

Scheffler cooker (16 m2)Evacuated tube-Heat Pipe SystemArun160

0 6

0.7

0.8 Parabolic TroughArun160 with low-iron mirrors

0 4

0.5

0.6

Effic

ienc

y

0 2

0.3

0.4

Syst

em E

0 0

0.1

0.2

(Topr-Ta), °C

87

0.050 100 150 200 250 300

Page 88: Solar Thermal Power Generation

Solar Thermal Power Technologies : T h i l C i f I diTechnical Comparison for India

Typical concen-tration Optical

Heat loss coefficient,

UEffective

aperture atEffective

aperture attration ratio

Optical efficiency, ηo

Ul, W/m2/K

aperture at Lat < 20°

aperture at Lat > 20°

Scheffler 150 0 581 2 0 7 0 7

system150 0.581 2 0.7 0.7

Parabolic 100 0.77 0.35 0.8 – 0.9 0.6 – 0.8Trough

Arun160 ith l i 400 0 765 0 4 1 0 1 0with low-iron

mirrors

400 0.765 0.4 1.0 1.0

Page 89: Solar Thermal Power Generation

Solar Thermal Power Technologies : P t i C i f I diParametric Comparison for India

Scheffler Arun Imported PT

Imported CLFR

Dish-Stirling PT CLFR Stirling

Power 3.5 MW 5 MW 20 MW 20 MW ? 0.025 MW

Collector Area/

12,000 8,450 9,500 – ? 6750Sq.m / MW 10,500

Land requiredHa/MW

2.75 4.5 2.5 to 3.5 ? 3Ha/MW

Capital CostRs./MW

18.3 Cr 20 Cr 17 Cr 14 Cr 16-20 Cr

Hrs/day 6 85 8 5 7 5 6 8Hrs/day 6.85 8.5 7 5.6 8

RatioRs.Cr/(MWh/d)

2.67 2.35 2.4 2.5 2 - 2.5

Energy Cost* 9 00 7 83 8 00 8 33 10 12 50Energy Cost*Rs./kWh

9.00 –13.50

7.83 –11.75

8.00 –12.00

8.33 –12.50

10 – 12.50

* With annualized cost / capital cost = 13% and O&M @2% pa, no profit

Page 90: Solar Thermal Power Generation

I iti ti i I diInitiatives in IndiaConcentrators for process heatp

Scheffler cooker / concentratorArun paraboloid concentrator Solar Bowl

Thermal Power approachesScheffler Dish with MS storageArun with (solid) storageImported Parabolic Trough / CLFRImported Stirling Engine / Dish

Cogeneration

Page 91: Solar Thermal Power Generation

Co-generation with process heat li tiapplications

Page 92: Solar Thermal Power Generation

Co-generation with VAR-application

92

Page 93: Solar Thermal Power Generation

Co-generation with Multiple effect Desalination

GG

93

Page 94: Solar Thermal Power Generation

Solar Thermal Power Technologies : R h i f I di

Optimization of Process Heat and Co-

Research issues for Indiap

gen systemsStorage material at high temperatureg g pOptimum sizing of storage, turbinesOrganic Rankine cycleOrganic Rankine cyclePT: Evacuated tube and its coatingHigh temperature receiver for central High temperature receiver for central towerThermal material for central towerThermal material for central towerStirling engine

Page 95: Solar Thermal Power Generation

Solar Thermal Power Technologies : T h l i f I di

Infrastructure available and cost in India for

Technology issues for India

manufacturing: Labour, industrial componentsTechnical quality, Reliability and Operating experience of indigenous systems vs imported experience of indigenous systems vs imported systemsCapital cost and Cost of maintenance of Capital cost and Cost of maintenance of indigenous systems vs imported systemsTesting standardsTesting facility and demonstration plant – IIT Bombay

Page 96: Solar Thermal Power Generation

Solar Thermal Power Technologies : C i i f I diComparison issues for India

Cost and hours /day, hours /year Operating temperature affects solar

ll ff ll bcollector efficiency as well as turbine efficiencyD i i bl f i di Design suitable for indigenous maintenance S i i d Storage sizing and cost Are we going to put more plants for

i t ti / R d D ?experimentation / R and D ?

Page 97: Solar Thermal Power Generation

CSP - Energy cost estimates :Reduction due to increased installations

Page 98: Solar Thermal Power Generation

CSP - Energy cost estimates :Reduction due to increased installations

Page 99: Solar Thermal Power Generation

CSP - Energy cost estimates :Reduction with respect to time

Page 100: Solar Thermal Power Generation

Solar Thermal Power Technologies : P li i f I di

Apt and positive policy initiative !

Policy issues for IndiaApt and positive policy initiative !

Strategy for indigenous technology development ? development ?

Completely imported l

Completely indigenous plant

C bi ti f t h l i ?

plant

α-Plant

plant

β -Plant

Combination of technologies ?Hybrid systems ?

????Co-gen systems ? ????

Page 101: Solar Thermal Power Generation

Thanks for your attention !Thanks for your attention !

Queries and suggestions are welcome.

Dr Shireesh B KedareDr. Shireesh B. Kedare

Adjunct Associate ProfessorDepartment of Energy Science and Engineering, [email protected]

DirectorClique Developments Pvt. Ltd., Mumbaibk d @ [email protected]