28
Solar Solar Wind Wind electrons : electrons : observations and basic physics observations and basic physics Milan Maksimovic, LESIA – Observatoire de Paris Oli Oli Observations Outline Outline Radial evolutions Basic physics & models Conclusions GYPW01 Cambridge UK 19-23 July 2010 GYPW01, Cambridge UK, 19 23 July 2010

Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Solar Solar Wind Wind electrons : electrons :

observations and basic physicsobservations and basic physics

Milan Maksimovic, LESIA – Observatoire de Paris

O li O li • Observations

Outline Outline

• Radial evolutions• Basic physics & models• Conclusions

GYPW01 Cambridge UK 19-23 July 2010GYPW01, Cambridge UK, 19 23 July 2010

Page 2: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Turbulence in the Solar Wind : Evidence for slope break in the electron rangeslope break in the electron range

Alexandrova et al., PRL 2009 PRL, 2009

Page 3: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Ionized Hydrogen :• e-

• H+ : ~95%• ~1% of heavy ions (C N O Ne Mg Fe)

The Solar Wind as Seen from the ecliptic

Helios, 1983H : ~95%

• He2+ : ~4%(C, N, O, Ne, Mg, Fe)

Slow Wind :• V ~ 200 à 600 km/s• V ~ 200 à 600 km/s• Ne ~ 5 à 20 cm-3

• ρV2 ~ 2.1 x 10-9 Pa• Te ~ 1 à 3 x105 K → Vthe ~ 2500 km/s

E ~ 10-20 eV• Tp ~ 0.5 à 3 x105 K → Vthp ~ 40 km/s

E ~ 0.5-1.5 keV

~106 K

1 à 2 x106 K

YohkohYohkoh

Page 4: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Ionized Hydrogen :• e-

• H+ : ~95%• ~1% of heavy ions (C N O Ne Mg Fe)

The Solar Wind as Seen from the ecliptic

Helios, 1983H : ~95%

• He2+ : ~4%(C, N, O, Ne, Mg, Fe)

Slow Wind :• V ~ 200 à 600 km/s• V ~ 200 à 600 km/s• Ne ~ 5 à 20 cm-3

• ρV2 ~ 2.1 x 10-9 Pa• Te ~ 1 à 3 x105 K → Vthe ~ 2500 km/s

E ~ 10-20 eV• Tp ~ 0.5 à 3 x105 K → Vthp ~ 40 km/s

E ~ 0.5-1.5 keVFast Wind :Fast Wind :• V ~ 600 à 800 km/s• Ne ~ 1 à 5 cm-3

• ρV2 ~ 2.6 x 10-9 PaT 1 à 2 105 K V 2100 k /

~106 K

1 à 2 x106 K

• Te ~ 1 à 2 x105 K → Vthe ~ 2100 km/sE ~ 10-20 eV

• Tp ~ 2 à 5 x105 K → Vthp ~ 80 km/sE ~ 1.5-3 keV

• Protons : transport moment, determinethe viscosityElectrons : transport the heat & Yohkoh

E 1.5 3 keV

• Electrons : transport the heat & determine the conductivity

Yohkoh

Page 5: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

How do we measure particle distribution functions ?

S f h i ff

- Velocity (energy) selection set by entrance grid Φ- Look direction set by electro-optical geometry or S/C spining

Spacecraft charging effects

- Photoelectrons- SW electrons- SW electrons

Typical Φ ~ 2 to 10 VoltsElectrons affectedElectrons affectedIons not affected

Page 6: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Electron velocity distribution functions :3 components : core, halo & strahl

● Best model : (bi-)Maxwellian for the core + Maxwellian (bi )Maxwellian for the core + (bi-) Lorentzian (Kappa) :Maksimovic et al., 1997, 2005

Core (95%)Isotropic

haloκ

κ κ

⎥⎦

⎤⎢⎣

⎡+ 2

2

1~)(thv

vvfUlysses

+ Strahl along B

Page 7: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Proton distribution functionsH liHelios

ΔV~50 km/s ~Va

non conservationof μ

heating?

bi-Maxwellian + beam

Page 8: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Heavy ions distribution functions

Page 9: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

About Coulomb collisionsin the SW

c ll cr ss secti ncoll. cross section

4pathfree v)SI(10.9m.f.p.

2 7

nT=

pathfree v=

f 1~H

m.f.p.

m f p 13

corona, SW

chr m sphere

Collisions are not local

10~H

m.f.p. 13− chromosphere

Collisions are not localPart/waves interactions (turbulence, instabilities)

id th l l ~260 UA ~16 UA ~0.2 UA

provide the local energytransport

Page 10: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Radial Radial evolutionsevolutionsRadial Radial evolutionsevolutions

Page 11: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Helios + Ulysses

adiabatic3/4−∝ RTProtons closer to adiabaticbut extra heating neededadiabatic ∝ RT g

for both e- and p+

Page 12: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Evidences for both collisions and instabilitiesshaping the eVDFsshaping the eVDFs

agelcollisiona:RA υ=Stverak et al., JGR, 2008Similar for protons : Kasper et al Hellinger et al

agelcollisiona : VeeeA υ=

Similar for protons : Kasper et al., Hellinger et al.

Page 13: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Radial evolution of electrondistribution functionsdistribution functionsStverak et al., JGR, 2009

Core : bi-Maxwellian * flat-top

Halo : bi- Kappa * (1-flat-top)

Strahl : bi- Kappa * (1-flat-top) from antisunward dir.

Page 14: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Helios, Cluster, Ulysses

Strahl is transformed into halo with distanceStrahl is transformed into halo with distanceby particle/wave interactions ?

Similar to fast wind (Maksimovic et al. 2005)

Page 15: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

eVDF extrapolated back to the sun

Page 16: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

SomeSome basic basic physicsphysicsandand modelsmodelsand and modelsmodels

Page 17: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

•Interplanetary electric potential

electrons kTrMGme <<ro

E

protons kTMGmp >+ ++ ro++++

Page 18: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

•Interplanetary electric potential

electrons kTrMGme <<ro

E

protons kTMGmp >+ ++ ro+++

El lli h i d+ Electrons are pulling the wind

Page 19: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Jockers, 1971Lemaire & Scherer, 1971Maksimovic et al., 1997

The dilema of trapped electronsThe dilema of trapped electrons

Page 20: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Flux e- with κe

Page 21: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Transsonic exospheric modelro=1.0 Rs

Teo=106 KT =2•106 KTpo=2•106 K

maxwellian protons non-maxwellian electrons

Bulk speeds

m w

Important heating…

im t t l tiimportant accelerationbefore 10Rs

electron temperature

(Zouganelis et al., 2004, ApJ, in press)

Page 22: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Particule simulationParticule simulation Analytical modelAnalytical modelParticule simulationParticule simulationLandi & Pantellini, A&A, 2001 & 2003

Analytical modelAnalytical modelPierrard et al., JGR, 1999

Dorelli & Scudder, GRL1999 & JGR 2003,

E ternal (g E) forces

Rosenbluth et al. [1957]Coulomb coll. operator

External (g,E) forces

p

- The protons are treated as an infinitely massive, charge neutralizing background

- The heat flux is constant and carried entirely by the electrons.

Page 23: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Landi & Pantellini, A&A 2003Lani et al., SW12, 2009Lan et a ., SW , 9

Increasing nb of collisionsSolves the trapped electrons dilemaSolves the trapped electrons dilema

eΦ2~em

Page 24: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Extensive comparison between exospheric and kinetic collisional modelsZouganelis et al APJL 2005Zouganelis et al., APJL 2005

Page 25: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Non-thermal distributions and

Cl i l S it H

heat flux in the corona

T1 > T0 Q

Classical Spitzer-Harmheat fluxQe

T 5105K

T1 T0ee TQ ∇Κ−=TTQ eee ∂

∂−∝ 2/5

z

T0~5105K

0 H

zTQ ee ∂∝

vv

Page 26: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Non-thermal distributions and

Cl i l S it H

heat flux in the corona

T1 > T0 Q

Classical Spitzer-Harmheat flux

T 5105K

T1 T0ee TQ ∇Κ−=TTQ eee ∂

∂−∝ 2/5Qegen

z

T0~5105K zTQ ee ∂∝

0 H

Qeg

If the distribution is non-thermal at z=0 :

Q h di iv => Qe changes directionv

Page 27: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Landi & Pantellini, 2001 & 2003 Dorelli & Scudder, 1999 & 2003Landi & Pantellini, 2001 & 2003

Spitzer & Harm

Even with a weak Knundsen number (10-2 à 10-4)

p

e- VDF with supra-thermal tails still exist at z = 0.1 Rs

The classical Spitzer & Harm heat flux is not valid

Page 28: Solar Solar Wind Wind electrons : electrons : observations and basic … · 2010. 7. 20. · Conclusions:-Non Maxwellian e VDFs are always present in the Solar Wind-The core / strahl

Conclusions:

- Non Maxwellian e VDFs are always present in the Solar WindNon Maxwellian e VDFs are always present in the Solar Wind- The core / strahl structure seems to results from natural expansion in a ambipolar interplanetary electric field and Coulomb collisions for the core- The halo part seems to come from scaterred strahl electrons and develops with radial distance- Both electrons and ions need additional heating processes (dissipation of turbulence, instabilities)- The equations for the transport of energy are not obvious

- We need to go closer to the Sun