48
Everything you wanted to know about ENZYMES, and more!

So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Embed Size (px)

Citation preview

Page 1: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Everything you wanted to know about ENZYMES, and more!

Page 2: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

So – just what is an enzyme?

Questions to think about:• What type of macromolecule is it?

• What do you think it’s role is?

• Why are they important?

Page 3: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

If you are not sure think about the following scenarios...

1. You need to light a fire, and the only tools you have are two sticks that you can rub together.

2. You need to light a fire, and the only tool you have is a match.

3. You need to light a fire, and the only tool you have is a flint (which whenstruck, creates sparks).

Page 4: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Things to think about...• Would all three scenarios work? • Other than type of tool used, what is the main

difference between them? • If you needed to light another fire, could you do

so (assuming other one completely went out)?

Now lets find out what anenzyme actually is – as we are doing so, decide which scenario most closely represents the role of enzymes.

Page 5: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

What is an Enzyme?

Page 6: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

What are they?

• Enzymes are proteins• Function is to catalyze reactions• A catalyst is a substance that speeds up the

rate of a chemical reaction by lowering the activation energy required for the reaction to begin

• Catalysts are reusable, that is they are not consumed in processes, so they can be recycled for other reactions

Page 7: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Why do we need enzymes?

• All reactions, energy to begin a reaction • This energy is called the Activation energy(EA)• Most chemical reactions in cells reach the

state of activation too slowly on their own• Increasing temperature, speeds up the

process, but this has draw backs in living organisms ....what might that be?

Page 8: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Why do we need enzymes?

• Another way – to increase rate of chemical reactions without increasing temperature is to use a catalyst

• catalysts function by lowering the activation energy of the reaction

• Almost all chemical reactions in organisms are facilitated by enzymes

• So – which scenario most closely matches the function of an enzyme?

Page 9: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

If you are not sure think about the following scenarios...

1. You need to light a fire, and the only tools you have are two sticks that you can rub together.

2. You need to light a fire, and the only tool you have is a match.

3. You need to light a fire, and the only tool you have is a flint (which whenstruck, creates sparks).

Page 10: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Exergonic Reaction – a chemical reaction that releases energy

Reactions with and without a Catalyst

EA = Activation Energy

0

Ener

gy

Supp

lied

Ener

gy

Rele

ased

Page 11: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Endergonic Reaction – chemical reaction that requires energy

Reactions with and without a Catalyst

0

Ener

gy

Supp

lied

Ener

gy

Rele

ased

Page 12: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

How does it all work?

What ways can you think of that would allow an enzyme to decrease the activation energy of a reaction?

Page 13: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

How does it all work?

• Each enzyme contains an active site • An active site is a 3-D pocket or indentation on its

surface• It matches the shape of the substrate and is the

site on an enzyme where the substrate binds• Originally thought of as a key-and-lock model

Page 14: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

How does it all work?• A substrate is a reactant that interacts with the

enzyme in an enzyme-catalyzed reaction• They form an enzyme-substrate complex• Enzyme-substrate complexes are highly specific

Page 15: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

E.g. Enzymatic Hydrolysis of SucroseQ: Do you think maltose could also be a substrate for this enzyme? Why or why not?

Page 16: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

How does it all work?

Now the thinking is:• Enzymes can adjust their shapes slightly to

accommodate a substrate• This adjustment allows the substrate to fit in the

active site, and the change in the active site of the enzyme is called induced fit

Page 17: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Substrate Bindinginduced-fit model - enzyme changes shape

upon substrate binding

enzyme-substrate complex

Page 18: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Model Comparison• Two proposed models:

– Lock-and-key model: this assumes that the active site is a perfect fit for a specific substrate (once the substrate binds there is no further modification)

Induced fit model: developed from the lock and key modelChange in shape to: bring R-groups closer to substrate

bend bonds to make them easier to break / react

reduce EA (makes transition state easier)

bring two reactants close together

provide a microenvironment for reactions

Page 19: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

How enzymes Work• Regardless of model• Enzymes prepare substrates for reaction by:

– Changing the substrate– Its environment– Or both in some wayWith the end result being a lowering of the activation

energy of the reaction.

Page 20: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

How enzymes Work• E.g., bring two substrates together in the correct

position for a reaction to occur

• Add or remove hydrogen ions to or from the substrate (i.e., act as an acid or base), destabilizing it and making it more likely to react

Page 21: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

How enzymes Work• Transfer electrons to or from the substrate (i.e.,

reduces or oxidizes it), which destabilizes it and makes it morel likely to react

• Contain amino acid R groups that end up close to certain chemical bonds in the substrate, causing these bonds to stretch or bend, which makes the bonds weaker and easier to break

Page 22: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Steps to Enzyme Reactions

1. Substrate binds to available active site pocket.

2. Enzyme changes shape to envelope substrate(s)

3. Reaction occurs

4. Products lose affinity for the active site

5. Enzyme is set for another substrate

Whole cycle called catalytic cycle.

Page 23: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Enzyme Classification

• Enzymes are classified according to the type of reaction they catalyze

• E.g., hydrolases = enzymes that catalyze hydrolysis reactions

• Each enzyme has a unique name, ending in “-ase”, beginning with first part of the substrate name

• E.g., lactase (breaks down lactose)

Page 24: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Factors that affect enzymes

Any ideas? There are four of them. What might be the consequences?

Page 25: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Factors Affecting Enzyme Activity

• Temperature• pH value• Concentration of substrate• Concentration of the enzyme itself

Page 26: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Temperature

• As temperature rises increase in rates of reactions.....to a degree!

• Which causes the rate of enzymatic reaction to increase as well

• Every enzyme has a specific or optimal temp. where its activity is the greatest. E.g. body enzymes has optimal temp. 37.5oC

• At higher temp. intra and intermolecular bonds are broken as enzymes gain more kinetic energy, they become denatured.

Page 27: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

pH• Each enzyme works within quite a small pH

range.• Activities are greatest at optimal pH• Changes in pH break intra- and intermolecular

bonds, changing the shape of the enzyme, and effectiveness.

Page 28: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Effect of Temperature and pH on Enzyme Activity

Page 29: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Limitations of Enzymes

• only a set number of each type of enzyme in body– reactions have a

maximum rate

Page 30: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Concentration of enzyme and substrate

• Rate of reaction increases with increasing substrate concentration up to a point,

• Above which any further increase in substrate concentration produces no significant change in reaction rate.

• Why? – because the active sites of the enzymes molecules at any given moment are virtually saturated with substrate.

• Enzyme/substrate complex has to dissociate before the active sites are free to accommodate more substrate

Page 31: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Provided that the substrate concentration is high and that temperature and pH are kept constant, the rate of reaction is proportional to the enzyme concentration.

Page 32: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Enzymes Regulation

Can you think of anyway enzymes can be controlled or kept in check?

Page 33: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Enzyme Factors

• Some enzymes require non-protein molecules to operate

Coenzymes = organic molecules that assist an enzyme

Cofactors = inorganic molecules that assist an enzyme (e.g., metal ions, iron, zinc)

Page 34: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Regulation of Enzyme Activity• Regulate enzyme activity through use of inhibitors

• Inhibitor = a molecule that binds to the allosteric or active site of an enzyme and causes a decrease in the activity of that enzyme

• Allosteric site = a site on an enzyme that is not the active site, where other molecules can interact with and regulate the activity of the enzyme

Page 35: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Regulation of Enzyme ActivityCompetitive inhibitor – binds to the same

active site as the substrate

noncompetitive inhibitor – binds to an alternate site (allosteric site) on the enzyme to keep it in an inactive form (no longer has affinity for substrate)

Page 36: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Q: What happens if a competitive inhibitor is present, but in a lower concentration than the substrate? In higher concentration?

Page 37: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Competitive Inhibition

Page 38: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Non-competitive Inhibition Note: If binding and reduction of enzyme is permanent, then the substance binding to the enzyme is considered a toxin

Page 39: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Regulation of Enzyme Activity

• Also regulate enzyme activity through use of activator molecules.– Molecules that promote the action of enzymes and

which bind to the allosteric site of an enzyme.

• The regulation of enzyme activity by activators and inhibitors binding to allosteric sites is called allosteric regulation

Page 40: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Allosteric Sites

Page 41: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Feedback Inhibitiona method for cells to regulate metabolic pathways

(i.e., maintain homeostasis)

often, products at the end of a series of a reaction will act as an allosteric inhibitor to shut the reactions down

A, B, C and D are molecules along a metabolic pathway.

E1, E2 and E3 are enzymes required for this metabolic pathway.

D is an allosteric inhibitor of E1.

Page 42: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Feedback Inhibition

Page 43: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Enzymes in Everyday Life

Page 44: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Use of Enzymes

• Includes industrial and commercial purposes– E.g. proteases are used in the dairy industry to

produce cheese– proteases, along with amylase, are also added to

detergents to help remove protein and carbohydrate produced stains

Page 45: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?
Page 46: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

What you should have learned• Examine enzymatic pathways, • Focus on how they inhibit or activate reactions• Use appropriate terminology related to

biochemistry e.g. allosteric, substrate, substrate-enzyme complex, inhibition

• Describe the chemical structures and mechanisms of various enzymes

• Analyse technology applications related to enzyme activity in the food and pharmaceutical industries

Page 47: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Homework

• Pg. 77, Q 1, 2, 4-9

Page 48: So – just what is an enzyme? Questions to think about: What type of macromolecule is it? What do you think it’s role is? Why are they important?

Unit 1- Quest 2 (Thurs)

• Focus – macromolecules and biochemical reactions, including enzymes (not thermodynamics)

• To be given– Multiple choice– Short answers– Application questions