61
Smoothing and Forecasting Mortality Rates with P-splines Iain Currie Heriot Watt University London, June 2006

Smoothing and Forecasting Mortality Rates with P-splines ......1960 1980 2000 2020 2040 −6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0 Quadratic fit: linear & quadratic forecasts

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Smoothing and Forecasting

    Mortality Rates with P-splines

    Iain CurrieHeriot Watt University

    London, June 2006

  • Data and problem

    • Data: CMI assured lives

    – Age: 20 to 90

    – Year: 1947 to 2002

    • Problem: forecast table to 2046

  • Data and problem

    • Data: CMI assured lives

    – Age: 20 to 90

    – Year: 1947 to 2002

    • Problem: forecast table to 2046

  • Plan of talk

    • P-splines in 1-dimension

    • P-splines in 2-dimensions

    – Lee-Carter model

    – Age-Period-Cohort model

    – 2-d P-splines

  • Plan of talk

    • P-splines in 1-dimension

    • P-splines in 2-dimensions

    – Lee-Carter model

    – Age-Period-Cohort model

    – 2-d P-splines

  • 20 30 40 50 60 70 80 90

    −10

    −8

    −6

    −4

    −2

    Gompertz model

    Age

    Log(

    mor

    talit

    y)

    Year 2002

    Gompertz: log m = −11.73 + 0.109 Age

  • 1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    Simple Gompertz

    Year

    Log(

    mor

    talit

    y)

    Age 70

    log m = 26.9 − 0.0154 Year

  • 1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    Quadratic Gompertz

    Year

    Log(

    mor

    talit

    y)

    Age 70

    log m = 26.9 − 0.0154 Year

    log m = − 1100 + 1.127 Year − 0.000289 Year^2

  • 1960 1980 2000 2020 2040

    −6.

    0−

    5.5

    −5.

    0−

    4.5

    −4.

    0−

    3.5

    −3.

    0

    Quadratic forecast

    Year

    Log(

    mor

    talit

    y)

    Age 70

  • 1960 1980 2000 2020 2040

    −6.

    0−

    5.5

    −5.

    0−

    4.5

    −4.

    0−

    3.5

    −3.

    0

    Quadratic fit: linear & quadratic forecasts

    Year

    Log(

    mor

    talit

    y)

    Age 70

    Quadratic forecast

    Linear forecast

  • Regression basisIn ordinary regression we use basis like

    Linear basis: {1, x}

    Quadratic basis: {1, x, x2}

    Polynomial basis: {1, x, x2, . . . , xp}.

    Means and fitted values are linear combinations of the basis functions

    logµ = a+ bx, log µ̂ = â+ b̂x

    logµ = a+ bx+ cx2, log µ̂ = â+ b̂x+ ĉx2

    logµ = a+ b1x+ . . .+ bpxp, log µ̂ = â+ b̂1x+ . . .+ b̂px

    p

  • Regression basisIn ordinary regression we use basis like

    Linear basis: {1, x}

    Quadratic basis: {1, x, x2}

    Polynomial basis: {1, x, x2, . . . , xp}.

    Means and fitted values are linear combinations of the basis functions

    logµ = a+ bx, log µ̂ = â+ b̂x

    logµ = a+ bx+ cx2, log µ̂ = â+ b̂x+ ĉx2

    logµ = a+ b1x+ . . .+ bpxp, log µ̂ = â+ b̂1x+ . . .+ b̂px

    p

  • Generalised linear modelsModel fitting uses the Generalised Linear Model framework.

    dx ∼ P(Ecxµx)

    and logEcxµx = logEcx + a+ bx

    or logEcxµx = logEcx + a+ bx+ cx

    2.

  • B-spline basisA B-spline regression basis uses local basis functions.

    B-spline basis: {B1(x), B2(x), . . . , Bp(x)}

    where B1(x), B2(x), . . . , Bp(x) are B-splines.

    Means and fitted values work the same way

    logµ =

    p∑

    1

    θjBj(x), log µ̂ =

    p∑

    1

    θ̂jBj(x)

  • B-spline basisA B-spline regression basis uses local basis functions.

    B-spline basis: {B1(x), B2(x), . . . , Bp(x)}

    where B1(x), B2(x), . . . , Bp(x) are B-splines.

    Means and fitted values work the same way

    logµ =

    p∑

    1

    θjBj(x), log µ̂ =

    p∑

    1

    θ̂jBj(x)

  • 20 40 60 80 100

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    A single cubic B−spline

    Age

    B−

    splin

    e

  • 20 40 60 80 100

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Cubic B−spline basis

    Age

    B−

    splin

    e

  • 1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    B−spline regression

    Year

    log(

    Mor

    talit

    y)

    Age 70

    Number of B−splines: 23

  • 1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    B−spline regression

    Year

    log(

    Mor

    talit

    y)

    Age 70

    Number of B−splines: 23

  • PenaltiesEilers & Marx (1996) imposed penalties on differences between adjacent

    coefficients.

    P2(θ) = (θ1 − 2θ2 + θ3)2 + . . .+ (θp−2 − 2θp−1 + θp)

    2

    = θ′D′2D2θ

    where D2 is a difference matrix.

    P2(θ) is a roughness penalty.

    Estimation is via penalised likelihood

    PL(θ) = L(θ)− 12λθ′D′2D2θ

    where λ is the smoothing parameter which balances fit and smoothness.

    • Interpolation (λ = 0)

    • Linear regression (λ = ∞)

  • PenaltiesEilers & Marx (1996) imposed penalties on differences between adjacent

    coefficients.

    P2(θ) = (θ1 − 2θ2 + θ3)2 + . . .+ (θp−2 − 2θp−1 + θp)

    2

    = θ′D′2D2θ

    where D2 is a difference matrix.

    P2(θ) is a roughness penalty.

    Estimation is via penalised likelihood

    PL(θ) = L(θ)− 12λθ′D′2D2θ

    where λ is the smoothing parameter which balances fit and smoothness.

    • Interpolation (λ = 0)

    • Linear regression (λ = ∞)

  • PenaltiesEilers & Marx (1996) imposed penalties on differences between adjacent

    coefficients.

    P2(θ) = (θ1 − 2θ2 + θ3)2 + . . .+ (θp−2 − 2θp−1 + θp)

    2

    = θ′D′2D2θ

    where D2 is a difference matrix.

    P2(θ) is a roughness penalty.

    Estimation is via penalised likelihood

    PL(θ) = L(θ)− 12λθ′D′2D2θ

    where λ is the smoothing parameter which balances fit and smoothness.

    • Interpolation (λ = 0)

    • Linear regression (λ = ∞)

  • 1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    P−spline regression

    Year

    log(

    Mor

    talit

    y)

    Age 70

    Number of B−splines: 23

    Quadratic penalty

  • 1960 1980 2000 2020 2040

    −5.

    0−

    4.5

    −4.

    0−

    3.5

    −3.

    0

    Forecasting to 2046

    Year

    log(

    Mor

    talit

    y)

    Age 70

    Forecast to 2046

    Quadratic penalty: linear forecast

  • 1960 1980 2000 2020 2040

    −5.

    0−

    4.5

    −4.

    0−

    3.5

    −3.

    0

    Forecasting to 2046

    Year

    log(

    Mor

    talit

    y)

    Age 70

    Delta knots = 2.75

    Delta knots = 11

  • Lee-Carter modelLee & Carter (1992)

    logµij = αi + βiκj , 20 ≤ i ≤ 90, 1947 ≤ j ≤ 2002

  • 20 30 40 50 60 70 80 90

    −7

    −6

    −5

    −4

    −3

    −2

    Age

    Alp

    ha

    20 30 40 50 60 70 80 90

    1.5

    2.0

    2.5

    Age

    Bet

    a

    1950 1960 1970 1980 1990 2000

    −0.

    3−

    0.2

    −0.

    10.

    00.

    1

    Year

    Kap

    pa

    1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 70

  • 1950 1960 1970 1980 1990 2000

    −6.

    2−

    5.8

    −5.

    4

    Year

    log(

    mor

    talit

    y)

    Age: 50

    1950 1960 1970 1980 1990 2000

    −5.

    2−

    4.8

    −4.

    4

    Year

    log(

    mor

    talit

    y)

    Age: 60

    1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 70

    1950 1960 1970 1980 1990 2000

    −2.

    8−

    2.6

    −2.

    4−

    2.2

    Year

    log(

    mor

    talit

    y)

    Age: 80

  • 1960 1980 2000 2020 2040

    −8

    −6

    −4

    −2

    Lee−Carter forecasts to 2046

    Year

    log(

    mor

    talit

    y)

    40

    50

    60

    70

    80

    90

  • Discrete Lee-Carter modellogµij = αi + βiκj , 20 ≤ i ≤ 90, 1947 ≤ j ≤ 2002

    or in table form

    logM = α1′ + βκ′

    Smooth Lee-Carterα→ Baa, β → Bab, κ→ Byk

  • Discrete Lee-Carter modellogµij = αi + βiκj , 20 ≤ i ≤ 90, 1947 ≤ j ≤ 2002

    or in table form

    logM = α1′ + βκ′

    Smooth Lee-Carterα→ Baa, β → Bab, κ→ Byk

  • 20 30 40 50 60 70 80 90

    −8

    −7

    −6

    −5

    −4

    −3

    −2

    Age

    Alp

    ha

    20 30 40 50 60 70 80 90

    56

    78

    9

    Age

    Bet

    a

    1960 1980 2000 2020 2040

    −0.

    20−

    0.10

    0.00

    0.10

    Year

    Kap

    pa

    1960 1980 2000 2020 2040

    −5.

    0−

    4.5

    −4.

    0−

    3.5

    Year

    log(

    mor

    talit

    y)

    Age: 70

  • 1960 1980 2000 2020 2040

    −8

    −6

    −4

    −2

    Smooth Lee−Carter: ages 40 to 90

    Year

    Log(

    mor

    talit

    y

    40

    50

    60

    70

    80

    90

  • Age-Period-Cohort modellogµij = αi + βj + γi−j , 20 ≤ i ≤ 90, 1947 ≤ j ≤ 2002

    Parameter redundancy• 2na + 2ny − 1 = 253 parameters

    • 2na + 2ny − 4 = 250 free parameters

  • Age-Period-Cohort modellogµij = αi + βj + γi−j , 20 ≤ i ≤ 90, 1947 ≤ j ≤ 2002

    Parameter redundancy• 2na + 2ny − 1 = 253 parameters

    • 2na + 2ny − 4 = 250 free parameters

  • 1950 1960 1970 1980 1990 2000

    −6.

    2−

    6.0

    −5.

    8−

    5.6

    −5.

    4−

    5.2

    Year

    log(

    mor

    talit

    y)

    Age: 50

    1950 1960 1970 1980 1990 2000

    −5.

    0−

    4.8

    −4.

    6−

    4.4

    −4.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 60

    1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 70

    1950 1960 1970 1980 1990 2000

    −3.

    0−

    2.8

    −2.

    6−

    2.4

    −2.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 80

  • Discrete Age-Period-Cohort modellogµij = αi + βj + γi−j , 20 ≤ i ≤ 90, 1947 ≤ j ≤ 2002

    Smooth Age-Period-Cohort modelα→ Baa, β → Byb, γ → Bcc

  • Discrete Age-Period-Cohort modellogµij = αi + βj + γi−j , 20 ≤ i ≤ 90, 1947 ≤ j ≤ 2002

    Smooth Age-Period-Cohort modelα→ Baa, β → Byb, γ → Bcc

  • 1950 1960 1970 1980 1990 2000

    −6.

    2−

    6.0

    −5.

    8−

    5.6

    −5.

    4−

    5.2

    Year

    log(

    mor

    talit

    y)

    Age: 50

    1950 1960 1970 1980 1990 2000

    −5.

    0−

    4.8

    −4.

    6−

    4.4

    −4.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 60

    1950 1960 1970 1980 1990 2000

    −4.

    0−

    3.8

    −3.

    6−

    3.4

    −3.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 70

    1950 1960 1970 1980 1990 2000

    −3.

    0−

    2.8

    −2.

    6−

    2.4

    −2.

    2

    Year

    log(

    mor

    talit

    y)

    Age: 80

  • AgeYear

    Log(mortality)

    Planar component

    20 30 40 50 60 70 80 90

    −1.

    0−

    0.5

    0.0

    0.5

    Age component

    Age

    Log(

    mor

    talit

    y)

    1950 1960 1970 1980 1990 2000

    −0.

    06−

    0.02

    0.02

    0.06

    Year component

    Year

    Log(

    mor

    talit

    y)

    1860 1880 1900 1920 1940 1960 1980

    −0.

    15−

    0.05

    0.05

    Cohort component

    Cohort

    Log(

    mor

    talit

    y)

  • 20 30 40 50 60 70 80 90

    −8

    −7

    −6

    −5

    −4

    −3

    −2

    Components of Age

    Age

    Log(

    mor

    talit

    y

    194719742002

    Improvement = 0.015/annum

  • 1950 1960 1970 1980 1990 2000

    −7

    −6

    −5

    −4

    −3

    −2

    Components of Year

    Year

    Log(

    mor

    talit

    y

    Age 20

    Age 90

    Improvement = 0.7/10years

  • 1860 1880 1900 1920 1940 1960 1980

    −7

    −6

    −5

    −4

    −3

    −2

    Components of Cohort

    Cohort

    Log(

    mor

    talit

    y

    185718711885

    Improvement = 0.29/10years

  • 2-d modelling of mortality tables• Let Ba, 71× 13, be a 1-d B-spline basis for modelling a single age.

    • Let By, 56× 10, be a 1-d B-spline basis for modelling a single year.

    Can we combine the marginal bases Ba and By to make a 2-d basis?

  • 2-d modelling of mortality tables• Let Ba, 71× 13, be a 1-d B-spline basis for modelling a single age.

    • Let By, 56× 10, be a 1-d B-spline basis for modelling a single year.

    Can we combine the marginal bases Ba and By to make a 2-d basis?

  • 1947

    1960

    1973

    1986

    1999

    Year

    11

    33

    56

    78

    100

    Age

    00.

    10.

    20.

    30.

    40.

    5

  • 2-d modelling of mortality tablesRegression matrix

    The Kronecker product organises the multiplication of the marginal bases to

    give the regression matrix

    B = By ⊗Ba, 3976× 130.

    Penalties in 2-d

    • Each regression coefficient is associated with the summit of one of the hills.

    • Smoothness is ensured by penalizing the coefficients in rows and columns.

  • 2-d modelling of mortality tablesRegression matrix

    The Kronecker product organises the multiplication of the marginal bases to

    give the regression matrix

    B = By ⊗Ba, 3976× 130.

    Penalties in 2-d

    • Each regression coefficient is associated with the summit of one of the hills.

    • Smoothness is ensured by penalizing the coefficients in rows and columns.

  • 1960 1980 2000 2020 2040

    −7.

    5−

    7.0

    −6.

    5

    Year

    Log(

    mor

    talit

    y

    Age: 40

    1960 1980 2000 2020 2040

    −7.

    0−

    6.5

    −6.

    0−

    5.5

    Year

    Log(

    mor

    talit

    y

    Age: 50

    1960 1980 2000 2020 2040

    −6.

    0−

    5.5

    −5.

    0−

    4.5

    −4.

    0

    Year

    Log(

    mor

    talit

    y

    Age: 60

    1960 1980 2000 2020 2040

    −5.

    0−

    4.5

    −4.

    0−

    3.5

    Year

    Log(

    mor

    talit

    y

    Age: 70

  • 1960 1980 2000 2020 2040

    −7

    −6

    −5

    −4

    −3

    −2

    2−d mortality: ages 40 to 90

    Year

    Log(

    mor

    talit

    y

    40

    50

    60

    70

    80

    90

  • Summary of results

    DEV TR BIC Rank

    2-d 6832 63 7357 1

    APC smooth 7852 38 8167 2

    LC smooth 8568 30 8815 3

    APC 7002 248 9057 4

    LC 8004 196 9629 5

  • 1960 1980 2000 2020 2040

    −7.

    0−

    6.5

    −6.

    0−

    5.5

    −5.

    0−

    4.5

    −4.

    0

    Summary for age 60

    Year

    log(

    mor

    talit

    y)

    APC2−dLCSmoothLC

  • 1960 1980 2000 2020 2040

    −5.

    5−

    5.0

    −4.

    5−

    4.0

    −3.

    5

    Summary for age 70

    Year

    log(

    mor

    talit

    y)

    APC2−dLCSmoothLC

  • 1960 1980 2000 2020 2040

    −4.

    0−

    3.5

    −3.

    0−

    2.5

    Summary for age 80

    Year

    log(

    mor

    talit

    y)

    APC2−dLCSmoothLC

  • 1960 1980 2000 2020 2040

    −7

    −6

    −5

    −4

    −3

    −2

    Summary for ages 60, 70, 80

    Year

    log(

    mor

    talit

    y)

    60

    70

    80

    APC2−dLCSmoothLC

  • ConclusionsForecasting a mortality table depends on

    • Model choice

    • Forecasting method

    • Parameter uncertainty

    • Stochastic uncertainty

  • ConclusionsForecasting a mortality table depends on

    • Model choice

    • Forecasting method

    • Parameter uncertainty

    • Stochastic uncertainty

  • ConclusionsForecasting a mortality table depends on

    • Model choice

    • Forecasting method

    • Parameter uncertainty

    • Stochastic uncertainty

  • ConclusionsForecasting a mortality table depends on

    • Model choice

    • Forecasting method

    • Parameter uncertainty

    • Stochastic uncertainty

  • ConclusionsForecasting a mortality table depends on

    • Model choice

    • Forecasting method

    • Parameter uncertainty

    • Stochastic uncertainty

  • References

    Lee-Carter models

    Lee & Carter (1992) J American Statistical Association, 87, 659-675.

    Brouhns, Denuit & Vermunt (2002) Insurance: Mathematics & Economics, 31,

    373-393.

    Age-Period-Cohort models

    Clayton & Schlifflers (1987) Statistics in Medicine, 6, 449-467.

    Clayton & Schlifflers (1987) Statistics in Medicine, 6, 469-481.

    Penalized spline models

    Eilers & Marx (1996) Statistical Science, 11, 758-783.

    Currie, Durban & Eilers (2004) Statistical Modelling, 4, 279-298.

    Currie, Durban & Eilers (2006) Journal of the Royal Statistical Society, Series

    B, 68, 259-280.