Smart Models Miranda

Embed Size (px)

Citation preview

  • 8/20/2019 Smart Models Miranda

    1/26

    15‐06‐2013

    1

    SMARTER MODELSFORSMART SYSTEMS

    Vladimiro Miranda

    IEEE FellowDirector INESC TECPresident INESC P&D Brasil

    Pioneer Portugal

    In 2013 about 25.000 MW of wind generation capacity in Iberia(peak of 65.000 MW)

    •   About 5000 MW are in Portugal  – today’s peak consumption isaround 9500 MW

    Portugal: no.2 in the world in 2012  – 20% of electricity from wind –more capacity installed than Denmark (nº 1)

    Only half of the windpower is monitored attransmission level

    2

    10 million people5 million wind kW

  • 8/20/2019 Smart Models Miranda

    2/26

    15‐06‐2013

    2

    Wind generation, load and challenges (case of Portugal)

    •   Wind power integration in large scale requires reinforcedinterconnections

    3

    2.March.2010

    3.March.2010

    Wind

    Load

    wind farms monitored attransmission level

    Wind Power greater than load!!!

    WHAT IS THE SMART GRID?

    The smart grid is not just more of the same: it requires a new layer

    4

    LAYER CHARACTERISTICS NATURE

    Physical grid Generators, lines, transformers Physical

    Local control Sensors, relays Physical

    Communication Dedicated, optical fiber, gsm Physical

    Data transmission Protocols Software

    Information Data bases Software

    Central control EMS, DMS Software

    High levelintelligence

    Local agents, parallel processing, distributedcomputing

      Software

  • 8/20/2019 Smart Models Miranda

    3/26

    15‐06‐2013

    3

    Escalating the Concept Ladder

    The Smart Grid should be built step by step when conditionsmake it feasible, necessary and economically justified

    5

    Do you have a medium/high degree of  distributed generation?

    Do you have electrical vehicles?

    Smart metering

    Microgrids

     Grid islanding

    Intelligent Grid

    TelemeteringDo you have large costs from meter reading with human agents?

    Do you have flexile tariff  systems or market based tariff  system?

    Do you

     have

     explicit

     reliability

     costs?

    FROM THE CLEVER INTEGRATION TO THE SMART SYSTEM

    The micro‐grids

    6

  • 8/20/2019 Smart Models Miranda

    4/26

    15‐06‐2013

    4

    10 YEARS OF EXPERIENCE IN THE EU

    MICROGRIDS (2003‐2006)14 partners, 7 EU countries

    MoreMICROGRIDS (2006‐2008)22 partners, 11 EU countries

    Work Packages

    From:   Steady State and Dynamic Simulation Tools 

    Development of  Local Micro Source Controllers and Central Controller

    Development of  Emergency Functions

    Telecommunication Infrastructures  and Communication Protocols

    To:   Alternative Control

     Strategies

     (hierarchical

     vs.

     distributed)

    Standardization of  Technical and Commercial Protocols and Hardware

    Evaluation of  the system performance on power system operation 

    Impact on the Development of  Electricity Infrastructures

    7

    MULTI‐MICROGRIDS 

    MicrogridsLow Voltage distribution systems with small modular generation units providing power and heat to local loads.

    Local communication

    infrastructures.

    A hierarchical  management and control system.

    8

    HV Network

    VSI

    Diesel

    DFIM

    MicroGri

    d

    MicroGri

    d

    MicroGri

    d

    Capacitor 

    Bank

    Hydro

    CHP

    Sheddable 

    Loads

    Operation Modes:

    •  Interconnected Mode• Emergency Mode

  • 8/20/2019 Smart Models Miranda

    5/26

    15‐06‐2013

    5

    WHAT DO WE GET WITH MULTI‐ GRIDS?

    Added value in reliability:

    a fault‐tolerant system

    1. Islanding: the survival of network islands relying on local generationreduces load curtailment

    2. Black start: the recomposition of the system, in case of major blackout, may be made bottom‐up: much faster than present day top‐down practice

    Major disasters (or terrorist attacks) will no longer cause global electricpower supply disruption

    The dynamic definition of operating conditions and control strategies for Grids, as well as new equipment specification, has been the object of 

    years of research in Europe.

    EnergyCon 2012 ‐ Florence   9

    ÉVORA, PORTUGAL:  THE SMART CITY

    Bringing reality to the concept

    10

  • 8/20/2019 Smart Models Miranda

    6/26

    15‐06‐2013

    6

    THE SMART CITY IN PORTUGAL

    The city of Évora connected as a Smart City

    •   33,000 consumers equiped with the Energy Box

    •   Supply points for electric vehicles

    •   A communication network in parallel to the power network

    •   Distribution controllers concentrate messages

    11

    LC Electric 

    appliances

    MC

    The PROSUMER: producer and consumer

    The Energy Box controls load and micro‐generation

    The Energy Box is the basic element of  the InovCity initiative in Portugal

    12FROM THE SMART GRID TO THE SMART CITY

    Photo‐voltaic

    Energy Box

    Controling loads

  • 8/20/2019 Smart Models Miranda

    7/26

    15‐06‐2013

    7

    INTEGRATION WITH SMART METERING

    13

    InovCity and InovGrid: the formula for an actual success

    The success of the InovGrid project has its roots in:

    1. A robust consortium led by a visionary PowerCompany

    2. An alliance with the excellence of a Research 

    Institute3. A team work with highly professional Industrial 

    partners

    AND…

    4. The consistent support from the political power

    14

  • 8/20/2019 Smart Models Miranda

    8/26

    15‐06‐2013

    8

    Smart Grid projects in Europe

    Statistics 2012

    204 European projects

    111 projects with significative demo; 15 projects financed by the EC, 189 baystate members

    SG projects: national budgets(industry + pub. financ.): 2500 M€through the JRC (excl. 2500 M€ forsmart‐meter roll‐out)

    EU SG project budget (industry + EU financ.): 184 M€ to the JRC (withinFP6 and FP7)

    National

    93%

    EC (FP6+7)

    7%

    • Cluster 1 Smart

     customers:

     92

     pr.

    • Cluster 2 Smart metering:  59 pr.

    • Cluster 3 DER integration:   146 pr.

    • Cluster 4 Smart Distribution:  113 pr.

    INESC TEC LAB ON SMART GRIDS AND ELECTRIC VEHICLES

    Sailing ahead

    16

  • 8/20/2019 Smart Models Miranda

    9/26

    15‐06‐2013

    9

    INESC TEC Lab on Smart Grids and Electric Vehicles

    Electric vehicles and battery charging

    Research in the EU on driving habits

    The business model will have a decisive impact on the powersystem, by conditioning the citizens behavior

    18

    UTOPIA Dumb charg./Double tariff  

  • 8/20/2019 Smart Models Miranda

    10/26

    15‐06‐2013

    10

    Impact on reliability: LOLE and LOLF

    Chronologic Monte Carlo including conventional generation and wind, storage, conditioned demand and EV batteries.

    Simulation in 6 European countries:

    → unless a smart business model is put in place, the integration of  EVs will have a negative impact on reliability

    19

    h/ano   ‐/ano

    LOLE   LOLF

    Charging EVs and network stress

    20

    No EV   Dumb charging– 52% EV

    Double tariff – 52% EV   Smart charging – 52% EV

  • 8/20/2019 Smart Models Miranda

    11/26

    15‐06‐2013

    11

    Intelligent V2G

    INESC TEC Smart charger

    Bi‐directional communications with the DTC or energyaggregator

  • 8/20/2019 Smart Models Miranda

    12/26

    15‐06‐2013

    12

    INESC TEC Lab on Smart Grids and Electric Vehicles

    The lab architecture is based on a conceptual model for actual and future networks

    Control and communication requirements•

      Scenario validation through simulationMulti‐technologyAllows combining emulation and physical implementationIntegration of distinct entities and information flows – technical and marketIntegration of a diversity of equipament e and their APIs

    Wind Integration in Smart Environments   W I S E

    Solar Integration in Smart Environments   S I S E

    For weak connection points:

    •   includes an inverter allowing the connection of  small wind generators up to 3 kW to Low Voltage networks

    •   avoids an excessive raise in voltage at the connection point

    •   can track frequency changes and adjust power output

    •   droop control principle

    WISE SISE technology

    24

  • 8/20/2019 Smart Models Miranda

    13/26

    15‐06‐2013

    13

    UNVEILING HIDDEN INFORMATION

    To know better

    25

    DATA: THE CHALLENGE

    Added technologies:Distributed generationDistributed vehicle connectionDistributed control

    Massive data flow

    Added uncertainty elements: RenewablesDistributed decision factors (V2G, tariffs/prices…)

    Deterministic models replaced by probabilistic

    26EnergyCon 2012 ‐ Florence

  • 8/20/2019 Smart Models Miranda

    14/26

    15‐06‐2013

    14

    State Estimation in the Smart Grid context

    Change of paradigm

    •   Decentralized

    •   Clusterized

    •   Based on probabilistic models

    REPLACEMENT OF THE CONVENTIONAL CONCEPT OF TOPOLOGICAL

     OBSERVABILITY

     BY

    STATISTICAL OBSERVABILITY

    NETWORK OBSERVABILITY

    27

    UNVEILING THE HIDDEN INFORMATION

    How to estimate the current system (or multi‐microgrid) topology, when no breaker status signal arrives at the Control Centre?

    HYPOTHESIS: 

    the 

    network 

    topology 

    information is embedded in the manifold supporting the electrical data.

    We need  Information Theory  to unveil  

    the meaning of  this “background  

    micro‐wave radiation” 

    28

    Breakers with status unknown

    19

    17

    18 21 22

    16 20

    23

    15   14

    24 11 12

    13

    3 9   10

    4

    12

      5

    7

    8

    6

    138 kV

    230 kV

    ~~~

    ~

            ~

            ~ ~

            ~

    ~~

  • 8/20/2019 Smart Models Miranda

    15/26

    15‐06‐2013

    15

    INFORMATION THEORY NEEDED

    By simulation: a data set of {electric values M, topology T}

    MUTUAL INFORMATION I(M,T)  – how much information aboutT is contained in M?

    I(M,T) = H(M) + H(T)  – H(M,T)

    29

    Entropy of the joint pdf 

    Entropy of the

    topology pdf 

    Entropy of theelectrical data 

    pdf 

    ENTROPY

    ENTROPY is a measure of  information content

    Shannon's Entropy

    Renyi's Entropy

    Renyi’s Quadratic Entropy

    Extension to continuous pdf 

    30

     N

    1k k R 

      plog1

    1H

    1,0  

     N

    1k    k k S

     p

    1log pH

      dz)z(f logH   2Y2R 

     N

    1k 

    2k 2R 

      plogH

  • 8/20/2019 Smart Models Miranda

    16/26

    15‐06‐2013

    16

    MUTUAL INFORMATION MAP

    Impact of breaker 6‐10 in system power flow, measured bymutual information between each line power flows andbreaker status

    High MI

    Low MI

    The flow in some

     branches

    is much more informative

    than in other branches

    31

    Br. 6‐10

    IDENTIFICATION IN TOPOLOGY CELLS

    Information serving diagnoses

    32

  • 8/20/2019 Smart Models Miranda

    17/26

    15‐06‐2013

    17

    CLUSTER DISTINCTION WITH AUTOENCODERS ‐ CAM

    Admit 2 autoencoders trained for 2 distinct data clusters A and B, corresponding to 2 distinct topologies.   For a new input vector, one of  the autoencoders  will be “in tune” while 

    the other will display a large error.

    Manifold   for  

    Topology   A

    Manifold  

     for  

    Topology  B

    New   point 

    New   point 

     A

     B

     A

     B

     B   breaker closed

    2 autoencoders to diagnose the

    inner state of the topology cell

    14

    11

    12

    13

    3

    9   10

    4

    12

      5

    7

    8

    6        ~ ~

            ~

    ~~

     breaker1

    breaker3

     breaker4 breaker5

     breaker6

    23

    23

    16

    3

    used measurements

    measurements not

    available

    No information!

     AB

    Electric   pattern

    min 

  • 8/20/2019 Smart Models Miranda

    18/26

    15‐06‐2013

    18

    A COMPETITIVE APPROACH: CAM

    Input to autoencoders selected with Mutual Information!

    TOPOLOGY ESTIMATOR a MOSAIC of  local autoencoders

    results in 10,000  scenariosincluding noise

    35

    Simult. miss. 

    signals

    Signal reconstructions Topology reconstruction

    Wrong  Corr. Efficien. Wrong  Corr. Efficien.1   5 995 99.50% 5 995 99.50%2   10 1990 99.50% 10 990 99.00%3   11 2989 99.63% 11 989 98.90%4   18 3982 99.55% 17 983 98.30%5   23 4977 99.54% 23 977 97.70%6   27 5973 99.55% 27 973 97.30%7   33 6967 99.53% 32 968 96.80%8   41 7959 99.49% 39 961 96.10%9   47 8953 99.48% 44 956 95.60%

    10   51 9949 99.49% 48 952 95.20%Total   266 54734   99.52%   256 9744   97.44%

     AB

    New   point 

    min 

    TOPOLOGY IN BLACK BOXES

    36

    Even with remote informationonly, breaker status may berecovered: but…

    less statistical observability 

      less precision

    14

    11

    12

    13

    3

    9   10

    4

    12

      5

    7

    8

    6        ~ ~

            ~

    ~~

     breaker1

    breaker3

     breaker4 breaker5

     breaker6

    23

    23

    16

    3

    used measurements

    measurements not

    available

          B      R      E      A      K      E      R   LOCAL INFORMATION

          I    n    p    u     t  ,

          O    u     t    p    u     t

          H      i      d      d    e    n

          l    a    y    e    r Wrong  Corr. Efficien.

    1   15 10 0 10000 100.00%2   19 14 131 9869 98.69%3   17 12 0 10000 100.00%4   17 12 0 10000 100.00%5   17 12 0 10000 100.00%6   15 10 0 10000 100.00%7   17 12 11 9989 99.89%8   13 8 67 9933 99.33%9   13 8 3 9997 99.97%

    10   17 12 4 9996 99.96%Total   2 16 9 97 84 9 9. 78 %

          B      R      E      A      K      E      R   REMOTE INFORMATION

          I    n    p    u     t  ,

          O    u     t    p    u     t

          H      i      d      d    e    n

          l    a    y    e    r

    Wrong  Corr. Efficien.

    1   13 10 210 9790 97.90%2   19 15 1278 8722 87.22%3   21 17 0 10000 100.00%4   19 15 194 9806 98.06%5   13 10 2555 7445 74.45%6   15 12 19 9981 99.81%7   11 9 3863 6137 61.37%8   11 9 1203 8797 87.97%9   13 10 4461 5539 55.39%

    10   11 9 1523 8477 84.77%Total   15306 84694 84.69%

    No information!

  • 8/20/2019 Smart Models Miranda

    19/26

    15‐06‐2013

    19

    TOPOLOGY IN BLACK BOXES

    External signals may also unveil the hidden topology in substations… or multi‐microgrids…

    Subsystem topology 

    reconstructionWrong Effic.

    Split bus y/n   0   100.00%

    No split bus

    L1   0 100.00%L2   29 99.42%L3   0 100.00%L4   0 100.00%

    Tot.: no Sp. bus   29 99.42%

    Split bus

    C1   86 98.28%C2   198 96.04%C3   6 99.88%

    Total: split bus   2 79 94.42%Global results   308   96.92%

    TRAINING WITH INFORMATION THEORETICCRITERIA

    How to improve autoencoder accuracy

    38

  • 8/20/2019 Smart Models Miranda

    20/26

    15‐06‐2013

    20

    Maximizing information flow

    A perfect autoencoder must preserve all information thatcrosses through ‐ from input to output.

    Backpropagation under MSE does not guarantee that.The first half , trained in unsupervised mode, should yield at the output thesame amount of information as presented at the input.

    Possible criteria:

    •   Max Mutual Information between input and middle layer

    •   Min Mutual Information among middle layer nodes

    •   Max Entropy at the middle layer

    supervised 

    unsupervised 

    Maximizing information flow

    INESC TEC experience: maximizing Entropy at the middle layeris the best criterion overall.

    Renyi’s Entropy

    •   For continuous variables…

    Entropy is a measure of information quantity.

    •   Initializing weigths with values derived from PCA is alsoa fine strategy [as if the neural network had only linear activation functions]

     N

    1k k R 

      plog1

    1H

    1,0  

      dz)z(f logH   2Y2R 

  • 8/20/2019 Smart Models Miranda

    21/26

    15‐06‐2013

    21

    Learning macro features

    Experiments with deep sparse networks have shown thatmacro features could be learned from data

    From 10 million image frames

    collected randomly from youtube

    videos, a half ‐autoencoder trained in 

    unsupervised mode under an ICA 

    criterion learned to identify faces

     and

    cats!

    [Quoc et al, 2012] 

    Macro features exist!

    Faces… bodies… cats…

    Is there a neuron that captures the

    essential concept?

    YES!

    cat body

  • 8/20/2019 Smart Models Miranda

    22/26

    15‐06‐2013

    22

    EXAMPLE

    Autoencoder Model MSE

    Breaker 2 open

    Single step 0.0046

    2‐step ME 0.00192‐step MQMI 0.0014

    Breaker 2 closed

    Single step 0.0053

    2‐step ME 0.00152‐step MQMI 0.0007

    43

    TP FP FN TNSingle step 4928 104 5 49632‐step MQMI 4915 0 14 5067   Remarkable!  14 in 10,000!

    True   Positive:  br. closed, prediction: closedFalse Positive:  br. open,  prediction: closed

    False Negative: br.

     closed,

     prediction:

     open

    True   Negative: br. open,  prediction: open

    (Only power, no voltage information)

    EXAMPLE

    There is a reason why 14 answers were wrong: confusion!

    The active and reactive power flows are close to zero in all 14 FN cases (prediction open when breaker closed).

    44

    Active Reactive

    B. open B. closed B. open B. closed

  • 8/20/2019 Smart Models Miranda

    23/26

    15‐06‐2013

    23

    EXAMPLE  – HEURISTIC RULE (HR)

    What if a heuristic rule is applied, defining

    that “if |P,Q|

  • 8/20/2019 Smart Models Miranda

    24/26

    15‐06‐2013

    24

    CONCLUSIONS

    No Smart Grid without smart control

    No Smart Grid without smart distributed intelligence

    No Smart Grid without smart information theory

    No Smart Grid without smart business models

    No Smart Grid without smart people…

    47

    VISIT Porto: the Formosa city!

    48

  • 8/20/2019 Smart Models Miranda

    25/26

    15‐06‐2013

    25

    VISIT Porto: the Formosa city!

    49

    VISIT Porto: the Formosa city!

    50

  • 8/20/2019 Smart Models Miranda

    26/26

    15‐06‐2013

    VISIT Porto: the Formosa city!

    51