16
Smart Devices and Machines for Advanced Manufacturing

Smart Devices and Machines for Advanced Manufacturing978-1-84800-147-3/1.pdf · vi Preface pertaining design method. Chapter 3 introduces a modified Grübler-Kutzbach mobility criterion

Embed Size (px)

Citation preview

Smart Devices and Machines for Advanced Manufacturing

Lihui Wang • Jeff Xi Editors

Smart Devices and Machines for Advanced Manufacturing

123

Lihui Wang, PhD, PEng Senior Research Officer National Research Council of Canada London, Ontario N6G 4X8 Canada

Jeff Xi, PhD, PEng Professor Ryerson University Toronto, Ontario M5B 2K3 Canada

ISBN 978-1-84800-146-6 e-ISBN 978-1-84800-147-3

DOI 10.1007/978-1-84800-147-3

British Library Cataloguing in Publication Data Smart Devices and Machines for Advanced Manufacturing 1. Parallel kinematic machines 2. Microelectromechanical

systems 3. Motion control devices I. Wang, Lihui, 1959-II. Xi, Jeff 670.4'27 ISBN-13: 9781848001466

Library of Congress Control Number: 2007940907

© 2008 Springer-Verlag London Limited

ANSYS® is a registered trademark of ANSYS, Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, USA. http://www.ansys.com Matlab® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA. http://www.mathworks.com RoboCrane® is a registered trademark of the National Institute of Standards and Technology, Gaithersburg, MD, USA. http://www.nist.gov

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permittedunder the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored ortransmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the caseof reprographic reproduction in accordance with the terms of licences issued by the Copy-right LicensingAgency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of aspecific statement, that such names are exempt from the relevant laws and regulations and therefore free forgeneral use.

The publisher makes no representation, express or implied, with regard to the accuracy of the informationcontained in this book and cannot accept any legal responsibility or liability for any errors or omissions thatmay be made.

Cover design: eStudio Calamar S.L., Girona, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1 springer.com

Preface

Manufacturing has been one of the key areas that support and influence a nation’s economy since the 18th century. Being the primary driving force in economic growth, manufacturing constantly serves as the foundation of and contributes to other industries. In the past centuries, manufacturing has contributed to the modern civilisation and created momentum that is continuously driving today’s economy. Despite various revolutionary changes and innovations in the 20th century that contributed to manufacturing advancements, we are facing new challenges when striving to achieve greater success in winning global competitions.

Machines and robots, as the constituent components in manufacturing, have contributed significantly to the success of advanced manufacturing. After evolving from the initial mechanisation era where mechanical devices were created to replace human labours to the later automation era where control devices were invented to replace human operations, the history of machines has now entered into the modern era of autonomisation where intelligent devices are being developed in an attempt to eventually replace human decision making. While machines are becoming more and more intelligent through integration with new technologies including sensors, controls, computers and even the Internet, machine structures and theories have also advanced, most noticeably in the area of parallel kinematic machines and micro machines. Although the research and development efforts in these areas have been translated into technical publications and impacted the present and future practices in manufacturing, there exists a gap in the literature for a focused collection of works that are dedicated to the design and development of smart devices and machines for advanced manufacturing. The purpose of this book is to provide a snapshot of the state-of-the-art research and development in these areas with a focus on applications to the advanced manufacturing. The book materials are collected for a broad readership from academic researchers to practicing engineers for knowledge dissemination, which is the primary objective of this book.

The book consists of fifteen chapters, with Chapters 1–9 on parallel kinematic machines and Chapters 10–15 on micro machines and precision devices. In the first area, three new theories are presented in Chapters 1–3, respectively, and six different applications are discussed in Chapters 4–9, respectively. Under theories, Chapter 1 pinpoints the inappropriateness of classical design methodologies to closed-loop mechanisms such as parallel kinematic machines and proposes a new appropriate design methodology. Chapter 2 studies the problem of static balancing of parallel mechanisms for reduction in power requirement on actuators and develops a

vi Preface

pertaining design method. Chapter 3 introduces a modified Grübler-Kutzbach mobility criterion and demonstrates its effectiveness of determining the correct degrees-of-freedom of parallel mechanisms for any design cases.

Under applications, Chapter 4 describes a new parallel kinematic machine built based on the non-symmetrical Tau link structures to create a large accessible workspace for the machine in relation to its footprint. Chapter 5 shows the feasibility of using cables to develop an ultra-fast parallel kinematic machine and discusses how to optimise the layout of the redundant limbs for generation of the desired tensile forces in the cables. Chapter 6 adopts a modular approach to develop a polishing/deburring machine by combining two sub-systems, the first one being a tripod-based hybrid machine and the second being a tripod-based active compliant polishing/deburring toolhead. Chapter 7 also uses a modular approach to develop a deburring machine, but by combining a tripod with a 3-degree-of-freedom serial robotic arm. Chapter 8 extends the modular approach to developing a reconfigurable machine based on modules and demonstrates its controllability for web-based machining. Chapter 9 generalises the modular approach by relating the design of reconfigurable machines to the features of part families and puts forward an arch-type reconfigurable machine tool for machining a family of automobile engines.

In the second area, the two most important issues are addressed, namely micro-motion and micro-manufacturing. As for the first issue, Chapter 10 introduces a new micro-motion driving method by utilising enhanced inchworm actuators, named walking drive and running drive, to feed an ultra-precision table continuously over a long stroke. Chapter 11 presents another micro-motion driving method of feeding an ultra-precision table by utilising a surface motor consisting of four two-phase linear motors combined with levitation by air-bearings in the vertical direction. As for the second issue, a whole spectrum of development in micro-manufacturing is covered. Chapter 12 discusses the development of a new class of micro/meso-scale machine tools called mMT for miniature components fabrication, including a 3-axis mMT and a 5-axis mMT. Recent efforts worldwide to commercialise micro machines towards a microfactory paradigm are also introduced. Chapter 13 documents the development of a micro-CMM (coordinate measuring machine) for 3D measurement of micro/meso-scale components with a resolution of 1 nm. Chapter 14 discusses the development of a new hybrid micromachining method by combining a mechanical micro-cutting method with a laser micro-machining method, called laser-assisted mechanical micromachining. Finally, Chapter 15 reports the development of micro-assembly processes and associated devices. A practical micro assembly system is also introduced.

All together, the fifteen chapters provide an overview of some recent research and development efforts on smart devices and machines, and are believed to make significant contributions to the literature. Although this book is far from being a complete collection of work around the world on smart device and machines, the materials covered do represent the current research trend. It is the editors’ hope that this book can shed some lights and offer some thoughts towards how to make devices and machines even smarter and more intelligent. For this reason, the editors would like to express our sincere thanks to all chapter authors for their generous contributions to this book. Their commitment, enthusiasm, and technical expertise are what made this book possible.

Preface vii

The editors are also grateful and deeply indebted to the publisher for supporting this book project, and would especially like to thank Mr Anthony Doyle, Senior Editor for Engineering, and Mr Simon Rees, Editorial Assistant, for their constructive assistance and earnest cooperation, both with the publishing venture in general and the editorial details.

We hope that readers will find this book informative and useful.

London and Toronto, Canada Lihui Wang October 2007 Jeff Xi

Contents

List of Contributors.............................................................................................. xvii

1 Appropriate Design of Parallel Manipulators ............................................... 1 J.-P. Merlet, D. Daney

1.1 Introduction .............................................................................................. 1 1.2 Understanding End-user Wishes and Performance Indices ...................... 2

1.2.1 Establishing the Required Performances ...................................... 2 1.2.2 Performance Indices ..................................................................... 4 1.2.3 Indices Calculation ....................................................................... 6

1.3 Structural Synthesis .................................................................................. 7 1.4 Dimensional Synthesis ............................................................................. 8

1.4.1 Choosing Design Parameters ........................................................ 8 1.4.2 Design Methods............................................................................ 8 1.4.3 The Atlas Approach...................................................................... 9 1.4.4 Cost Function Approach ............................................................... 9 1.4.5 Other Design Methodologies Based on Optimisation................. 10 1.4.6 Exact Design Methodologies ...................................................... 10

1.5 The Parameter Space Approach.............................................................. 12 1.5.1 Parameter Space.......................................................................... 12 1.5.2 Principle of the Method .............................................................. 12 1.5.3 Finding Allowed Regions ........................................................... 13 1.5.4 Finding Allowed Regions with Interval Analysis....................... 14 1.5.5 Search for Appropriate Robots ................................................... 19 1.5.6 Design Examples ........................................................................ 19

1.6 Other Design Approaches....................................................................... 20 1.6.1 Design for Reliability ................................................................. 20 1.6.2 Design for Control ...................................................................... 21

1.7 Conclusions ............................................................................................ 21 References........................................................................................................ 21

2 Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms.................................................................................. 27

Clément Gosselin

2.1 Introduction and Definitions................................................................... 27 2.2 Mathematical Conditions for Balancing................................................. 28

x Contents

2.3 Static Balancing...................................................................................... 30 2.3.1 Static Balancing of a Planar Four-bar Linkage........................... 30 2.3.2 Spatial 6-dof Parallel Mechanism............................................... 31

2.4 Gravity Compensation............................................................................ 36 2.5 Dynamic Balancing ................................................................................ 40

2.5.1 Dynamic Balancing of Planar Four-bar Linkages....................... 40 2.5.2 Synthesis of Reactionless Multi-dof Mechanisms ...................... 44 2.5.3 Synthesis of Reactionless Parallel 3-dof Mechanisms................ 44 2.5.4 Synthesis of Reactionless Parallel 6-dof Mechanisms................ 47

2.6 Conclusions ............................................................................................ 47 References........................................................................................................ 47

3 A Unified Methodology for Mobility Analysis Based on Screw Theory ................................................................................. 49

Zhen Huang, Jingfang Liu, Qinchuan Li

3.1 Introduction ............................................................................................ 49 3.2 Basic Screw Theory and Mobility Methodology.................................... 51

3.2.1 Dependency and Reciprocity of Screws ..................................... 51 3.2.2 Modified Grübler-Kutzbach Criterion ........................................ 54 3.2.3 Four Key Techniques.................................................................. 55

3.3 Mobility Analysis of Single-loop Mechanisms ...................................... 57 3.3.1 The Bennett Mechanism ............................................................. 57 3.3.2 The Goldberg Mechanism .......................................................... 60 3.3.3 The Bricard Mechanism with a Symmetric Plane ...................... 61

3.4 Mobility Analysis of Parallel Mechanisms............................................. 63 3.4.1 4-DOF 4-URU Mechanism......................................................... 63 3.4.2 The CPM Mechanism................................................................. 65 3.4.3 The 4-DOF 1-CRR+3-CRRR Parallel Mechanism..................... 66 3.4.4 DELTA Robot ............................................................................ 68 3.4.5 H4 Manipulator........................................................................... 70

3.5 Discussions............................................................................................. 73 3.6 Conclusions ............................................................................................ 75 References........................................................................................................ 76

4 The Tau PKM Structures .............................................................................. 79 Torgny Brogårdh, Geir Hovland

4.1 Introduction ............................................................................................ 79 4.2 Non-symmetrical PKM Structures ......................................................... 81 4.3 The SCARA Tau PKM........................................................................... 84 4.4 The Gantry Tau PKM............................................................................. 87 4.5 The Reconfigurable Gantry Tau PKM ................................................... 90

4.5.1 Kinematics and Workspace ........................................................ 92 4.5.2 Calibration .................................................................................. 98 4.5.3 Stiffness .................................................................................... 101 4.5.4 Mechanical Bandwidth ............................................................. 102

Contents xi

4.6 Industrial Potential of PKMs based on Tau Structures......................... 105 4.6.1 Performance Advantages .......................................................... 105 4.6.2 Life-cycle Cost Advantages...................................................... 106 4.6.3 Relieving People from Bad Working Conditions ..................... 107

4.7 Conclusions .......................................................................................... 108 References...................................................................................................... 109

5 Layout and Force Optimisation in Cable-driven Parallel Manipulators .................................................................................. 111

Mahir Hassan, Amir Khajepour

5.1 Introduction .......................................................................................... 111 5.2 Static Force Analysis ............................................................................ 112 5.3 Optimum Layout for the Redundant Limb ........................................... 115

5.3.1 Background on Convex Optimisation....................................... 117 5.3.2 Optimum Direction of the Redundant Limb............................. 121 5.3.3 Multiple Poses .......................................................................... 124 5.3.4 Multiple Redundant Limbs ....................................................... 125 5.3.5 Case Study ................................................................................ 126

5.4 Minimising Cable Tensions.................................................................. 130 5.4.1 Case Study ................................................................................ 132

5.5 Conclusions .......................................................................................... 133 References...................................................................................................... 134

6 A Tripod-based Polishing/Deburring Machine ......................................... 137 Fengfeng (Jeff) Xi, Liang Liao, Richard Mohamed, Kefu Liu

6.1 Introduction .......................................................................................... 137 6.2 Hybrid Machine Design........................................................................ 139

6.2.1 Description of the Machine....................................................... 139 6.2.2 ParaWrist Design...................................................................... 141

6.3 Motion Planning ................................................................................... 142 6.3.1 Tripod Constraints .................................................................... 143 6.3.2 Inverse Kinematics ................................................................... 145 6.3.3 Motion Planning ....................................................................... 145

6.4 Motion Simulation, Part Localisation and Measurement ..................... 146 6.4.1 Forward Kinematics for Motion Simulation and Part Measurement ..................................................................... 146 6.4.2 Three-point Method for Part Localisation ................................ 148

6.5 Tripod Stiffening .................................................................................. 150 6.5.1 Compliance Modelling ............................................................. 151 6.5.2 Tripod Stiffening ...................................................................... 152

6.6 Compliant Toolhead Design................................................................. 153 6.6.1 Axial Compliance Design......................................................... 153 6.6.2 Radial Compliance Design ....................................................... 154

6.7 Tool Control ......................................................................................... 157 6.7.1 Parameter Planning Based on Contact Model........................... 157

xii Contents

6.7.2 Control Methods ....................................................................... 159 6.7.3 Model-based Control ................................................................ 160

6.8 Test Examples ...................................................................................... 163 6.9 Conclusions .......................................................................................... 164 References...................................................................................................... 165

7 Design and Analysis of a Modular Hybrid Parallel-Serial Manipulator for Robotised Deburring Applications................................. 167

Guilin Yang, I-Ming Chen, Song Huat Yeo, Wei Lin

7.1 Introduction .......................................................................................... 167 7.2 Design Considerations.......................................................................... 169

7.2.1 Robot Modules ......................................................................... 169 7.2.2 6-DOF Hybrid Parallel-Serial Manipulator .............................. 170

7.3 Forward Displacement Analysis........................................................... 172 7.3.1 3RRR Planar Parallel Platform................................................. 173 7.3.2 PRR Serial Robot Arm ............................................................. 176 7.3.3 Entire Hybrid Manipulator........................................................ 178

7.4 Inverse Displacement Analysis............................................................. 179 7.4.1 Orientation Analysis ................................................................. 179 7.4.2 Position Analysis ...................................................................... 180 7.4.3 Parallel Platform Analysis ........................................................ 180

7.5 Instantaneous Kinematics ..................................................................... 181 7.5.1 3RRR Planar Parallel Platform................................................. 181 7.5.2 Entire Hybrid Manipulator........................................................ 182

7.6 Computation Examples......................................................................... 183 7.7 Application Studies .............................................................................. 184 7.8 Conclusions .......................................................................................... 186 References...................................................................................................... 187

8 Design of a Reconfigurable Tripod Machine System and Its Application in Web-based Machining................................................... 189

Z. M. Bi, Lihui Wang

8.1 Introduction .......................................................................................... 189 8.2 Related Work........................................................................................ 190 8.3 Design of Reconfigurable Tripod Machine Tools ................................ 191 8.4 Kinematics, Dynamics and Optimisation ............................................. 193

8.4.1 Inverse Kinematics ................................................................... 194 8.4.2 Direct Kinematics ..................................................................... 195 8.4.3 Stiffness Model......................................................................... 196 8.4.4 Dynamic Model ........................................................................ 202 8.4.5 New Criterion in Optimisation ................................................. 205

8.5 Integrated Design Tools........................................................................ 206 8.5.1 Modelling Tool ......................................................................... 207 8.5.2 Analysis Tool............................................................................ 209 8.5.3 Simulation Tool ........................................................................ 211

Contents xiii

8.5.4 Optimisation Tool..................................................................... 211 8.5.5 Monitoring Tool ....................................................................... 212

8.6 Web-based Machining: a Case Study ................................................... 213 8.6.1 Testing Environment ................................................................ 213 8.6.2 Tripod 3D Model for Monitoring ............................................. 214 8.6.3 Web-based Machining .............................................................. 215

8.7 Conclusions .......................................................................................... 217 References...................................................................................................... 217

9 Arch-type Reconfigurable Machine Tool................................................... 219 Jaspreet S. Dhupia, A. Galip Ulsoy, Yoram Koren

9.1 Introduction .......................................................................................... 219 9.2 Design and Construction ...................................................................... 221

9.2.1 Arch-type RMT Specifications................................................. 224 9.3 Dynamic Performance .......................................................................... 225

9.3.1 Cutting Process Parameters ...................................................... 226 9.3.2 Frequency Response Functions ................................................ 228 9.3.3 Stability Lobes.......................................................................... 231

9.4 Conclusions .......................................................................................... 236 References...................................................................................................... 236

10 Walking Drive Enabled Ultra-precision Positioners................................. 239 Eiji Shamoto, Rei Hino

10.1 Introduction .......................................................................................... 239 10.2 One-axis Feed Drive............................................................................. 240

10.2.1 Driving Principle and Control Method ..................................... 240 10.2.2 One-axis Walking Device......................................................... 241 10.2.3 Open Loop Control ................................................................... 242 10.2.4 Laser Feedback Control ............................................................ 243 10.2.5 Methods to Overcome Disadvantages ...................................... 244

10.3 Three-axis Feed Drive .......................................................................... 245 10.3.1 Three-axis Walking Device ...................................................... 245 10.3.2 Walking Algorithm for Simultaneous 3-axis Drive .................. 247 10.3.3 Three-axis Positioning System with Laser Feedback Control ............................................................ 251 10.3.4 Results of 3-axis Positioning .................................................... 252

10.4 Conclusions .......................................................................................... 255 References...................................................................................................... 255

11 An XY Z Planar Motion Stage System Driven by a Surface Motor for Precision Positioning ............................... 257

Wei Gao

11.1 Introduction .......................................................................................... 257 11.2 The XY Z Surface Motor ..................................................................... 259

xiv Contents

11.3 The Decoupled Controller .................................................................... 264 11.4 The XY Z Surface Encoder .................................................................. 271 11.5 Precision Positioning by the XY Z Stage System ................................ 277 11.6 Conclusions .......................................................................................... 279 References...................................................................................................... 279

12 Design and Analysis of Micro/Meso-scale Machine Tools ........................ 283 K. F. Ehmann, R. E. DeVor, S. G. Kapoor, J. Cao

12.1 Introduction .......................................................................................... 283 12.2 Overview of Worldwide Research on the mMT Paradigm................... 285 12.3 Overview of mMT Developments in USA........................................... 288 12.4 Development of a Three-axis mMT ..................................................... 289

12.4.1 Design Considerations for the NU 3-axis mMT ....................... 289 12.4.2 Physical Realisation of the NU 3-Axis mMT ........................... 290 12.4.3 Performance Evaluations .......................................................... 292

12.5 Development of a Five-axis mMT........................................................ 294 12.5.1 Design Considerations for the UIUC 5-axis mMT ................... 295 12.5.2 Motor and Bearing Placement .................................................. 298 12.5.3 Summary of 5-axis mMT Design ............................................. 301 12.5.4 Evaluation of Performance ....................................................... 301 12.5.5 Analysis of 5-axis mMT Motion Parameters............................ 304 12.5.6 Examples of Micro-scale Machining on the UIUC 5-axis mMT.............................................................. 305

12.6 A Hybrid Methodology for Kinematic Calibration of mMTs............... 306 12.6.1 Design of the Measurement System ......................................... 307 12.6.2 A Hybrid Calibration Methodology.......................................... 308 12.6.3 Off-machine Measurements...................................................... 309 12.6.4 On-machine Measurements ...................................................... 309 12.6.5 Kinematic Error Modelling....................................................... 310 12.6.6 Validation of Calibration Methodology.................................... 311

12.7 Challenges in mMT Development........................................................ 312 12.8 The Status of mMT Commercialisation Worldwide............................. 313 12.9 Conclusions .......................................................................................... 314 References...................................................................................................... 315

13 Micro-CMM ................................................................................................. 319 Kuang-Chao Fan, Ye-Tai Fei, Weili Wang, Yejin Chen, Yan-Chan Chen

13.1 Introduction .......................................................................................... 319 13.2 Structure of a Micro-CMM................................................................... 321

13.2.1 Semi-circular Bridge Structure ................................................. 321 13.2.2 Co-planar XY Stage.................................................................. 322 13.2.3 Z-axis Design............................................................................ 323

13.3 Probes ................................................................................................... 324 13.3.1 Focus Probe .............................................................................. 324 13.3.2 Contact Probe ........................................................................... 327

Contents xv

13.4 Actuator and Feedback Sensor ............................................................. 329 13.5 System Integration and Motion Control ............................................... 332

13.5.1 System Assembly...................................................................... 332 13.5.2 Motion Control ......................................................................... 332 13.5.3 System Errors ........................................................................... 332

13.6 Conclusions .......................................................................................... 334 References...................................................................................................... 334

14 Laser-assisted Mechanical Micromachining.............................................. 337 Ramesh K. Singh, Shreyes N. Melkote

14.1 Introduction .......................................................................................... 337 14.2 Development of LAMM-based Micro-grooving Process ..................... 339

14.2.1 Basic Approach......................................................................... 339 14.2.2 LAMM Setup for Micro-grooving............................................ 339

14.3 Process Characteristics ......................................................................... 341 14.3.1 Design of Experiment ............................................................... 341 14.3.2 Results and Discussion ............................................................. 342

14.4 Process Modelling ................................................................................ 347 14.4.1 HAZ Characterisation and Thermal Modelling ........................ 347 14.4.2 Force Modelling in Laser Assisted Micro-grooving................. 354

14.5 Summary and Future Directions........................................................... 362 References...................................................................................................... 363

15 Micro Assembly Technology and System................................................... 367 R. Du, Candy X. Y. Tang, D. L. Zhang

15.1 Introduction .......................................................................................... 367 15.2 Micro Grippers ..................................................................................... 368

15.2.1 Pneumatic Grippers .................................................................. 369 15.2.2 Capillary Force Grippers .......................................................... 369 15.2.3 Bio-inspired Grippers ............................................................... 372 15.2.4 Force Feedback......................................................................... 374

15.3 Precision Positioning ............................................................................ 376 15.3.1 Servomotor ............................................................................... 376 15.3.2 Linear Motor............................................................................. 377 15.3.3 Piezoelectric Motor................................................................... 379 15.3.4 Image Based Feedback ............................................................. 380

15.4 A Sample Micro Assembly System...................................................... 380 15.5 Conclusions .......................................................................................... 382 References...................................................................................................... 383

Index ...................................................................................................................... 385

List of Contributors

Z. M. Bi National Research Council of Canada London, Ontario N6G 4X8 Canada Torgny Brogårdh ABB Robotics SE 721 68 Västeras Sweden J. Cao Department of Mechanical Engineering Northwestern University Evanston, IL USA I-Ming Chen Nanyang Technological University Singapore Yan-Chan Chen Department of Mechanical Engineering National Taiwan University Taipei Taiwan Yejin Chen School of Instrument Science and Opto-electronic Engineering Hefei University of Technology Hefei China D. Daney INRIA Sophia-Antipolis 2004 Route des Lucioles 06902 Sophia-Antipolis Cedex France

R. E. DeVor Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL USA Jaspreet S. Dhupia Department of Mechanical Engineering University of Michigan Ann Arbor, MI USA R. Du Institute of Precision Engineering The Chinese University of Hong Kong Hong Kong China K. F. Ehmann Department of Mechanical Engineering Northwestern University Evanston, IL USA Kuang-Chao Fan Department of Mechanical Engineering National Taiwan University Taipei Taiwan Ye-Tai Fei School of Instrument Science and Opto-electronic Engineering Hefei University of Technology Hefei China

xviii List of Contributors

Wei Gao Department of Nanomechanics Tohoku University Sendai, 980-8579 Japan Clément Gosselin Département de Génie Mécanique Université Laval Québec, Québec G1V 0A6 Canada Mahir Hassan University of Waterloo Waterloo, ON N2L 3G1 Canada Rei Hino Department of Mechanical Engineering Nagoya University Nagoya, 4640-8603 Japan Geir Hovland Agder University College N-4898 Grimstad Norway Zhen Huang The Robotics Centre Yanshan University Qinhuangdao, Hebei 066004 China S. G. Kapoor Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL USA Amir Khajepour University of Waterloo Waterloo, ON N2L 3G1 Canada Yoram Koren Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109-2125 USA

Qinchuan Li Mechatronics Institute Zhejiang Sci-Tech University Hangzhou, Zhejiang China Liang Liao Department of Aerospace Engineering Ryerson University Toronto, ON M5B 2K3 Canada Wei Lin Singapore Institute of Manufacturing Technology Singapore Jingfang Liu The Robotics Centre, Yanshan University Qinhuangdao, Hebei China Kefu Liu Department of Mechanical Engineering Lakehead University Thunder Bay, ON P7B 5E1 Canada Shreyes N. Melkote The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA USA J.-P. Merlet INRIA Sophia-Antipolis 2004 Route des Lucioles 06902 Sophia-Antipolis Cedex France Richard Mohamed Department of Aerospace Engineering Ryerson University Toronto, ON M5B 2K3 Canada Eiji Shamoto Department of Mechanical Engineering Nagoya University Nagoya, 4640-8603 Japan

List of Contributors xix

Ramesh K. Singh The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA USA Candy X. Y. Tang Institute of Precision Engineering The Chinese University of Hong Kong Hong Kong China A. Galip Ulsoy Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109-2125 USA Lihui Wang Integrated Manufacturing Technologies Institute National Research Council of Canada London, Ontario N6G 4X8 Canada

Weili Wang Hefei University of Technology Hefei China Fengfeng (Jeff) Xi Department of Aerospace Engineering Ryerson University Toronto, ON M5B 2K3 Canada Guilin Yang Singapore Institute of Manufacturing Technology Singapore 638075 Song Huat Yeo Nanyang Technological University Singapore 637089 D. L. Zhang Institute of Precision Engineering The Chinese University of Hong Kong Hong Kong China