Small Mathematical Expectation

Embed Size (px)

Citation preview

  • 8/17/2019 Small Mathematical Expectation

    1/6

    1

    Mathematical Expectation

    of a Random Variable

    2

    Idea: mean value of a random

    variable

    • Definition: Weighted mean of the values ofthe random variable

    • Condition for the existence:

     – Note: Infinite sets can yield paradoxes

    ∑∈

    == X  x

     x X  xP  X  E  )()(

  • 8/17/2019 Small Mathematical Expectation

    2/6

    7

    Idea: mean value of a random

    variable• Note that it is probab i l i s t i c in te rp re tat ion of the

    common sense concept of mean .

    • Note that if all possible samples are equallyprobable, they are equivalent.

    ∑∈=  X  x  x N  X  Mean1

    )(

    1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0 2 2 00

    5

    10

    15

    20

    25

    1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0 2 2 0 2 3 00

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1001 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 00

    5

    10

    15

    20

    25

    1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 00

    10

    20

    30

    40

    50

    60

    70

    80

    90

    10 0

    X  X 

    ∑∈ ==  X  x  x X  xP  X  E  )()(  N  x X  P 1

    )(   ==

    8

    Idea: center of mass/equilibrium

    • If the probability P(X =x) is interpreted asmass, and the random variable X asdistance, the mathematical expectation isthe center of mass of the object.

    ∑∈

    == X  x

     x X  xP  X  E  )()(

    9

    Example: Roulette

    • What is the payoff given by the casino?• Roulette selects at random a number between 1 and 36 (0) .

    • Players can bet on 18,12,9,6,4,3,2,1 number.

     – A Bet over k numbers has a probability of success of k/36 andof getting a payment x from the casino or lossing a.

     – Expected value is

     – A fair game would imply

    ( )ak 

     xk 

     x X  xP  X  E  LossWin x

    −   

       −+===   ∑

    ∈ 361

    36)()(

    },{

    ak 

     x

     X  E 

       

       −=

    =

    136

    0)(

    10

    Example: Roulette

    • What is the payoff given by the casino?

    • The roulette has 37 slots (1 to 36+ the 0 slot) – In a Real game the casino the odds are

    • 35:1 17:2 11:3

    ( )3737

    137

    136

    )()(},{

    ak a

    k a

    k  x X  xP  X  E 

     LossWin x

    −=   

       −−+ 

      

       −===   ∑

    0(  

  • 8/17/2019 Small Mathematical Expectation

    3/6

    13

    Expected value of a geometric

    random variable

    • Random Varible X={Number of trials untila success}

    • How do we sum this series?

    L1,2,3,ifor)1()( 1 =−==   −  p pi X  P    i

    ( )L++++−=−= ∑

    =

    − 32

    0

    1

    4321)1()1()(   p p p p pnp X  E n

    n

    14

    Expected value of a geometric

    random variable

    • How do we sum this series?

    15

    Expected value of a geometric

    random variable

    • How do we sum this series?

    16

    Expected value of a geometric

    random variable

    • How do we sum this series?

    ( )

    ( )

    ( )

    1)1(

    1)1()1( 

    1)1()()(

    432)1()1()(

    4321)1()1()(

    Series 

    Geometric

    0

    432

    432

    1

    32

    0

    1

    =

    −=−=

    =+++++−=−

    ++++−=−=

    ++++−=−=

    =

    =

    =

     p p p p

     p p p p p X  pE  X  E 

     p p p p p pnp X  pE 

     p p p p pnp X  E 

    n

    n

    n

    n

    L

    L

    L

    )1(

    1 )(

     p X  E 

    −=

    17

    Expected value of a geometric

    random variable• How do we sum this series? Another way 

    2

    21

    1

    Series Geometric

    1

    )(

    )()()()(

    )(

    )(

    )1(

    1

    )1()(

    )1()(

     xb

     xbdx

    d  xa xa

    dx

    d  xb

     xb

     xa

    dx

     p p

     p

    dp

    d kp pS 

    dp

     p

     p p pS 

    −=   

      

     

    −=   

      

     −

    ==

    −==

    ∑∞

    =

    =

    2)1(

    1)1()(

     p p X  E 

    −−=

    18

    Expected value of a geometric

    random variable• Random Varible X={Number of trials until

    a success}

    L1,2,3,ifor)1()( 1 =−==   −  p pi X  P    i

    ( )

     p X  E 

     p p p p pnp X  E n

    n

    −=

    ++++−=−=∑∞

    =

    1

    1)(

    4321)1()1()(32

    0

    1L

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

            1 6         1        1         1        6         2        1         2        6         3        1         3        6         4        1         4        6         5        1         5        6         6        1

    9

    1

    1

    1)(   =

    −=

     p X  E 

  • 8/17/2019 Small Mathematical Expectation

    4/6

    19

    Relation of expectaition and other

    statistical measures

    • Skew distribution vs. symetric distribution

    Full House: The Spread of Excellence from

    Plato to Darwin by Stephen Jay Gould

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    1

    2

    3

    4

    -8 -6 -4 -2 0 2 4 6 80

    0.2

    0.4

    0.6

    0.8

    Mode Median MeanMode Median Mean

    20

    Property of lineality

    • The expectation of a linear combination of randomvariables is the linear combination of expectations.

    ( ) ( )( )

    ( ) ( )

    )()(

    )()(

    )()(

    )()()(

    Y  E  X  E 

     P Y  P  X 

     P Y  X Y  X  E 

    Y  E  X  E Y  X  E 

    βα

    ωωβωωα

    ωωβωαβα

    βαβα

    ωω

    ω

    +=

    =+=

    +=+

    +=+

    ∑∑

    Ω∈Ω∈

    Ω∈

    21

    Finding the maximum

    • Suppose that n children of differing heights areplaced in line at random. You select the first

    child from the line and walk with her/him alongthe line until you encounter a child who is talleror until you have reached the end of the line. If

    you do encounter a taller child, you repeat theprocess.

    • What is the expected value of the number of

    children selected from the line?

    Taken fromTijms, Understanding probability22

    Finding the maximum

    • We define the variable X as the number ofchildren selected from the line.

    • We will define the indicator variable:

    • Now the number of selected children will

    be:

    = otherwise 0

    linethefromselectedischildtheif  1   i-th X i

    n X  X  X  X    +++=   L21

    23

    Finding the maximum

    • The probability that the ith child is thetallest among the first i children is 1/i

    • Therefore:

    ( ) n1,2,ifor11

    11

    10   L==⋅+   

       −⋅=

    iii X  E  i

    ( ) ( )

    ( ) 57722.02

    1)ln(

    1

    3

    1

    2

    11

    21

    ++≈+++=

    +++=

    nn

    n X  E 

     X  X  X  E  X  E  n

    L

    L

    24

    Expected number of distinct

    birthdays• What is the expected number of distinct

    birthdays within a randomly formed groupof 100 persons.

     – We define the random variable

     – The number of birthdays is

    = otherwise 0

    dayonis birthdaytheif  1   i X i

    36 521  X  X  X  X    +++=   L

    Taken fromTijms, Understanding probability

  • 8/17/2019 Small Mathematical Expectation

    5/6

    25

    Expected number of distinct

    birthdays

    • What is the expected number of distinct birthdays withina randomly formed group of 100 persons.

     – For each day we have:

     – The expected number of distinct birthdays is

    )0(1)1(

    365

    364)0(

    100

    =−==

       

      ==

    ii

    i

     X  P  X  P 

     X  P 

    Taken fromTijms, Understanding probability

    ( ) ( ) 6.87365

    3641365

    10 0

    36 521   =   

      

        

      −=+++=   X  X  X  E  X  E    L

    26

    Expected number of distinct

    birthdays

    • For an arbitrary number of persons.

    ( )    

      

        

      −=

    n

     X  E 365

    3641365

    50 100 150 200 250 300 350

    50

    100

    150

    200

    250

    300

    350

    Number of persons

       E  x  p  e  c   t  e   d  n  u  m   b  e  r  o   f   d   i  s   t   i  n  c   t   b   i  r   t   h   d  a  y  s

    25 30 35 40 45

    20

    25

    30

    35

    40

    45

    50

    27

    Other Properties

    • If X is a non negative random variable,then

    • Also

    0)(   ≥ X  E 

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

            1 6        1        1

            1        6

            2        1

            2        6

            3        1

            3        6

            4        1

            4        6

            5        1

            5        6

            6        1

    )()( then   Y  E  X  E Y  X    ≥≥

    28

    Other Properties

    • What do we mean by

    ?)()( then   Y  E  X  E Y  X    ≥≥

    ℜ→Ω: X 

    0 1 X(.) X(.) 

    Y(.) Y(.) 

    X

    0 1 P(X) P(X) 

    P(Y) P(Y) 

    X

    ℜ→Ω:Y 

    X

    ∑∈

    == X  x

     x X  xP  X  E  )()(

    29

    Caveats of intuition

    • Does the expectation always exist?

    ∑∈

    = X  x

     x N 

     X  Mean1

    )(

    ∑∈

    == X  x

     x X  xP  X  E  )()(

    http://physicsweb.org/articles/world/14/7/9/1#pw1407091

    The physics of the WebJuly 2001

    λλ   −==   e x

     x X  P  x

    !)(

    α x

     x X  P 1

    )(   ==

    Sample mean always exists

    Expectation

    perhaps givesan infinite

    value !!!!

    30

    Caveats of intuition

    • Does the expectation always exist?

    • Example: A Cauchy random variable

    ∑∈

    = X  x

     x N 

     X  Mean1

    )(

    ∑∈

    == X  x

     x X  xP  X  E  )()(

    http://physicsweb.org/articles/world/14/7/9/1#pw1407091

    The physics of the WebJuly 2001

    ( )  ( )+∞

  • 8/17/2019 Small Mathematical Expectation

    6/6

    31

    Caveats of intuition

    • Why is infinite?

    • Divergent series

    • Note that for high values of x

    ( )∑∑  ∞

    =∈   +===

    1

    21

    )()( x X  x   x

     x x X  xP  X  E 

    π

    α x x X  P 

    1)(   ==

    ( ) ( )

    ∑ ∑∑∞

    =

    =

    >>

    >>

    =

    ++

    ≅+

    =

    1

    1 1

    1

    1

    22

    1)(

    1111

    )(2

    2

     x

     x x

     x

     x

     x X  E 

     x x x

     x x X  E 

    πππ

    32

    Caveats of intuition

    • Why is infinite?

    • Value of the harmonic series

    0 10 00 200 0 3 00 0 4 000 5 000 6 000 7 00 0 8 00 0 900 0 100005

    5.5

    6

    6.5

    7

    7.5

    8

    8.5

    9

    9.5

    10

    ∑=

     N 

     x   x1

    1

    ∞=+++>

    ++++++++>

    ++++++++=

    =

    =

    =

    L

    L

    L

     1 1 1 11

    8

    1

    8

    1

    4

    1

    4

    1

    4

    1

    4

    1

    2

    1

    2

    11

    1

    91

    81

    71

    61

    51

    41

    31

    2111

    1

    1

    1

     x

     x

     x

     x

     x

     x REPASSAR

    33

    Expected waiting times

    • Geometric

    • Pareto

    • gausian

    34

    Expected value of a Binomial