143
Arief Hamdani Gunawan 1. 1. Introduction to LTE Introduction to LTE 2. 2. OFDMA OFDMA 3. 3. SC SC-FDMA FDMA 4. 4. LTE Network and Protocol LTE Network and Protocol 5. LTE Radio Procedures 5. LTE Radio Procedures 6. LTE Uplink Physical Channels and 6. LTE Uplink Physical Channels and Signals Signals 7. LTE Mobility 7. LTE Mobility 8. LTE Test and Measurement 8. LTE Test and Measurement

Slides day two

Embed Size (px)

Citation preview

Page 1: Slides   day two

Arief Hamdani Gunawan

1.1. Introduction to LTEIntroduction to LTE

2.2. OFDMAOFDMA

3.3. SCSC--FDMAFDMA

4.4. LTE Network and ProtocolLTE Network and Protocol

5. LTE Radio Procedures5. LTE Radio Procedures

6. LTE Uplink Physical Channels and 6. LTE Uplink Physical Channels and

SignalsSignals

7. LTE Mobility7. LTE Mobility

8. LTE Test and Measurement8. LTE Test and Measurement

Page 2: Slides   day two

Day Two

Arief Hamdani Gunawan

Page 3: Slides   day two

Session 5: LTE Radio Procedures•LTE Initial Access

•Downlink physical channels and signals

•Cell search in LTE

•Primary Synchronization Signal•Primary Synchronization Signal

•Secondary Synchronization Signal

•Cell search in LTE, reference signals

•Downlink Reference Signals

•Cell Search in LTE, essential system information

•System Information Broadcast in LTE

•Random Access Procedure

•How to derive information in LTE

•Hybrid ARQ in Downlink

•Default EPS Bearer Setup

Page 4: Slides   day two

LTE Initial Access

Page 5: Slides   day two

Downlink physical channels and signals

Page 6: Slides   day two

DL Physical Layer Procedures

• Cell search and synchronization

• Scheduling

– Dilakukan di base station (eNodeB)

– PDCCH (Phy DL Control Channel) menginformasikan alokasi time/freq resource

dan format transmisi yang digunakan kepada user.

– Scheduler mengevaluasi berbagai tipe informasi (parameter QoS, pengukuran

6

– Scheduler mengevaluasi berbagai tipe informasi (parameter QoS, pengukuran

dari UE, kapabilitas UE, buffer status)

• Link Adaptation

– Skema modulasi dan coding untuk shared data channel diadaptasi sesuai

dengan kualitas link radio.

– Untuk tujuan ini, UE secara teratur melaporkan Channel Quality Indicator

(CQI) ke eNodeB.

• Hybrid ARQ (Automatic Repeat Request)

Page 7: Slides   day two

Cell Search in LTE

Page 8: Slides   day two

Synchronization & Cell Search

• UE yang ingin mengakses suatu sel LTE, terlebih dahulu harus melakukan

prosedur Cell Search.

• Cell Search terdiri dari serangkaian tahapan sinkronisasi, dimana UE

menentukan parameter waktu & frekuensi yang diperlukan untuk

mendemodulasi sinyal DL dan untuk mengirimkan sinyal UL dengan timing

8

mendemodulasi sinyal DL dan untuk mengirimkan sinyal UL dengan timing

yang tepat.

• Tiga kebutuhan sinkronisasi utama:

– Symbol timing acquisition

– Carrier frequency synchronization

– Sampling clock synchronization

Page 9: Slides   day two

Case StudyCase Study

Cell Search for Multiple Bandwidths - Problem

9

• LTE offers system flexibility by supporting systems and UEs of multiple bandwidths.

• Challenge in synchronization & bandwidth detection.

• Unbalance traffic loads may result

Page 10: Slides   day two

Case Study Case Study

Cell Search for Multiple Bandwidths - Solution

Step 1:

Cell search using synchronization channel

�detect center 1.25 spectrum

of entire 20-MHz spectrum•The UE first detect the central

part of the spectrum regardless of

10

Step 2:

BCH reception

Step 3:

UE shifts to the center of carrier frequency assigned

by the system and initiates data transmission

Source: 3GPP R1-061651, “3GPP TR 25.814 v 1.5.0”

part of the spectrum regardless of

the transmission bandwidth

capability of the UE and that of the

cell site (BTS).

•UE moves to the transmission

bandwidth according to the UE

capability for actual

communication

Page 11: Slides   day two

Synchronization Sequence

Dua prosedur cell search dalam LTE :

• INITIAL SYNCHRONIZATION

– UE mendeteksi suatu sel LTE dan mendekode semua informasi yang

diperlukan untuk registrasi.

– Diperlukan pada saat UE di-ON-kan atau ketika kehilangan koneksi dengan

11

– Diperlukan pada saat UE di-ON-kan atau ketika kehilangan koneksi dengan

serving cell.

• NEW CELL IDENTIFICATION

– Dilakukan ketika UE sudah terhubung ke suatu sel LTE dan sedang dalam

proses mendeteksi suatu sel tetangga baru.

– Dalam hal ini UE melaporkan hasil pengukuran yang terkait dengan sel baru ke

serving cell, sebagai persiapan untuk handover.

Page 12: Slides   day two

RS : Reference Signal

PBCH : Physical Broadcast Channel

PSS : non-coherent detection

SSS : non-coherent/coherent detection

Cell Search procedure

12

• PSS (Primary Synchronization Signal) dan SSS (Secondary Synchronization Signal) adalah kanal-kanal fisik

yang di-broadcast dalam setiap sel.

• Pendeteksian dua kanal ini :

– memungkinkan dilakukannya sinkronisasi waktu & frekwensi.

– memberikan identitas phy layer dari sel dan panjang cyclic prefix kepada UE.

– memberitahu UE apakah sel menggunakan FDD atau TDD.

Page 13: Slides   day two

Primary Synchronization Signal

Page 14: Slides   day two

Secondary Synchronization Signal

Page 15: Slides   day two

PSS and SSS frame and slot structure in FDD

15

Page 16: Slides   day two

PSS and SSS frame and slot structure in TDD

16

Page 17: Slides   day two

Cell search in LTE, reference signals

Page 18: Slides   day two

Downlink reference signals

Page 19: Slides   day two

Reference Signals & Channel Estimation

• Berbeda dengan jaringan berorientasi paket, LTE tidak menggunakan PHY Preamble untuk

memfasilitasi estimasi carrier offset, estimasi kanal, sinkronisasi waktu, dsb.

• Sebaliknya LTE menggunakan sinyal referensi khusus yang disisipkan dalam PRB.

• Sinyal referensi tsb dikirimkan selama simbol OFDM pertama dan kelima dari setiap slot

untuk short CP, dan simbol OFDM pertama dan ke-empat untuk long CP.

19

• Simbol-simbol referensi dikirimkan setiap selang 6 subcarrier.

• Dalam LTE downlink, terdapat 3 tipe RS :

– Cell-specific RS

– UE-specific RS

– MBSFN-specific RS

Page 20: Slides   day two

DL Reference Signal Structure for 2 & 4 Antenna Transmission

20

Page 21: Slides   day two

RS-aided Channel Estimation

• Problem estimasi kanal berhubungan dengan model kanal yang diasumsikan, yang

ditentukan oleh karakteristik propagasi fisik, termasuk jumlah antena Tx/Rx,

bandwidth transmisi, carrier frequency, konfigurasi sel dan kecepatan relatif antara

eNodeB dan UE.

• Kondisi propagasi mencirikan fungsi korelasi kanal dalam 3-dimensi, yaitu : domain

frekwensi, domain waktu dan domain ruang (spatial).

21

frekwensi, domain waktu dan domain ruang (spatial).

• Frequency-Domain Channel Estimation

– menggunakan Linear Interpolation Estimator

– menggunakan IFFT Estimator

• Time-Domain Channel Estimation

– menggunakan Finite & Infinite Length MMSE (Min Mean Squared Error)

– menggunakan Normalized Least-Mean-Square

• Spatial-Domain Channel Estimation

Page 22: Slides   day two

Cell search in LTE, essential system information

Page 23: Slides   day two

P-SCH and S-SCH

Physical Downlink Shared Channel

Physical Downlink Control Channel

Physical Broadcast Channel

Downlink Physical Channels and Signals

23

Physical Broadcast Channel

Physical Control Format Indicator Channel

Physical Multicast Channel

Physical Hybrid ARQ Indicator Channel

P-SCH : Primary Synchronization Channel

S-SCH : Secondary Synchronization Channel

Page 24: Slides   day two

LTE Downlink Physical Channels 1

24

Page 25: Slides   day two

LTE Downlink Physical Channels 2

25

Page 26: Slides   day two

System information broadcast in LTE

Page 27: Slides   day two

Random Access Procedure

Page 28: Slides   day two

How to derive information in LTE?

Page 29: Slides   day two

Indicating PDCCH format

Page 30: Slides   day two

Channel Coding & Link Adaptation

• Prinsip link adaptation menjadi landasan perancangan suatu interface radio yang

efisien untuk trafik data berbasis paket-switched.

• Link adaptation dalam LTE dilakukan dengan mengatur laju data informasi yang

dikirim (skema modulasi dan channel coding rate) secara dinamis, sesuai dengan

kualitas radio link.

• Link adaptation mempunyai hubungan yang sangat erat dengan perancangan

30

• Link adaptation mempunyai hubungan yang sangat erat dengan perancangan

skema channel coding yang digunakan untuk FEC.

• Skema channel coding untuk FEC yang digunakan dalam LTE :

– Convolutional Coding

– Turbo Coding

– LDPC (Low Density Parity Check) coding

• Fitur advanced channel coding yang ditambahkan dalam LTE adalah : HARQ

(Hybrid Automatic Repeat Request).

Page 31: Slides   day two

Link Adaptation

• UE: Reports the finest possible

granularity

– The reporting scheme and

granularity depend on the radio

channel quality variation!

• ENB: Receives mobility and

31

• ENB: Receives mobility and

quality information

– Incremental feedback

information forms a rough

picture of the radio channel with

the first report (s). The

granularity gets finer and finer

with each report.

Page 32: Slides   day two

Adaptive Modulation

• Adaptive Modulation & Coding

memastikan error rate tetap dibawah

limit yang dapat diterima, dengan

pengaturan modulasi dan coding rate

secara dinamis.

• Level modulasi yang lebih rendah

meningkatkan link budget dan fade

32

meningkatkan link budget dan fade

margin.

• Perubahan lingkungan propagasi

menyebabkan perubahan skema

modulasi dan coding.

• Dalam perencanaan kapasitas, variasi

kanal propagasi jangka-panjang harus

diperhitungkan.

Page 33: Slides   day two

Typical SNR Performance of LTE Modulation and Coding

33

Page 34: Slides   day two

Adaptive Modulation & Coding

34

Page 35: Slides   day two

QoS parameters for QCI

Page 36: Slides   day two

Hybrid ARQ in the downlink

• ACK/NACK for data packets transmitted in the downlink is the same as for HSDPA,

where the UE is able to request retransmission of incorrectly received data

packets,

– ACK/NACK is transmitted in UL, either on PUCCH (Physical Uplink Control Channel) or

multiplexed within PUSCH (Physical Uplink Shared Channel) see description of those UL

channels for details),

– ACK/NACK transmission refers to the data packet received four sub-frames (= 4 ms) – ACK/NACK transmission refers to the data packet received four sub-frames (= 4 ms)

before,

– 8 HARQ processes can be used in parallel in downlink.

Page 37: Slides   day two

Hybrid ARQ Operation

Page 38: Slides   day two

Default EPS bearer setup

Page 39: Slides   day two

Session 6: Uplink Physical Channels and Signals•Scheduling of UL Data

•UL Frequency Hopping

•Demodulation Reference Signal (DRS) in the UL

•Sounding Reference Signal (SRS) in the UL•Sounding Reference Signal (SRS) in the UL

•PUSCH power control & timing relation

•Acknowledging UL data packets on PHICH

•Physical UL Control Channel

Page 40: Slides   day two

Uplink physical channels and signals

Page 41: Slides   day two

Scheduling of uplink data

Page 42: Slides   day two

Physical Random Access Channel

Physical Uplink Shared Channel

Physical Uplink Control Channel

Uplink Physical Channels and Signals

42

Physical Uplink Control Channel

• PUSCH (Physical Uplink Shared Channel): used for uplink shared data transmission.

• PUCCH (Physical Uplink Control Channel): used to carry ACK/NACK, CQI for downlink

transmission and scheduling request for uplink transmission.

Page 43: Slides   day two

Uplink Data Transmission

• Pada uplink, data dialokasikan dalam beberapa resource block (RB).

• Ukuran RB untuk uplink sama dengan yang digunakan untuk downlink,

tetapi untuk menyederhanakan disain DFT dalam pemrosesan sinyal

uplink, tidak semua kelipatan bulat digunakan (hanya kelipatan 2, 3 dan 5).

• Interval waktu transmisi uplink adalah 1 ms (sama dengan downlink).

43

• User data dibawa pada Physical Uplink Shared Channel (PUSCH), yang

ditentukan oleh BW transmisi dan pola frequency hoping.

• Physical Uplink Control Channel (PUCCH) membawa informasi kontrol

uplink, seperti : laporan CQI dan informasi ACK/NACK, yang terkait dengan

paket-paket data yang diterima pada arah downlink.

Page 44: Slides   day two

UL frequency hopping

Intra- and inter-subframe hopping,

• Intra-subframe hopping. UE hops to another frequency allocation from one slot to another within one subframe,

• Inter-subframe hopping. Frequency allocation changes from one subframeto another one,to another one,

Two types of hopping,

• Type I. Explicit frequency offset is used in the 2nd slot, can be configured and is indicated to the UE by resource block assignment / hopping resource allocation field in DCI format 0,

• Type II. Use of pre-defined hopping pattern, allocated BW is divided into sub-bands, hopping is done from one sub-band to another from one slot or subframe depending on configured frequency hopping scheme.

Screenshots of R&S® SMU200A Vector Signal Generator

Page 45: Slides   day two

Demodulation Reference Signal (DRS) in the UL

Page 46: Slides   day two

Sounding Reference Signal (SRS) in the UL

Page 47: Slides   day two

PUSCH power control & timing relation

Page 48: Slides   day two

Random Access

• Suatu LTE UE (User Equipment) hanya dapat di-scheduled untuk transmisi uplink, apabila uplink transmission timing-nya sinkron.

• Oleh karena itu LTE RACH (Random Access Channel) memainkan peran penting sebagai interface antara non-synchronized UE dan skema transmisi othogonal pada akses radio uplink LTE.

• Prosedur LTE random access mempunyai dua bentuk, yaitu : contention-based atau contention-free.

48

based atau contention-free.

• Dalam prosedur contention-based, suatu random access preamble signature dipilih secara acak oleh UE, yang kemungkinan dapat menyebabkan lebih dari satu UE mengirimkan signature yang sama secara simultan.

• Dalam prosedur contention-free, eNodeB memiliki opsi untuk mencegah terjadinya contention dengan mengalokasikan suatu dedicated signature kepada UE.

Page 49: Slides   day two

Contention-based Random Access Procedure

Step 1 : Preamble transmission

49

Step 1 : Preamble transmission

Step 2 : Random Access

Response

Step 3 : L2/L3 message

Step 4 : Contention resolution

message

Page 50: Slides   day two

Contention-free Random Access Procedure

50

Prosedur contention-free

random access dapat

diterapkan dalam hal

diperlukan low latency, seperti

handover dan new downlink

data.

Page 51: Slides   day two

UL Transmission Procedures

• Uplink scheduling

– Dilakukan oleh base station (eNodeB)

– PDCCH (Phy DL Control Channel) menginformasikan alokasi time/freq resource dan format transmisi yang digunakan kepada user.

– Scheduler mengevaluasi berbagai tipe informasi (parameter QoS, pengukurandari UE, kapabilitas UE, buffer status)

• Uplink Adaptation

51

• Uplink Adaptation

– Untuk keperluan adaptasi uplink, dapat digunakan : transmission power control, adaptive modulation & channel coding rate, serta adaptive transmission BW.

• Uplink timing control

– Diperlukan untuk menyelaraskan waktu transmisi dari UE-UE yang berbeda, dengan receiver window dari eNodeB.

• Hybrid ARQ

Page 52: Slides   day two

Acknowledging UL data packets on PHICH

Page 53: Slides   day two

Physical Uplink Control Channel

PUCCH carries Uplink Control Information (UCI), when no PUSCH is available,

• If PUSCH is available, means resources have been allocated to the UE for data transmission, UCI are multiplexed with user data,

UCI are Scheduling Requests (SR), ACK/NACK information related to DL data packets, CQI, Pre-coding Matrix Information (PMI) and Rank Indication (RI) for MIMO,Indication (RI) for MIMO,

PUCCH is transmitted on reserved frequency regions, configured by higher layers, which are located at the edge of the available bandwidth

• Minimizing effects of a possible frequency-selective fading affecting the radio channel,

• Inter-slot hopping is used on PUCCH,

• A RB can be configured to support a mix of PUCCH formats (2/2a/2b and 1/1a/1b) or exclusively 2/2a/2b,

Page 54: Slides   day two

PUCCH

• CQI / PMI / RI are only signaled via PUCCH when periodic reporting is requested, scheduled

and a periodic reporting is only done via PUSCH

Page 55: Slides   day two

Physical Channel Procedure (1/2)

Page 56: Slides   day two

Physical Channel Procedure (2/2)

Page 57: Slides   day two

Test1

2

3

A

B

Carries the DL-SCH and

PCH

Cell ID detection,

radio frame detection

Operation BW, CP length, 3

4

C

D

E

SCH symbol timing

detection, frequency

offset detection

RB assignment, transport

format, RSN#, HARQ

Proc#, TCP Command,

Cyclic shift for DMRS, UE

identification

Operation BW, CP length,

MIMO config, cell ID, etc

5

Page 58: Slides   day two

AnswerSCH symbol timing detection,

frequency offset detection

Cell ID detection,

radio frame detection

Carries the DL-SCH and PCH

RB assignment, transport format,

RSN#, HARQ Proc#, TCP Command,

Cyclic shift for DMRS, UE

identification

Operation BW, CP length, MIMO

config, cell ID, etc

Page 59: Slides   day two

Session 7: LTE Mobility•Handover (Intra-MME / Serving Gateway)

•LTE Interworking with 2G/3G: Two RRC States:

Connected and Idle

•LTE Interworking with CDMA2000 1xRTT and •LTE Interworking with CDMA2000 1xRTT and

HRPD

•MIMO

•LTE MIMO downlink modes

•LTE downlink transmitter chain

•Downlink transmitter diversity - Space Frequency

Block Coding (2 Tx antenna case)

•Downlink Spatial Multiplexing - codebook based

precoding

•LTE MIMO UL Schemes

Page 60: Slides   day two

SGSN

GPRS Core

3GPP

anchor

SAE

anchor

MME

UPE

Operator’s

IP Services

(e.g. IMS, PSS, etc,)

eNB eNB

GERAN

UTRAN

IASA

GB

Iu

S3

S4S7

Rx+

S5a

S2b

S6

Logical High Level Architecture for The Evolved System

• EPS uses the concept of EPS bearers to route IP traffic from a gateway in the PDN to the UE.

• A bearer is an IP packet flow with a defined Quality of Service (QoS) between the gateway and the UE.

• The E-UTRAN and EPC together set up and release bearers as required by applications.

anchor anchorUPEeNB

eNB eNB

eNB

Evolved RAN (LTE)

Trusted non 3GPP

IP Access

EPDG

WLAN

Access Network

EPC (SAE)

S5a S5bS1

S2aSGi

WLAN 3GPP

IP Access

Page 61: Slides   day two

SAE Bearer Model

Page 62: Slides   day two

User and bearer

information exchange for

inter 3GPP access system

mobility

Overview of the evolved system architecture

Transfer of subscription and

authentication data for user

access to the evolved system (AAA

interface)

C-Plane : S1-C between eNB and MME

U-Plane : S1-U between eNB and UPE

MME : Mobility Management Entity

UPE : User Plane Entity

3GPP Anchor : Mobility anchor between 2G/3G and LTE access systems (based on GTP)

SAE Anchor : Mobility anchor between 3GPP access systems (2G/3G/LTE) and non-3GPP access systems (e.g. WLAN, WiMAX).

Page 63: Slides   day two

SAE Architecture – Functions per Element

Page 64: Slides   day two

SAE Architecture 3GPP2 Operator

detailed view, non-roaming case, 3GPP2 accesses

Page 65: Slides   day two

SAE Roaming support

extending today’s successful model

Page 66: Slides   day two

SAE impact on IMS

overview

Page 67: Slides   day two

Handover (Intra-MME/Serving Gateway)

Page 68: Slides   day two

LTE Interworking with 2G/3G

Two RRC states: CONNECTED & IDLE

Page 69: Slides   day two

LTE Interworking with CDMA2000 1xRTT

and HRPD (High Rate Packet Data)

Page 70: Slides   day two

Introduction to MIMO:gains to exploit from multiple antenna usage

Transmit diversity (TxD)

• Combat fading

• Replicas of the same signal sent on several Tx antennas

• Get a higher SNR at the Rx

Spatial multiplexing (SM)Spatial multiplexing (SM)

• Different data streams sent simultaneously on different antennas

• Higher data rate

• No diversity gain

• Limitation due to path correlation

Beamforming

Page 71: Slides   day two

Multiple Antenna Technique:

Four Basic Model

71

Page 72: Slides   day two

Multiple Antenna Technique

Two popular techniques in MIMO wireless systems:

72

Spatial Diversity: Increased SNR

• Receive and transmit diversity mitigates

fading and improves link quality

Spatial Multiplexing: Increased rate

• Spatial multiplexing yields substantial

increase spectral efficiency

Page 73: Slides   day two

Spatial Diversity

Transmit Diversity

• Space-time Code (STC): Redundant data sent over time and space domains

(antennas).

• Receive SNR increase about linearity with diversity order Nr Nt

• Provide diversity gain to combat fading

• Optional in 802.16d (2x2 Alamouti STBC), used in 3G CDMA

73

• Optional in 802.16d (2x2 Alamouti STBC), used in 3G CDMA

Page 74: Slides   day two

Spatial Multiplexing

MIMO Multiplexing

• Data is not redundant – less diversity but less repetition

• Provides multiplexing gain to increase data-rate

• Low (no) diversity compared with STC

74

Page 75: Slides   day two

MIMO Operation

75

Page 76: Slides   day two

Diversity & MIMO

76

Page 77: Slides   day two

LTE MIMO: downlink modes

• Transmit diversity:– Space Frequency Block Coding (SFBC)

– Increasing robustness of transmission

• Spatial multiplexing:– Transmission of different data streams simultaneously over

multiple spatial layers– Transmission of different data streams simultaneously over

multiple spatial layers

– Codebook based precoding

– Open loop mode for high mobile speeds possible

• Cyclic delay diversity (CDD):– Addition of antenna specific cyclic shifts

– Results in additional multipath / increased frequency diversity

Page 78: Slides   day two

LTE downlink transmitter chain

Page 79: Slides   day two

Downlink transmit diversitySpace-Frequency Block Coding (2 Tx antenna case)

Page 80: Slides   day two

Downlink spatial multiplexingcodebook based precoding

Page 81: Slides   day two

LTE MIMO: uplink schemes

• Uplink transmit antenna selection:– 1 RF chain, 2 TX antennas at UE

side

– Closed loop selection of transmit antenna

– eNodeB signals antenna selection to UE

– Optional for UE to support– Optional for UE to support

• Multi-user MIMO / collaborative MIMO:– Simultaneous transmission from 2

Ues on same time/frequency resource

– Each UE with single transmit antenna

– eNodeB selects UEs with close-to orthogonal radio channels

Page 82: Slides   day two

Multi User Scheduling

• Scheduler (untuk transmisi unicast) secara dinamis mengontrol resource waktudan frekwensi mana yang akan dialokasikan kepada suatu user pada suatu waktutertentu.

• DL control signalling memberitahu UE, resource dan format transmisi seperti apayang sudah dialokasikan.

• Scheduler dapat secara dinamis memilih strategi multiplexing terbaik daribeberapa metode yang ada, misalnya : localized atau distributed allocation.

82

beberapa metode yang ada, misalnya : localized atau distributed allocation.

• Scheduling berinteraksi erat dengan link adaptation dan HARQ.

• Pertimbangan scheduling antara lain didasarkan pada :

– minimum & maximum data rate

– daya yang tersedia untuk di-share

– Persyaratan target BER

– parameter QoS

– laporan CQI (Channel Quality Indicator)

– kapabilitas UE

Page 83: Slides   day two

Channel-Dependent Scheduling

• Shared channel transmission

• Select user and data rate on

instantaneous channel quality

– Time-domain adaptation used

already in HSPA

• Scheduling in time and frequency

domain

– Link adaptation in time domain

only

83

already in HSPA

Page 84: Slides   day two

Packet-scheduling framework

• Packet scheduler adalah entitas

pengendali untuk seluruh proses

scheduling.

• Berkonsultasi dengan modul LA (Link

Adaptation) untuk memperoleh estimasi

data rate yang dapat disuport untuk user

tertentu dalam sel.

84

• LA dapat menggunakan frequency-

selective CQI feedback dari user, untuk

memastikan estimasi data rate yang sesuai

dengan target BLER tertentu.

• Modul Offset calculation dalam proses

link-adaptation dapat digunakan untuk

menstabilkan performansi BLER dalam

kondisi LA yang tidak pasti.

Page 85: Slides   day two

Session 8: LTE Test and Measurement•LTE RF Testing aspects

•eNB Modulation quality measurements

•ACLR in DL (FDD)

•eNB Performance Requirements

•UE RF Testing Aspects

•Transmit Modulation

•Inband Emission

•IQ Component

•ACLR Measurement

•Receiver characteristics

•LTE Wireless device testing from R&D upto conformance

•Stages of LTE terminal testing

•LTE Terminal Interoperability testing

•Test Scenarios for LTE Terminal IOT

•LTE Conformance Testing

•LTE Terminal Certification

•LTE Field Trials

Page 86: Slides   day two

System architecture for 3GPP access networks

Page 87: Slides   day two

PCRF

• It is responsible for policy control decision-making, as

well as for controlling the flow-based charging

functionalities in the Policy Control Enforcement

Function (PCEF) which resides in the P-GW.

• The PCRF provides the QoS authorization (QoS class

identifier and bitrates) that decides how a certain

data flow will be treated in the PCEF and ensures

that this is in accordance with the user’s subscription

profile.

Page 88: Slides   day two

P-GW

• The P-GW is responsible for IP address allocation for the UE,

as well as QoS enforcement and flow-based charging

according to rules from the PCRF.

• The P-GW is responsible for the filtering of downlink user IP

packets into the different QoS based bearers. This is packets into the different QoS based bearers. This is

performed based on Traffic Flow Templates (TFTs).

• The P-GW performs QoS enforcement for Guaranteed Bit Rate

(GBR) bearers.

• It also serves as the mobility anchor for inter-working with

non-3GPP technologies such as CDMA2000 and WiMAX

networks.

Page 89: Slides   day two

S-GW

• All user IP packets are transferred through the S-GW, which serves as the local mobility anchor for the data bearers when the UE moves between eNodeBs.

• It also retains the information about the bearers when the UE is in idle state (known as ECM-IDLE) and temporarily buffers downlink data while the MME initiates paging of the UE to re-establish the bearers. downlink data while the MME initiates paging of the UE to re-establish the bearers.

• In addition, the S-GW performs some administrative functions in the visited network such as collecting information for charging (e.g. the volume of data sent to or received from the user), and legal interception.

• It also serves as the mobility anchor for inter-working with other 3GPP technologies such as GPRS and UMTS.

Page 90: Slides   day two

MME

• The MME is the control node which processes the signaling

between the UE and the CN.

• The protocols running between the UE and the CN are known

as the Non-Access Stratum (NAS) protocols.

• The main functions supported by the MME are classified as:• The main functions supported by the MME are classified as:

– Functions related to bearer management. This includes the

establishment, maintenance and release of the bearers, and is

handled by the session management layer in the NAS protocol.

– Functions related to connection management. This includes the

establishment of the connection and security between the network

and UE, and is handled by the connection or mobility management

layer in the NAS protocol layer.

Page 91: Slides   day two

HSS

• Home Subscription Server (HSS) is the subscription data repository for all permanent user data. It also records the location of the user in the level of visited network control node, such as MME. It is a database server maintained centrally in the home operator’s premises.

• The HSS stores the master copy of the subscriber profi le, which contains information about the services that are applicable to the user, including information about the allowed PDN connections, and whether roaming to a particular visited network is allowed or not. For supporting mobility between non-3GPP ANs, the HSS also stores the Identities of those P-GWs that are in use. The particular visited network is allowed or not. For supporting mobility between non-3GPP ANs, the HSS also stores the Identities of those P-GWs that are in use. The permanent key, which is used to calculate the authentication vectors that are sent to a visited network for user authentication and deriving subsequent keys for encryption and integrity protection, is stored in the Authentication Center (AuC), which is typically part of the HSS.

• In all signaling related to these functions, the HSS interacts with the MME. The HSS will need to be able to connect with every MME in the whole network, where its UEs are allowed to move. For each UE, the HSS records will point to one serving MME at a time, and as soon as a new MME reports that it is serving the UE, the HSS will cancel the location from the previous MME.

Page 92: Slides   day two

EPS Connection Management

• To reduce the overhead in the E-UTRAN and processing in the UE, all UE-related information in the access network can be released during long periods of data inactivity.

• This state is called EPS Connection Management IDLE (ECM-IDLE). The MME retains the UE context and the information about the established bearers during these idle periods.

• To allow the network to contact an ECM-IDLE UE, the UE updates the network as to its new location whenever it moves out of its current

• To allow the network to contact an ECM-IDLE UE, the UE updates the network as to its new location whenever it moves out of its current Tracking Area (TA); this procedure is called a ‘Tracking Area Update’. The MME is responsible for keeping track of the user location while the UE is in ECM-IDLE.

• When there is a need to deliver downlink data to an ECM-IDLE UE, the MME sends a paging message to all the eNodeBs in its current TA, and the eNodeBs page the UE over the radio interface. On receipt of a paging message, the UE performs a service request procedure which results in moving the UE to ECM-CONNECTED state.

Page 93: Slides   day two

MME connections to other logical nodes

and main functions

Page 94: Slides   day two

S-GW connections to other logical nodes

and main functions

Page 95: Slides   day two

P-GW connections to other logical nodes

and main functions

Page 96: Slides   day two

PCRF connections to other logical nodes

and main functions

Each PCRF may be associated with one or more AF, P-GW and S-GW. There is only

one PCRF associated with each PDN connection that a single UE has.

Page 97: Slides   day two

LTE RF Testing AspectsBase station (eNodeB) according to 3GPP

• Measurements are performed using Fixed Reference Channels (FRC) and EUTRA Test Models (E-TM),

• Tx characteristic (= Downlink)– Base station output power

– Output power dynamics: RE Power Control dynamic range, total power dynamic range,

– Transmit ON/OFF power: Transmitter

• Rx characteristics (= Uplink): Reference sensitivity level, Dynamic range, In-channel selectivity, Adjacent channel selectivity (ACS) and narrow-band blocking, Blocking, Receiver spurious emissions, Receiver intermodulation

• Performance requirements,– Transmit ON/OFF power: Transmitter

OFF power, transmitter transient period,

– Transmitted signal quality: FrequencyError, Error Vector Magnitude (EVM), Time alignment between transmitter antennas, DL RS power, etc. …

– Unwanted emissions: Occupied Bandwidth, Adjacent Channel Leakage Power Ratio (ACLR), Operating band unwanted emissions, etc. …

– Transmitter spurious emissions and intermodulation,

• Performance requirements,– …for PUSCH: Fading conditions, UL

timing adjustment, high speed train, HARQ-ACK multiplexed in PUSCH,

– …for PUCCH: DTX to ACK performance, ACK missed detection PUCCH format 1a (single user), CQI missed detection for PUCCH format 2, ACK missed detection PUCCH format 1a (multiple user)

– PRACH performance: FALSE detection probability, detection requirements

3GPP TS 36.104: Base Station (BS) radio transmission and reception

Page 98: Slides   day two

eNB modulation quality measurements

• Frequency error– If frequency error is larger than a few subcarrier, demodulation at the UE

might not work properly and cause network interference,

– Quick test: OBW, Limit for frequency error after demodulation 0.05 ppm + 12 Hz (1ms),

• Error Vector Magnitude (EVM),– Amount of distortion effecting the receiver to demodulate the signal properly,– Amount of distortion effecting the receiver to demodulate the signal properly,

– Limit changes for modulation schemes QPSK (17.5%), 16QAM (12.5%), 64QAM (8%),

• Time alignment,– Only TX test defined for multiple antennas, measurement is to measure the

time delay between the signals for the two transmitting antennas, delay shall not exceed 65 ns,

• DL RS power– “Comparable” to WCDMA measurement CPICH RSCP; absolute DL RS power is

indicated on SIB Type 2, measured DL RS power shall be in the range of ±2.1 dB,

Page 99: Slides   day two

ACLR in DL (FDD)

Page 100: Slides   day two

ACLR in DL (FDD):

No filter definition in LTE!

Page 101: Slides   day two

eNB performance requirementsPRACH and preamble testing I

• PRACH testing is one of the performance requirements

defined in 3GPP TS 36.141 E-UTRA BS conformance testing,

– Total probability of FALSE detection of preamble (Pfa 0.1% or less),

– Probability of detection of preamble (Pd = 99% at defined SNR),

– Two modes of testing: normal and high-speed mode,– Two modes of testing: normal and high-speed mode,

• Different SNR and fading profiles are used (table shows settings for

normal mode),

Page 102: Slides   day two

eNB performance requirementsPRACH and preamble testing I

– Depending on the mode different preambles are used to check

detection probability (table shows preamble to be used for normal

mode),

Page 103: Slides   day two

eNB performance requirementsPRACH and preamble testing II

• According to 3GPP TS 36.211 the NCS

value is not set directly instead it is

translated to a NCS configuration

value,

• This value is set in the signal

generator R&S® SMx or R&S® AMU,

Screenshot taken

from R&S®

SMU200A Vector

Signal Generator

Page 104: Slides   day two

UE RF testing

Page 105: Slides   day two

LTE RF Testing AspectsUser Equipment (UE) according to 3GPP

Tx characteristic

• Transmit power,

• Output power dynamics,

• Transmit Signal Quality,– Frequency error, EVM vs.

subcarrier, EVM vs. symbol, LO leakage, IQ imbalance, Inbandemission, spectrum flatness,

Rx characteristics

• Reference sensitivity level,

• UE maximum input level,

• Adjacent channel selectivity,

• Blocking characteristics,

• Intermodulation characteristics,

Spurious emissions,leakage, IQ imbalance, Inbandemission, spectrum flatness,

• Output RF spectrum emissions,– Occupied bandwidth, Spectrum

Emission Mask (SEM), Adjacent Channel Leakage Power Ratio (ACLR),

• Spurious Emission,

• Transmit Intermodulation,

• Spurious emissions,

Performance requirements

• Demodulation FDD PDSCH (FRC),

• Demodulation FDD PCFICH/PDCCH (FRC)

3GPP TS 36.101: User Equipment (UE) radio transmission and reception

Page 106: Slides   day two

Transmit modulation

According to 3GPP specification LO leakage (or IQ origin offset) is removed from evaluated

signal before calculating EVM and in-band emission.

Page 107: Slides   day two

In-band emission

Page 108: Slides   day two

IQ component

• Also known is LO leakage, IQ offset, etc.,

• Measure of carrier feedthrough present in the signal,

• Removed from measured waveform, before calculating EVM and in-band emission

(3GPP TS 36.101 V8.3.0, Annex F),

• In difference to DL the DC subcarrier in UL is used for transmission, but subcarriers

are shifted half of subcarrier spacing (= 7.5 kHz) to be symmetric around DC are shifted half of subcarrier spacing (= 7.5 kHz) to be symmetric around DC

carrier,

• Due to this frequency shift energy of the LO falls into the two central subcarrier

Page 109: Slides   day two

ACLR measurement I

Page 110: Slides   day two

Receiver characteristics

• Throughput shall be >95% for…

– Reference Sensitivity Level,

– Adjacent Channel Selectivity,

– Blocking Characteristics,– Blocking Characteristics,

• …using the well-defined DL reference

channels according to 3GPP specification

Page 111: Slides   day two

LTE wireless device testing

from R&D up to conformance

Page 112: Slides   day two

Stages of LTE terminal testing

Page 113: Slides   day two

LTE terminal interoperability testingmotivation

• Interoperability testing is used to verify– Connectivity of the UE with the

real network (by means of base station simulators)

– Service quality, end-to-end performance

– Service quality, end-to-end performance

– Different LTE features and parametrizations

– Interworking between LTE and legacy technologies

• The complete UE protocol stack is tested.

• IOT test scenarios are based on requirements from real network operation and typical use cases.

Page 114: Slides   day two

LTE terminal interoperability testingexample test scenarios

• Registration

• UE initiated detach

• Network initiated detach

• Mobile originated EPS bearer establishment

• Mobile terminated EPS bearer establishment• Mobile terminated EPS bearer establishment

• Cell (re-)selection

• GUTI reallocation

• Tracking are update

• …

• Plus: end-to-end scenarios (video streaming, VoIP, …)

• Plus: intra-LTE mobility, inter-RAT mobility

Page 115: Slides   day two

Test scenarios for LTE terminal IOTdifferent sources for maximum test coverage

Page 116: Slides   day two

LTE conformance testingmotivation

• Verifying compliance of terminals to 3GPP LTE standard– by validated test cases

implemented on registered test platforms

– in order to ensure worldwide interoperability of the terminal within every mobile networkwithin every mobile network

• 3GPP RAN5 defines conformance test specifications for– RF

– Radio Resource Management (RRM)

– Signaling

• Certification organizations (e.g. GCF) define certification criteria based on RAN5 test specifications

Page 117: Slides   day two

LTE field trial testing and

coverage measurements

Page 118: Slides   day two

LTE field trialsrequirements from different deployment scenarios

• Bandwidths from 1.4 MHz to 20 MHz

• Different LTE FDD and TDD frequency bands

• Combination with legacy technologies

(GSM/EDGE, WCDMA/HSPA, CDMA2000 1xEV-(GSM/EDGE, WCDMA/HSPA, CDMA2000 1xEV-

DO)

• Spectrum clearance and refarming scenarios

• Femto cell / Home eNB scenarios

Page 119: Slides   day two

LTE field trialsscope of test tools

• Field trials provide input for:– Calibration and verification of

planning tools for different deployment scenarios

– Network optimization (capacity and quality)

– Quality of service verification– Quality of service verification

– Definition of Key Performance Indicators (KPIs) and verification, also from subscriber’s point of view

• Parallel use of scanners / measurement receivers for comparison with UE and base station behaviour

• Support of IOT activities

Page 120: Slides   day two

Example result from the fieldscanner measurements for LTE

Page 121: Slides   day two

10 Steps to Determine 3G/4G

IP Data Throughput

1. Will my device connect?

2. Do I have a good quality

transmitter?

3. Do I have a good quality

receiver?

6. What happens if I try real

application?

7. What happens under non-

ideal conditions?

8. Is it robust?receiver?

4. Can I achieve max E2E

tput under ideal

conditions with UDP

5. What about with TCP and

simultaneous UL/DL?

8. Is it robust?

9. Does it work closed loop?

10. How good is my battery

life?

Page 122: Slides   day two

Step 1: Will my device connect?

Page 123: Slides   day two

Step 1: Will my device connect?

• Is the UE able to sync to the DL?

•Can I get through the connection set-up

• Can I ping my UE?

• If not take a log and de-bug message exchange

•Make edits as required with Message editor

Page 124: Slides   day two

2. Do I have a good quality Transmitter?

RF test

• High data throughput testing relies on good quality UL

transmissions

• Look for the following:– Ensure you have appropriate

power and attenuation settingssettings

– High EVM for high order modulation schemes

– High EVM at the band edge

– Spurs both in band and out of band

– Linearity issues/ spectral growth

– Switching transients, LO settling time

– Repeat tests with any “other” radio’s active

Page 125: Slides   day two

3GPP Tx Measurements

Page 126: Slides   day two

UL RF Measurements

Page 127: Slides   day two

3. Do I have a good quality receiver?

• High Data throughput testing relies on good a quality receiver

• Look for the following:

– sensitivity for different – sensitivity for different modulation schemes

– Max input level performance

– susceptibility to interference (simultaneous UL/DL, other radios, spurs from digital board, …)

Page 128: Slides   day two

3. Do I have a good quality receiver?

Page 129: Slides   day two

DL Data Throughput for TD LTE(20MHz channel, 2x2 MIMO, UL/DL config 5, special subframe config 6)

Page 130: Slides   day two

Measurement Technique: UDP vs FTP (TCP)

UDP

+ Unacknowledged

+ removes flow control complexity

+ removes higher layer acks

FTP

+ Simulates real-world file transfers

+Transferred files can be viewed and/or compared+ removes higher layer acks

+ Less susceptible latency

- Not the full story for file transfers

- Not suitable for used in shared

networks

and/or compared

- Adds flow control complexity

- Add higher layer acks and retransmissions

- TCP Control algorithms sensitive

to multiple parameters

- Test system configuration can

affect results

Page 131: Slides   day two

5. Can I achieve max E2E tput under ideal conditions

with TCP?

• TCP adds higher layer support for error detection, re-transmissions, congestion control and flow control

• TCP flow control algorithms interpret “lost” packets as congestion

• Careful consideration of parameters such as window size, number of parallel process, segment size etc. need to be considered

Page 132: Slides   day two

TCP “Flapping”

Page 133: Slides   day two

6. What happens if I try a real application? …

(Voice, video, ftp …)

Page 134: Slides   day two

7. What happens under non-ideal conditions?

•Typically fade the DL and use robust

UL

•Perform test mode and E2E testing

•Measure MAC (BLER & Tput) and IP

layer throughput

•Use TCP with care!•Use TCP with care!

Page 135: Slides   day two

8. Is it robust? …

• E2E IP tests PHY, MAC, PDCP, and IP layers all working

together at full rate

• Check processor can handle multiple real time activities – add

SMS and voice calls during E2E IP

• Check there are no memory overflow/leakage issues

Page 136: Slides   day two

9. Does it work closed loop?

•BLER/Tput Testing

•Supports Test Mode and E2E Testing

Page 137: Slides   day two

10. How good is my battery life?

Page 138: Slides   day two

Case StudyCase StudyAutomated Measurements Give Repeatable 21Mbps Results!

Page 139: Slides   day two

Case StudyCase StudyDevice Performance: MIPS Matter!

Page 140: Slides   day two

Case StudyCase StudyCat14 (21Mbps) Devices – Better the second time around

Page 141: Slides   day two

Case StudyCase StudyNot All HSDPA Cat 6 Devices Have the Same Throughput

Page 142: Slides   day two

Final Note

Page 143: Slides   day two

The End

Thank You