22
1 Introduction: Skeletal muscle fibers contract, or twitch, when a stimulus is applied. The stimulus is delivered by a nerve cell, or neuron. A muscle twitch is the response of a single muscle fiber from a single nerve stimulus. (Widmaier, 2004, p. 284) The physiological location where the communication between neurons and muscle fibers occur is the neuromuscular junction. (Sherwood, 2010, p. 246) As the action potential sent by a neuron reaches the neuromuscular junction, Ca 2+ is able to enter the terminal axon. This causes acetylcholine (Ach) to leave and bind to the motor end plate of the muscle fiber. (Sherwood, 2010, p. 246) The binding of ACh allows the muscle fiber to depolarize and initiate an action potential. The action potential travels to the transverse tubules that surround the muscle fiber. This excites the sarcoplasmic reticulum, which then releases stored Ca 2+ ions into the muscle fiber. The Ca 2+ then allows myosin and actin filaments, that make up the muscle fiber, to bind and form a crossbridge and contract the muscle. (Sherwood, 2010, p. 264) This crossbridge is formed by the myosin heads bonding to the actin filaments and generating a pulling motion to initiate a muscle contraction. This pulling motion must be repeated in rapid succession to provide maximal contraction. (A. Faller, 2004, p. 92) Twitch strength, also known as twitch tension, can be increased by the summation of the twitches or by recruiting more motor units. Many muscle fibers acting together by stimulation of the motor neuron are known as a muscle unit. Muscle units can recruit more muscle units when additional strength is required, this is known as muscle summation. There are several sizes of motor units. The size recruited depends on the strength of contraction and acuity required. (Sherwood, 2010, p. 270)

skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  1  

Introduction:  

Skeletal  muscle  fibers  contract,  or  twitch,  when  a  stimulus  is  applied.    The  stimulus  

is  delivered  by  a  nerve  cell,  or  neuron.    A  muscle  twitch  is  the  response  of  a  single  muscle  

fiber  from  a  single  nerve  stimulus.    (Widmaier,  2004,  p.  284)    The  physiological  location  

where  the  communication  between  neurons  and  muscle  fibers  occur  is  the  neuromuscular  

junction.    (Sherwood,  2010,  p.  246)    As  the  action  potential  sent  by  a  neuron  reaches  the  

neuromuscular  junction,  Ca2+  is  able  to  enter  the  terminal  axon.    This  causes  acetylcholine  

(Ach)  to  leave  and  bind  to  the  motor  end  plate  of  the  muscle  fiber.  (Sherwood,  2010,  p.  

246)    The  binding  of  ACh  allows  the  muscle  fiber  to  depolarize  and  initiate  an  action  

potential.  

  The  action  potential  travels  to  the  transverse  tubules  that  surround  the  muscle  

fiber.    This  excites  the  sarcoplasmic  reticulum,  which  then  releases  stored  Ca2+  ions  into  the  

muscle  fiber.    The  Ca2+  then  allows  myosin  and  actin  filaments,  that  make  up  the  muscle  

fiber,  to  bind  and  form  a  cross-­‐bridge  and  contract  the  muscle.  (Sherwood,  2010,  p.  264)    

This  cross-­‐bridge  is  formed  by  the  myosin  heads  bonding  to  the  actin  filaments  and  

generating  a  pulling  motion  to  initiate  a  muscle  contraction.    This  pulling  motion  must  be  

repeated  in  rapid  succession  to  provide  maximal  contraction.  (A.  Faller,  2004,  p.  92)      

  Twitch  strength,  also  known  as  twitch  tension,  can  be  increased  by  the  summation  

of  the  twitches  or  by  recruiting  more  motor  units.    Many  muscle  fibers  acting  together  by  

stimulation  of  the  motor  neuron  are  known  as  a  muscle  unit.    Muscle  units  can  recruit  more  

muscle  units  when  additional  strength  is  required,  this  is  known  as  muscle  summation.    

There  are  several  sizes  of  motor  units.    The  size  recruited  depends  on  the  strength  of  

contraction  and  acuity  required.    (Sherwood,  2010,  p.  270)  

Page 2: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  2  

  With  increased  stimulation  frequency  there  is  no  period  of  relaxation  for  the  twitch.  

This  provides  consistent  and  sustained  contraction,  known  as  tetanus.    This  occurs  due  to  

the  increase  of  Ca2+  concentration.    This  form  of  contraction  is  typically  300-­‐400%  stronger  

than  that  of  a  single  twitch.    (Sherwood,  2010,  p.  271)  

  The  main  process,  which  acts  as  the  origination  of  a  muscle  stimulation,  is  the  

binding  of  ACh  to  its  receptor.    The  receptor  used  in  skeletal  muscle  is  called  the  nicotinic  

acetylcholine  receptor  (nAChR).      (Sherwood,  2010,  p.  243)    Muscle  contraction  can  be  

blocked,  or  inhibited  through  competitive  binding  of  an  antagonist  known  as  tubocurare.    

Tubocurare  binds  to  the  nAChR,  blocking  ACh  from  binding  and  reducing  twitch  tension.    

Muscle  neuron  synapses  can  also  be  inhibited  which  will  lower  contraction  response.      

  The  goal  of  this  experiment  is  to  measure  and  understand  how  twitch  tension  differs  

when  the  sciatic  nerve  is  stimulated  at  varying  voltages  and  frequencies.    Additionally  this  

experiment  will  show  neurotransmitter  interactions  with  muscle  twitch  and  evaluate  

direct  muscle  stimulation  using  an  electrode.      

  Tension  is  expected  to  increase  as  voltage  is  increased  until  a  maximum  tension  is  

observed.    This  is  the  point  where  the  motor  unit  is  being  completely  used  and  no  more  

force  can  be  applied.    With  increased  stimulation  frequency  it  is  expected  that  the  muscle  

twitches  become  closer  together  and  at  a  higher  tension,  however,  this  will  cause  the  

muscle  to  fatigue  more  quickly  than  with  individual  stimulation  due  to  the  inability  to  

replenish  ATP.    When  tubocurare  is  injected  into  the  frog’s  leg,  tension  will  decrease  due  to  

the  inhibition  of  the  nAChR.    However,  direct  stimulation  by  an  electrical  charge  will  

override  the  nerve  and  cause  a  contraction.  

  The  subject  used  was  a  Leopard  Frog.  

Page 3: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  3  

Methods:  

The  procedure  followed  for  the  lab  can  be  found  in  the  NPB  101L  Physiology  Lab  

Manual.    (E.  Bautista,  2009,  pp.  9-­‐18)    Previous  to  the  experiment  the  frogs  were  double  

pithed  by  the  lab  TA’s.    The  brain  and  spinal  cord  were  destroyed  so  the  frog  could  not  feel  

pain  or  control  it’s  own  movement.    The  frog  was  kept  moist  with  a  paper  towel  dampened  

with  deionized  water,  and  once  the  muscle  tissue  was  exposed  the  tissue  was  kept  alive  

with  Ringer  saline  solution.    The  solution  was  high  in  electrolyte  ions  Ca2+,  Na+,  and  K+.      

  Skin  was  removed  and  the  frog’s  gastrocnemius  was  tied  off  and  separated  from  the  

leg  at  the  lower  tendon.    The  muscle  hung  at  a  90°  angle  to  the  force  transducer.    The  

tension  was  set  to  approximately  20g  +/-­‐  5g  at  all  times  during  the  lab.    The  sciatic  nerve  

was  identified  and  an  electrode  was  placed  under  the  nerve,  with  parafilm  separating  the  

nerve  from  the  tissue.    

  To  find  the  threshold  and  maximum  voltage,  the  voltage  was  increased  at  

increments  of  approximately  0.10V  until  the  observed  force  no  longer  increased.    To  

observe  the  graded  response  an  equation  was  used  to  calculate  ΔV,  taking  the  difference  of  

the  Vmax  and  the  Vthreshold  and  dividing  by  a  factor  of  4  to  give  a  ΔV  of  0.10V.    The  stimulator  

was  set  to  threshold  voltage  of  0.30V  and  voltage  was  increased  at  10-­‐second  intervals  by  

our  ΔV  of  0.10V  until  Vmax  of  1.0V  was  reached.    To  measure  muscle  twitch  summation,  the  

voltage  was  set  to  the  Vmax  of  1.00V  and  frequencies  were  increased.    To  examine  muscle  

paralysis,  the  muscle  was  stimulated  at  0.50  pps  at  1.0V  for  about  60  seconds  to  establish  a  

baseline.    The  tubocurare  was  injected  and  observed  for  5  minutes.    To  observe  direct  

electrical  muscle  stimulation,  needle  electrodes  were  inserted  into  the  frog  leg  and  voltages  

were  increased  until  a  stimulus  appeared.      

Page 4: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  4  

Results:  

Part  1:    Voltage  Threshold  and  Maximum  

  Stimulation  was  delivered  to  the  muscle  at  increasing  increments  of  approximately  

0.1V  as  shown  in  Table  1.    The  initial  tension  from  the  frog  leg  muscle  was  roughly  21  

grams.    The  first  twitch  was  recorded  at  0.3V  which  is  the  Vthreshold  and  a  force  of  23.52g  was  

recorded.    At  1.0V  Vmax  was  recorded  and  a  force  of  124.75g  was  recorded  as  shown  in  

figure  1.    The  change  in  voltage  needed  to  reach  Vmax  was  0.7V  as  shown  in  table  2.    

 

Figure  1:    Graph  of  voltage  (V)  vs.  twitch  tension  (g).    As  the  V  increases,  the  force,  also  

known  as  the  twitch  tension  increases  until  the  voltage  maximum  which  is  at  1.0V  and  

124.75g  of  force.    The  voltages  were  recorded  in  gradually  increasing  increments.  

 

 

 

 

 

Page 5: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  5  

Table  1:    The  twitch  tension  (g)  recorded  and  voltages  associated  with  each  change  when  

sciatic  nerve  of  the  frog  was  stimulated  by  the  electrode.    

 

Table  2:    Threshold  voltage,  maximum  voltage  and  the  change  in  voltage  for  twitch  tension.  

 

  To  find  the  change  in  voltage  needed  to  elicit  a  maximum  response,  the  Vthreshold  was  

subtracted  from  the  Vmax.      

ΔV  =  Vmax  –  Vthreshold  =  1.00-­‐0.30  =  0.70V  

Part  2:    Graded  muscle  Responses  

  When  the  voltage  increases,  the  tension  increases  as  well,  however  the  response  is  

graded.    These  data  present  the  tension  as  minimally  increasing  from  Vthreshold  to  Vmax  as  

seen  in  Figure  2.    Individual  measurements  are  indicated  in  Table  3.      

Page 6: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  6  

 

Figure  2:    The  tension  (g)  at  specific  voltages  applied  to  the  frog’s  gastrocnemius.      The  

maximum  tension  was  recorded  at  8  specific  points  from  Vthreshold  to  Vmax.  

Table  3:    The  tension  (g)  at  specific  voltages  (V)  between  Vthreshold  to  Vmax.  

 

Part  3:    Frequency  and  Twitch  Summation  

  When  the  frequency  of  the  electrode  stimulation  increased,  the  waves  appeared  

closer  together.    There  were  7  variances  in  frequency  shown  in  Table  4  and  represented  in  

Figure  3.    As  frequency  increased  the  waves  became  closer  together  leading  to  tetanus.    

When  the  nerve  was  stimulated  the  frog  leg  would  visibly  twitch.    As  frequency  increased  

Page 7: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  7  

and  the  waves  fused  together  the  twitches  appeared  to  become  a  single  contraction.    The  

tension  decreased  towards  the  end  of  each  series  of  stimulation.  

 

Figure  3:    Raw  data  of  muscle  twitches  at  increasing  frequencies  for  the  frog  gastrocnemius  

muscle.    Frequencies  are  indicated  at  the  top  of  the  graph  and  are  measured  in  pps.    Time  is  

indicated  at  the  bottom  along  the  X-­‐axis  and  is  measured  in  seconds.    Twitch  tension  in  

grams  is  measured  along  the  Y-­‐axis.      

 

 

 

 

 

Page 8: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  8  

Table  4:    Maximum  tension  in  grams  as  the  frequency  (pps)  increases  and  the  highest  

measured  twitch  tension  at  that  frequency.  

 

Part  4:    Tubocurare  Injection  and  Muscle  Paralysis  

  Prior  to  the  tubocurare  injection  the  control  tension  of  the  muscle  at  a  frequency  of  

0.5  pps  and  measured  Vmax  of  1.0V  was  recorded  for  60  seconds.    0.25mL  of  tubocurare  was  

injected  in  the  frog  muscle  and  tensions  were  monitored  for  approximately  5  minutes.    The  

injection  caused  a  change  in  tension  due  to  external  force.    Tension  was  recorded  at  60-­‐

second  intervals  and  can  be  seen  in  Table  5.    Tension  visibly  decreased  over  the  5-­‐minute  

period,  which  can  be  observed  in  Figure  4.      

Table  5:    Tension  (g)  before,  during,  and  after  tubocurare  injection  into  the  muscle  of  the  

leg.  

 

Page 9: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  9  

 

Figure  4:    Graph  of  the  tension  (g)  at  times  (seconds)  before,  during,  and  after  the  injection  

of  tubocurare.    Initial  data  point  is  the  tension  prior  to  injection.    162  seconds  is  the  initial  

data  point  post  injection.    All  data  points  are  at  a  constant  voltage  (Vmax)  and  a  constant  

frequency  (0.50pps).      

Table  6:    Average  tension  (g)  of  5  twitches  within  each  60-­‐second  time  point.  

Time  (seconds)   Average  Tension  (g)  62.00   43.69  92.00   39.72  162.00   33.87  222.00   29.56  282.00   25.87  342.00   23.42  388.00   23.14  

0.00  5.00  10.00  15.00  20.00  25.00  30.00  35.00  40.00  45.00  

0.00   50.00   100.00  150.00  200.00  250.00  300.00  350.00  400.00  450.00  

Tension  (g)  

Time  (seconds)    

Tension  (g)  with  Tubocurare  

Tension  (g)  

Page 10: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  10  

 

Figure  5:    The  average  tension  (g)  of  the  time  (seconds)  that  the  twitch  prolonged  for.    Five  

twitches  were  averaged  for  the  10  seconds  prior  to  the  recorded  time  interval.    Voltage  was  

set  to  Vmax.      

Part  5:    Direct  Muscle  Stimulation:  

  When  an  electrode  directly  stimulates  the  muscle,  specific  muscle  fibers  are  

innervated.    At  the  Vthreshold  of  2.8V  the  muscle  tension  was  23.28g.    This  was  the  lowest  

voltage  where  a  twitch  was  visible.    Voltage  was  then  increased  to  V10xMax,  which  was  10V.    

At  this  voltage  tension  was  34.82g,  which  can  be  seen  in  table  7.      

Table  7:    Tension  (g)  of  the  frog  gastrocnemius  with  direct  muscle  stimulation  via  

electrode.  

    Voltage  (V)   Tension  (g)  

Vthreshold   2.8   23.28  

V10xMax   10   34.82    

 

0  

10  

20  

30  

40  

50  

0.00   100.00   200.00   300.00   400.00   500.00  

Tension  (g)  

Time  (seconds)  

Average  Tension  (g)  

Average  Tension  (g)  

Page 11: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  11  

Table  8:    Tension  (g)  of  the  frog  gastrocnemius  with  direct  muscle  stimulation  at  Vthreshold  of    

2.8V  and  V10xMax  of  10V  versus  stimulation  of  the  sciatic  nerve  at  Vthreshold  of  0.30V  and  Vmax  

of  1.0V.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 12: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  12  

Discussion:  

Effects  of  Stimulus  Intensity  on  Muscle  Activity:  Graded  Response,  Threshold  and  

Maximum  

  The  membrane  potential  of  the  sciatic  nerve  is  changed  with  stimulation  from  an  

electrode.    This  allows  an  action  potential  to  be  sent  to  the  frog’s  gastrocnemius  and  cause  

a  muscle  twitch.    Considering  a  muscle  twitch  is  an  all-­‐or-­‐none  response,  the  intensity  of  

the  stimulation  must  meet  a  minimum  voltage,  or  a  threshold.    The  voltage  threshold  

(Vthreshold)  is  the  lowest  voltage  where  the  muscle  is  able  to  twitch.    This  is  the  amount  of  

stimulation  required  to  stimulate  the  nerve  to  send  the  action  potential  to  the  

neuromuscular  junction.    The  lowest  threshold  that  was  observed  was  0.3V  with  a  force  of  

23.52g.      

  When  the  maximum  voltage  is  reached  (Vmax),  the  twitch  tension  is  at  its  highest  

point  and  no  longer  will  increase  with  added  intensity.    The  tension  will  no  longer  increase  

due  to  all  motor  units  being  recruited.    Motor  units  are  composed  of  the  motor  neuron  and  

all  of  the  muscle  fibers  they  stimulate.    (Sherwood,  2010,  p.  270)      

  There  was  possibly  error  in  the  graded  response  experiment  due  to  incorrect  

stimulation  settings.    The  multiplier  on  the  voltage  setting  may  have  been  incorrect  

because  the  data  did  not  follow  the  expected  results.    The  expected  tension  at  Vthreshold  

should  have  compared  to  the  established  tension  recorded  of  23.52g,  however  it  was  

recorded  at  122.51g.      

  By  looking  at  the  data  in  table  1,  muscle  recruitment  can  be  seen.    At  0.3V  the  

twitch  tension  is  23.52g  and  at  0.4V  the  tension  is  31.87g.    This  shows  that  as  voltage  

increased,  more  motor  units  are  recruited.      Although  twitches  occur  in  an  all-­‐or-­‐none  

Page 13: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  13  

fashion,  the  twitches  can  be  graded  in  size  due  to  the  formation  of  more  cross-­‐bridges  and  

the  recruitment  of  more  motor  units.    (Sherwood,  2010,  p.  270)  

  The  data  for  increasing  the  voltage  and  recruiting  more  motor  units  to  increase  

tension  supports  the  hypothesis  according  to  table  1,  however  according  to  table  3  these  

data  were  not  repeatable.      

Effects  of  Stimulus  Frequency  on  Muscle  Activity:    Summation  

  The  action  potential  can  be  sent  at  various  rates  to  initiate  a  response.    The  rate  an  

action  potential  is  sent  is  referred  to  as  the  frequency.    When  the  frequency  of  stimulation  

to  the  nerve  increases,  the  nerve  sends  action  potentials  at  a  faster  rate  thus  increasing  

frequency.    When  the  action  potentials  are  sent  close  together,  they  are  not  able  to  

completely  depolarize  due  to  the  refractory  period.    This  causes  the  twitches  to  summate.    

(Sherwood,  2010,  p.  270)    When  the  cell  is  depolarized,  Ca2+  ions  enter  into  the  fiber  where  

the  myosin  heads  and  actin  filaments  are  located  from  the  sarcoplasmic  reticulum.    When  

Ca2+  is  present,  it  binds  to  troponin,  which  pulls  away  tropomyosin  and  allows  the  myosin  

heads  to  bind  to  actin,  pulling  the  filament,  leading  to  an  increase  in  tension.      

  With  an  increase  in  stimulation  frequency,  action  potentials  are  sent  at  a  faster  

rate,  the  Ca2+  concentration  stays  high  enough  that  the  cells  are  not  able  to  return  to  

threshold  forcing  the  myosin  actin  cross-­‐bridge  to  stay  intact.    (Sherwood,  2010,  p.  271)    

When  the  action  potentials  are  sent  at  a  high  enough  frequency,  they  summate  and  cause  

tetanus.    Tetanus  occurs  when  muscle  fibers  receive  constant  stimulation  and  the  Ca2+  

concentration  cannot  decrease  so  a  constant  contraction  occurs  at  maximal  strength.    

(Sherwood,  2010,  p.  271)  

Page 14: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  14  

  The  tension  of  a  tetanus  contraction  is  stronger  than  a  twitch  summation.    In  table  

4,  a  single  twitch  where  no  summation  occurred  had  a  tension  of  134.99g.    At  a  frequency  

of  25pps,  where  tetanus  occurred,  there  was  a  tension  of  146.88g.    This  shows  how  tetanus  

contraction  is  stronger  than  twitch  summation.      

  The  tetanus  lasts  for  a  shorter  amount  of  time  as  the  frequency  increases  due  to  

fatigue,  which  can  be  observed  in  figure  3.    Since  the  motor  units  are  innervating  all  of  the  

muscle  fibers  available,  there  is  no  time  to  replenish  Ca2+  and  fatigue  sets  in.    When  muscles  

are  not  in  tetanus  they  exhibit  asynchronous  recruitment  of  motor  neurons,  allowing  the  

muscle  fibers  to  relax.    (Sherwood,  2010,  p.  270)    The  higher  the  frequency,  the  faster  

fatigue  sets  in,  which  is  observed  in  figure  3.      

  Studies  have  shown  that  various  types  of  muscle  fatigue  at  various  rates.    In  a  

study  on  a  rat  gastrocnemius  the  fast  fatigue  motor  units  had  a  larger  twitch  tension  and  a  

higher  tetanus  peak  compared  to  the  fast  resistant  and  slow  motor  units  (Lochynski,  2007,  

pp.  23,  26).    The  motor  units  being  innervated  in  the  frog  gastrocnemius  varied  with  

frequency  change,  which  is  why  the  muscle  fatigued  more  rapidly  at  the  highest  frequency,  

25pps,  without  increasing  tension  substantially.      

  When  frequency  increased,  the  twitch  tension  also  increased  but  twitch  response  

lasted  a  shorter  amount  of  time.    At  0.5pps  the  tension  was  134.99g  and  remained  fairly  

steady.    As  the  frequency  increased  and  twitch  moved  towards  tetanus  from  summation  

twitch  response  decreased  as  well  as  twitch  tension  leading  to  fatigue  as  shown  in  figure  3.    

When  comparing  the  higher  frequencies  of  15  and  25pps,  the  decrease  in  tension  after  

tetanus  was  steeper.    This  can  be  due  to  tetanic  depression,  which  occurs  when  a  high  

frequency  stimulus,  such  as  25pps  follows  a  low  frequency  stimulus  and  the  force  of  the  

Page 15: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  15  

motor  unit  decreases.    (Celichowski,  2011,  p.  19)    In  a  study  researching  tetanic  depression,  

the  medial  gastrocnemius  muscle  in  a  cat  and  a  rat  was  stimulated  at  a  low  frequency  first  

and  subsequently  at  a  high  frequency.    It  was  observed  that  when  a  low-­‐frequency  stimulus  

and  a  high  frequency  stimulus  occurred  in  succession,  the  higher  frequency  stimulus  

exhibits  lower  twitch  tension  post  tetanus.  (Celichowski,  2011,  p.  19)  

Effects  of  Tubocurare  on  Muscle  Activity:    Paralysis  

  When  an  action  potential  is  sent  down  the  nerve  to  the  neuromuscular  junction,  a  

rise  in  Ca2+  signals  vesicles  in  the  terminal  button  of  the  nerve  axon  to  release  

acetylcholine,  a  neurotransmitter  that  signals  the  muscle  fibers  to  allow  Na+  to  enter  and  

cause  depolarization  which  leads  to  muscle  contraction.    (Sherwood,  2010,  pp.  247-­‐248)    

Tubocurare  is  an  antagonist  to  Ach  meaning  it  has  a  similar  conformation  and  will  

competitively  bind  to  the  same  receptors.    This  competitive  binding  allows  it  to  bind  to  the  

nAChR  so  that  Ach  cannot  bind,  preventing  a  muscle  twitch.    (Sherwood,  2010,  p.  246)  

  As  shown  in  figure  4,  post  injection  of  tubocurare,  the  tension  of  the  muscle  

twitches  decreases  as  time  progresses.    The  binding  of  tubocurare  to  the  nAChR  causes  this,  

leaing  ACh.    As  time  progresses  the  tension  decreases  ultimately  stabilizing  at  the  end  of  

the  time  sample.      

  Tubocurare  is  a  paralytic  agent  and  is  lethal  to  animals  such  as  the  frog  used.    It  

lowers  twitch  response,  inhibiting  proper  function  of  the  muscles.    Since  land  animals  

require  muscle  function  for  movement  and  getting  food,  impairing  muscle  twitch  can  be  

lethal.  (Widmaier,  2004,  p.  283)    Although  the  frog  was  not  alive  for  the  experiment,  muscle  

tension  did  return  to  threshold  tension  while  inhibited  at  342  seconds  as  shown  in  table  5.  

Effects  of  Direct  Electrical  Stimulation  on  Muscle  Activity  

Page 16: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  16  

  When  directly  stimulating  a  muscle  with  an  electrode,  the  neuromuscular  junction  

is  bypassed.    The  electrode  causes  the  muscle  to  contract,  even  while  the  nACHr  is  

competitively  inhibited  with  tubocurare.    Direct  stimulation  only  innervates  the  muscle  

fibers  it  is  touching,  however.    This  leads  to  a  low  response  in  tension  at  much  higher  

voltages.    In  a  study  on  frog  muscle  fibers,  direct  stimulation  led  to  a  tension  of  1/6th  of  that  

observed  by  stimulation  of  the  nerve.    (Lehmann,  1979,  p.  43)    With  a  lower  number  of  

muscle  fibers  being  stimulated,  the  tension  response  is  lower.      

  When  comparing  the  twitch  tension  in  part  1  and  part  5  of  the  lab,  there  is  a  

noticeable  difference  in  the  twitch  tension  at  Vmax,  as  shown  in  table  8.    Vmax  for  sciatic  

stimulation  (1.0V)  provided  a  tension  of  124.75g  of  force.    This  is  largely  different  than  the  

force  of  34.82g  measured  with  a  direct  stimulation  of  V10xMax  (10.0V).    This  difference  in  

tension  shows  the  properties  of  motor  unit  recruitment.    When  the  sciatic  nerve  is  

stimulated,  it  can  innervate  many  muscle  fibers,  and  recruit  more  motor  units.    With  direct  

stimulation,  however,  a  single  muscle  fiber  is  stimulated  and  a  lower  tension  response  is  

observed.      

  The  use  of  Ringers  solution  maintained  the  presence  of  ions  in  the  tissue.    The  

solution  contains  required  ions  such  as  Ca2+,  Na+,  and  K+  that  are  needed  for  action  

potentials,  Ach,  and  myosin-­‐actin  cross-­‐bridges  to  occur.    Regardless  of  stimulation  type,  

there  is  a  requirement  for  these  ions.    A  lack  of  Ringers  solution  applied  could  lead  to  error  

in  the  results  due  to  atrophy  of  the  muscle  tissue.      

 

 

 

Page 17: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  17  

Conclusion:  

  Several  components  affect  muscle  tension  and  twitch.    By  altering  these  

components,  such  as  voltage  and  frequency,  motor  unit  and  muscle  fiber  interactions  can  

be  observed.    If  one  variable  is  altered,  the  response  changes.    Each  individual  alteration  

had  a  different  impact  and  was  observed.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 18: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  18  

References  

 A.  Faller,  M.  S.  (2004).  The  Human  Body:  An  Introduction  to  Structure  and  Function  (13  ed.).  (O.  French,  Trans.)  Stuttgart,  Germany:  Georg  Thieme  Verlag,  92.    Celichowski,  D.  L.  (2011).  The  tetanic  depression  in  fast  motor  units  of  mammalian  skeletal  muscle  can  be  evoked  by  lengthening  of  one  initial  interpulse  interval.  Experimental  Brain  Research  (241),  19.    E.  Bautista,  J.  K.  (2009).  NPB  101L  Physiology  Lab  Manual  (2  ed.).  Mason:  Cengage  Learning.  9-­‐18    Lehmann,  S.  (1979).  Contractile  Responses  to  Direct  Stimulation  of  Frog  Slow  Muscle  Fibres  Before  and  After  Denervation.  European  Journal  of  Physiology  (382),  43.    Lochynski,  C.  K.  (2007).  Changes  of  motor  unit  contractile  output  during  repeated  activity.  Acta  Neurobiologiae  Experimentalis  (67),  23-­‐26.    Sherwood,  L.  (2010).  Human  Physiology:  From  Cells  to  Systems  (7  ed.).  Belmont:  Brooks/Cole,  243,  246,  247-­‐248,  264,  270-­‐271.    Widmaier,  R.  S.  (2004).  Cander,  Sherman  and  Luciano's  Human  Physiology  (9th  ed.).  New  York:  McGraw-­‐Hill  283-­‐284.      

 

 

 

 

 

 

 

 

Page 19: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  19  

Raw  Data:  

Threshold  Voltage  0.3V  

 

Maximum  Voltage  1.0V  

 

Frequency  Change  Graph  

 

 

 

 

 

Page 20: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  20  

Tubocurare  

 

Tubocurare  baseline  0-­‐62  seconds  

 

Tubocurare  at  92  seconds  (injection  start)  

 

 

 

Page 21: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  21  

Tubocurare  at  162  seconds  (post  injection)  

 

Tubocurare  at  222  seconds  

 

Tubocurare  at  282  seconds  

 

 

 

Page 22: skeletal muscle report - Scott Austin's Dietetic e-Portfolio · ! 1! Introduction:! Skeletal!muscle!fibers!contract,!or!twitch,!when!a!stimulus!is!applied.!!The!stimulus! isdeliveredbyanervecell,orneuron

  22  

Tubocurare  at  342  seconds  

 

Tubocurare  at  388  seconds